// Copyright 2016-2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "sdkconfig.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_pm.h" #include "sys/lock.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "freertos/ringbuf.h" #include "esp32c3/rom/ets_sys.h" #include "driver/periph_ctrl.h" #include "driver/gpio.h" #include "driver/adc.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/dma_types.h" #include "esp32c3/esp_efuse_rtc_calib.h" #include "esp_private/gdma.h" #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) /** * 1. sar_adc1_lock: this mutex lock is to protect the SARADC1 module. * 2. sar_adc2_lock: this mutex lock is to protect the SARADC2 module. On C3, it is controlled by the digital controller * and PWDET controller. * 3. adc_reg_lock: this spin lock is to protect the shared registers used by ADC1 / ADC2 single read mode. */ static _lock_t sar_adc1_lock; #define SAR_ADC1_LOCK_ACQUIRE() _lock_acquire(&sar_adc1_lock) #define SAR_ADC1_LOCK_RELEASE() _lock_release(&sar_adc1_lock) static _lock_t sar_adc2_lock; #define SAR_ADC2_LOCK_ACQUIRE() _lock_acquire(&sar_adc2_lock) #define SAR_ADC2_LOCK_RELEASE() _lock_release(&sar_adc2_lock) portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED; #define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock) #define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock) #define INTERNAL_BUF_NUM 5 #define IN_SUC_EOF_BIT GDMA_LL_EVENT_RX_SUC_EOF /*--------------------------------------------------------------- Digital Controller Context ---------------------------------------------------------------*/ typedef struct adc_digi_context_t { uint8_t *rx_dma_buf; //dma buffer adc_hal_context_t hal; //hal context gdma_channel_handle_t rx_dma_channel; //dma rx channel handle RingbufHandle_t ringbuf_hdl; //RX ringbuffer handler intptr_t rx_eof_desc_addr; //eof descriptor address of RX channel bool ringbuf_overflow_flag; //1: ringbuffer overflow bool driver_start_flag; //1: driver is started; 0: driver is stoped bool use_adc1; //1: ADC unit1 will be used; 0: ADC unit1 won't be used. bool use_adc2; //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not. adc_atten_t adc1_atten; //Attenuation for ADC1. On this chip each ADC can only support one attenuation. adc_atten_t adc2_atten; //Attenuation for ADC2. On this chip each ADC can only support one attenuation. adc_digi_config_t digi_controller_config; //Digital Controller Configuration esp_pm_lock_handle_t pm_lock; //For power management } adc_digi_context_t; static adc_digi_context_t *s_adc_digi_ctx = NULL; static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten); /*--------------------------------------------------------------- ADC Continuous Read Mode (via DMA) ---------------------------------------------------------------*/ static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data); static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel) { return adc_channel_io_map[adc_unit][adc_channel]; } static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; } gpio_mask |= BIT64(io); } channel_mask = channel_mask >> 1; n++; } gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }; ret = gpio_config(&cfg); return ret; } esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config) { esp_err_t ret = ESP_OK; s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t)); if (s_adc_digi_ctx == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } //ringbuffer s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF); if (!s_adc_digi_ctx->ringbuf_hdl) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc internal buffer used by DMA s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL); if (!s_adc_digi_ctx->rx_dma_buf) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc dma descriptor s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA); if (!s_adc_digi_ctx->hal.rx_desc) { ret = ESP_ERR_NO_MEM; goto cleanup; } //malloc pattern table s_adc_digi_ctx->digi_controller_config.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_table_t)); if (!s_adc_digi_ctx->digi_controller_config.adc_pattern) { ret = ESP_ERR_NO_MEM; goto cleanup; } #if CONFIG_PM_ENABLE ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock); if (ret != ESP_OK) { goto cleanup; } #endif //CONFIG_PM_ENABLE //init gpio pins if (init_config->adc1_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask); if (ret != ESP_OK) { goto cleanup; } } if (init_config->adc2_chan_mask) { ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask); if (ret != ESP_OK) { goto cleanup; } } //alloc rx gdma channel gdma_channel_alloc_config_t rx_alloc_config = { .direction = GDMA_CHANNEL_DIRECTION_RX, }; ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel); if (ret != ESP_OK) { goto cleanup; } gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0)); gdma_strategy_config_t strategy_config = { .auto_update_desc = true, .owner_check = true }; gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config); gdma_rx_event_callbacks_t cbs = { .on_recv_eof = adc_dma_in_suc_eof_callback }; gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx); int dma_chan; gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan); adc_hal_config_t config = { .desc_max_num = INTERNAL_BUF_NUM, .dma_chan = dma_chan, .eof_num = init_config->conv_num_each_intr / ADC_HAL_DATA_LEN_PER_CONV }; adc_hal_context_config(&s_adc_digi_ctx->hal, &config); //enable SARADC module clock periph_module_enable(PERIPH_SARADC_MODULE); adc_hal_calibration_init(ADC_NUM_1); adc_hal_calibration_init(ADC_NUM_2); return ret; cleanup: adc_digi_deinitialize(); return ret; } static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx); static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data) { assert(event_data); adc_digi_context_t *adc_digi_ctx = (adc_digi_context_t *)user_data; adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr; return adc_dma_intr(adc_digi_ctx); } static IRAM_ATTR bool adc_dma_intr(adc_digi_context_t *adc_digi_ctx) { portBASE_TYPE taskAwoken = 0; BaseType_t ret; adc_hal_dma_desc_status_t status = false; dma_descriptor_t *current_desc = NULL; while (1) { status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, ¤t_desc); if (status != ADC_HAL_DMA_DESC_VALID) { break; } ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken); if (ret == pdFALSE) { //ringbuffer overflow adc_digi_ctx->ringbuf_overflow_flag = 1; } } if (status == ADC_HAL_DMA_DESC_NULL) { //start next turns of dma operation adc_hal_digi_rxdma_start(&adc_digi_ctx->hal, adc_digi_ctx->rx_dma_buf); } return (taskAwoken == pdTRUE); } esp_err_t adc_digi_start(void) { if (s_adc_digi_ctx->driver_start_flag != 0) { ESP_LOGE(ADC_TAG, "The driver is already started"); return ESP_ERR_INVALID_STATE; } adc_power_acquire(); //reset flags s_adc_digi_ctx->ringbuf_overflow_flag = 0; s_adc_digi_ctx->driver_start_flag = 1; if (s_adc_digi_ctx->use_adc1) { SAR_ADC1_LOCK_ACQUIRE(); } if (s_adc_digi_ctx->use_adc2) { SAR_ADC2_LOCK_ACQUIRE(); } #if CONFIG_PM_ENABLE // Lock APB frequency while ADC driver is in use esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock); #endif adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); if (s_adc_digi_ctx->use_adc1) { uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten); adc_hal_set_calibration_param(ADC_NUM_1, cal_val); } if (s_adc_digi_ctx->use_adc2) { uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten); adc_hal_set_calibration_param(ADC_NUM_2, cal_val); } adc_hal_init(); adc_hal_arbiter_config(&config); adc_hal_digi_init(&s_adc_digi_ctx->hal); adc_hal_digi_controller_config(&s_adc_digi_ctx->digi_controller_config); //reset ADC and DMA adc_hal_fifo_reset(&s_adc_digi_ctx->hal); //start DMA adc_hal_digi_rxdma_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf); //start ADC adc_hal_digi_start(&s_adc_digi_ctx->hal); return ESP_OK; } esp_err_t adc_digi_stop(void) { if (s_adc_digi_ctx->driver_start_flag != 1) { ESP_LOGE(ADC_TAG, "The driver is already stopped"); return ESP_ERR_INVALID_STATE; } s_adc_digi_ctx->driver_start_flag = 0; //disable the in suc eof intrrupt adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, IN_SUC_EOF_BIT); //clear the in suc eof interrupt adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, IN_SUC_EOF_BIT); //stop ADC adc_hal_digi_stop(&s_adc_digi_ctx->hal); //stop DMA adc_hal_digi_rxdma_stop(&s_adc_digi_ctx->hal); adc_hal_digi_deinit(); #if CONFIG_PM_ENABLE if (s_adc_digi_ctx->pm_lock) { esp_pm_lock_release(s_adc_digi_ctx->pm_lock); } #endif //CONFIG_PM_ENABLE if (s_adc_digi_ctx->use_adc1) { SAR_ADC1_LOCK_RELEASE(); } if (s_adc_digi_ctx->use_adc2) { SAR_ADC2_LOCK_RELEASE(); } adc_power_release(); return ESP_OK; } esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms) { TickType_t ticks_to_wait; esp_err_t ret = ESP_OK; uint8_t *data = NULL; size_t size = 0; ticks_to_wait = timeout_ms / portTICK_RATE_MS; if (timeout_ms == ADC_MAX_DELAY) { ticks_to_wait = portMAX_DELAY; } data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max); if (!data) { ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr"); ret = ESP_ERR_TIMEOUT; *out_length = 0; return ret; } memcpy(buf, data, size); vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data); assert((size % 4) == 0); *out_length = size; if (s_adc_digi_ctx->ringbuf_overflow_flag) { ret = ESP_ERR_INVALID_STATE; } return ret; } esp_err_t adc_digi_deinitialize(void) { if (!s_adc_digi_ctx) { return ESP_ERR_INVALID_STATE; } if (s_adc_digi_ctx->driver_start_flag != 0) { ESP_LOGE(ADC_TAG, "The driver is not stopped"); return ESP_ERR_INVALID_STATE; } if (s_adc_digi_ctx->ringbuf_hdl) { vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl); s_adc_digi_ctx->ringbuf_hdl = NULL; } #if CONFIG_PM_ENABLE if (s_adc_digi_ctx->pm_lock) { esp_pm_lock_delete(s_adc_digi_ctx->pm_lock); } #endif //CONFIG_PM_ENABLE free(s_adc_digi_ctx->rx_dma_buf); free(s_adc_digi_ctx->hal.rx_desc); free(s_adc_digi_ctx->digi_controller_config.adc_pattern); gdma_disconnect(s_adc_digi_ctx->rx_dma_channel); gdma_del_channel(s_adc_digi_ctx->rx_dma_channel); free(s_adc_digi_ctx); s_adc_digi_ctx = NULL; periph_module_disable(PERIPH_SARADC_MODULE); return ESP_OK; } /*--------------------------------------------------------------- ADC Single Read Mode ---------------------------------------------------------------*/ static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio) { esp_err_t ret; uint32_t channel = ADC2_CHANNEL_MAX; if (adc_unit == ADC_UNIT_2) { for (int i = 0; i < ADC2_CHANNEL_MAX; i++) { if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) { channel = i; break; } } if (channel == ADC2_CHANNEL_MAX) { return ESP_ERR_INVALID_ARG; } } adc_power_acquire(); if (adc_unit & ADC_UNIT_1) { ADC_ENTER_CRITICAL(); adc_hal_vref_output(ADC_NUM_1, channel, true); ADC_EXIT_CRITICAL() } else if (adc_unit & ADC_UNIT_2) { ADC_ENTER_CRITICAL(); adc_hal_vref_output(ADC_NUM_2, channel, true); ADC_EXIT_CRITICAL() } ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel)); return ret; } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG); esp_err_t ret = ESP_OK; s_atten1_single[channel] = atten; ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel)); adc_hal_calibration_init(ADC_NUM_1); return ret; } int adc1_get_raw(adc1_channel_t channel) { int raw_out = 0; periph_module_enable(PERIPH_SARADC_MODULE); adc_power_acquire(); SAR_ADC1_LOCK_ACQUIRE(); adc_atten_t atten = s_atten1_single[channel]; uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten); adc_hal_set_calibration_param(ADC_NUM_1, cal_val); ADC_REG_LOCK_ENTER(); adc_hal_set_atten(ADC_NUM_2, channel, atten); adc_hal_convert(ADC_NUM_1, channel, &raw_out); ADC_REG_LOCK_EXIT(); SAR_ADC1_LOCK_RELEASE(); adc_power_release(); periph_module_disable(PERIPH_SARADC_MODULE); return raw_out; } esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG); esp_err_t ret = ESP_OK; s_atten2_single[channel] = atten; ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel)); adc_hal_calibration_init(ADC_NUM_2); return ret; } esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } esp_err_t ret = ESP_OK; periph_module_enable(PERIPH_SARADC_MODULE); adc_power_acquire(); SAR_ADC2_LOCK_ACQUIRE(); adc_atten_t atten = s_atten2_single[channel]; uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten); adc_hal_set_calibration_param(ADC_NUM_2, cal_val); ADC_REG_LOCK_ENTER(); adc_hal_set_atten(ADC_NUM_2, channel, atten); ret = adc_hal_convert(ADC_NUM_2, channel, raw_out); ADC_REG_LOCK_EXIT(); SAR_ADC2_LOCK_RELEASE(); adc_power_release(); periph_module_disable(PERIPH_SARADC_MODULE); return ret; } /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ esp_err_t adc_digi_controller_config(const adc_digi_config_t *config) { if (!s_adc_digi_ctx) { return ESP_ERR_INVALID_STATE; } ADC_CHECK(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, "ADC sampling frequency out of range", ESP_ERR_INVALID_ARG); s_adc_digi_ctx->digi_controller_config.conv_limit_en = config->conv_limit_en; s_adc_digi_ctx->digi_controller_config.conv_limit_num = config->conv_limit_num; s_adc_digi_ctx->digi_controller_config.adc_pattern_len = config->adc_pattern_len; s_adc_digi_ctx->digi_controller_config.sample_freq_hz = config->sample_freq_hz; memcpy(s_adc_digi_ctx->digi_controller_config.adc_pattern, config->adc_pattern, config->adc_pattern_len * sizeof(adc_digi_pattern_table_t)); const int atten_uninitialised = 999; s_adc_digi_ctx->adc1_atten = atten_uninitialised; s_adc_digi_ctx->adc2_atten = atten_uninitialised; s_adc_digi_ctx->use_adc1 = 0; s_adc_digi_ctx->use_adc2 = 0; for (int i = 0; i < config->adc_pattern_len; i++) { const adc_digi_pattern_table_t *pat = &config->adc_pattern[i]; if (pat->unit == ADC_NUM_1) { s_adc_digi_ctx->use_adc1 = 1; if (s_adc_digi_ctx->adc1_atten == atten_uninitialised) { s_adc_digi_ctx->adc1_atten = pat->atten; } else if (s_adc_digi_ctx->adc1_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } else if (pat->unit == ADC_NUM_2) { //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver s_adc_digi_ctx->use_adc2 = 1; if (s_adc_digi_ctx->adc2_atten == atten_uninitialised) { s_adc_digi_ctx->adc2_atten = pat->atten; } else if (s_adc_digi_ctx->adc2_atten != pat->atten) { return ESP_ERR_INVALID_ARG; } } } return ESP_OK; } /*************************************/ /* Digital controller filter setting */ /*************************************/ esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_reset(idx); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_set_factor(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_get_factor(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); adc_hal_digi_filter_enable(idx, enable); ADC_EXIT_CRITICAL(); return ESP_OK; } /**************************************/ /* Digital controller monitor setting */ /**************************************/ esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config) { ADC_ENTER_CRITICAL(); adc_hal_digi_monitor_config(idx, config); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable) { ADC_ENTER_CRITICAL(); adc_hal_digi_monitor_enable(idx, enable); ADC_EXIT_CRITICAL(); return ESP_OK; } /*--------------------------------------------------------------- RTC controller setting ---------------------------------------------------------------*/ static uint16_t s_adc_cali_param[ADC_UNIT_MAX][ADC_ATTEN_MAX] = {}; //NOTE: according to calibration version, different types of lock may be taken during the process: // 1. Semaphore when reading efuse // 2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future //This function shoudn't be called inside critical section or ISR static uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { const bool no_cal = false; if (s_adc_cali_param[adc_n][atten]) { return (uint32_t)s_adc_cali_param[adc_n][atten]; } if (no_cal) { return 0; //indicating failure } // check if we can fetch the values from eFuse. int version = esp_efuse_rtc_calib_get_ver(); uint32_t init_code = 0; if (version == 1) { //for calibration v1, both ADC units use the same init code (calibrated by ADC1) init_code = esp_efuse_rtc_calib_get_init_code(version, atten); ESP_LOGD(ADC_TAG, "Calib(V%d) ADC0, 1 atten=%d: %04X", version, atten, init_code); s_adc_cali_param[0][atten] = init_code; s_adc_cali_param[1][atten] = init_code; } else { adc_power_acquire(); ADC_ENTER_CRITICAL(); const bool internal_gnd = true; init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd); ADC_EXIT_CRITICAL(); adc_power_release(); ESP_LOGD(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code); s_adc_cali_param[adc_n][atten] = init_code; } return init_code; } // Internal function to calibrate PWDET for WiFi esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten) { adc_hal_calibration_init(adc_n); uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten); ADC_ENTER_CRITICAL(); adc_hal_set_calibration_param(adc_n, cal_val); ADC_EXIT_CRITICAL(); return ESP_OK; }