/* * SPDX-FileCopyrightText: 2020 Amazon.com, Inc. or its affiliates * * SPDX-License-Identifier: MIT * * SPDX-FileContributor: 2016-2023 Espressif Systems (Shanghai) CO LTD */ /* * FreeRTOS Kernel V10.4.3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* Standard includes. */ #include #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "timers.h" #include "stack_macros.h" /* Include private IDF API additions for critical thread safety macros */ #include "esp_private/freertos_idf_additions_priv.h" #ifdef ESP_PLATFORM #undef _REENT_INIT_PTR #define _REENT_INIT_PTR esp_reent_init extern void esp_vApplicationIdleHook( void ); #endif //ESP_PLATFORM /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined * for the header files above, but not in this file, in order to generate the * correct privileged Vs unprivileged linkage and placement. */ #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */ /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting * functions but without including stdio.h here. */ #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) /* At the bottom of this file are two optional functions that can be used * to generate human readable text from the raw data generated by the * uxTaskGetSystemState() function. Note the formatting functions are provided * for convenience only, and are NOT considered part of the kernel. */ #include #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ #if ( configUSE_PREEMPTION == 0 ) /* If the cooperative scheduler is being used then a yield should not be * performed just because a higher priority task has been woken. */ #define taskYIELD_IF_USING_PREEMPTION() #else #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() #endif /* Values that can be assigned to the ucNotifyState member of the TCB. */ #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */ #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 ) #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 ) /* * The value used to fill the stack of a task when the task is created. This * is used purely for checking the high water mark for tasks. */ #define tskSTACK_FILL_BYTE ( 0xa5U ) /* Bits used to record how a task's stack and TCB were allocated. */ #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 ) #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 ) #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 ) /* If any of the following are set then task stacks are filled with a known * value so the high water mark can be determined. If none of the following are * set then don't fill the stack so there is no unnecessary dependency on memset. */ #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1 #else #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0 #endif /* * Macros used by vListTask to indicate which state a task is in. */ #define tskRUNNING_CHAR ( 'X' ) #define tskBLOCKED_CHAR ( 'B' ) #define tskREADY_CHAR ( 'R' ) #define tskDELETED_CHAR ( 'D' ) #define tskSUSPENDED_CHAR ( 'S' ) /* * Some kernel aware debuggers require the data the debugger needs access to to * be global, rather than file scope. */ #ifdef portREMOVE_STATIC_QUALIFIER #define static #endif /* The name allocated to the Idle task. This can be overridden by defining * configIDLE_TASK_NAME in FreeRTOSConfig.h. */ #ifndef configIDLE_TASK_NAME #define configIDLE_TASK_NAME "IDLE" #endif #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is * performed in a generic way that is not optimised to any particular * microcontroller architecture. */ /* uxTopReadyPriority holds the priority of the highest priority ready * state task. */ #define taskRECORD_READY_PRIORITY( uxPriority ) \ { \ if( ( uxPriority ) > uxTopReadyPriority ) \ { \ uxTopReadyPriority = ( uxPriority ); \ } \ } /* taskRECORD_READY_PRIORITY */ /*-----------------------------------------------------------*/ #if ( configNUM_CORES > 1 ) #define taskSELECT_HIGHEST_PRIORITY_TASK() taskSelectHighestPriorityTaskSMP() #else /* configNUM_CORES > 1 */ #define taskSELECT_HIGHEST_PRIORITY_TASK() \ { \ UBaseType_t uxTopPriority = uxTopReadyPriority; \ \ /* Find the highest priority queue that contains ready tasks. */ \ while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \ { \ configASSERT( uxTopPriority ); \ --uxTopPriority; \ } \ \ /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ * the same priority get an equal share of the processor time. */ \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \ uxTopReadyPriority = uxTopPriority; \ } /* taskSELECT_HIGHEST_PRIORITY_TASK */ #endif /* configNUM_CORES > 1 */ /*-----------------------------------------------------------*/ /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as * they are only required when a port optimised method of task selection is * being used. */ #define taskRESET_READY_PRIORITY( uxPriority ) #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is * performed in a way that is tailored to the particular microcontroller * architecture being used. */ /* A port optimised version is provided. Call the port defined macros. */ #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority ) /*-----------------------------------------------------------*/ #define taskSELECT_HIGHEST_PRIORITY_TASK() \ { \ UBaseType_t uxTopPriority; \ \ /* Find the highest priority list that contains ready tasks. */ \ portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[ 0 ], &( pxReadyTasksLists[ uxTopPriority ] ) ); \ } /* taskSELECT_HIGHEST_PRIORITY_TASK() */ /*-----------------------------------------------------------*/ /* A port optimised version is provided, call it only if the TCB being reset * is being referenced from a ready list. If it is referenced from a delayed * or suspended list then it won't be in a ready list. */ #define taskRESET_READY_PRIORITY( uxPriority ) \ { \ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \ { \ portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ } \ } #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /*-----------------------------------------------------------*/ /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick * count overflows. */ #define taskSWITCH_DELAYED_LISTS() \ { \ List_t * pxTemp; \ \ /* The delayed tasks list should be empty when the lists are switched. */ \ configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ \ pxTemp = pxDelayedTaskList; \ pxDelayedTaskList = pxOverflowDelayedTaskList; \ pxOverflowDelayedTaskList = pxTemp; \ xNumOfOverflows++; \ prvResetNextTaskUnblockTime(); \ } /*-----------------------------------------------------------*/ /* * Place the task represented by pxTCB into the appropriate ready list for * the task. It is inserted at the end of the list. */ #define prvAddTaskToReadyList( pxTCB ) \ traceMOVED_TASK_TO_READY_STATE( pxTCB ); \ taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \ tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ) /*-----------------------------------------------------------*/ #if ( configNUM_CORES > 1 ) #define prvCheckForYield( pxTCB, xCurCoreID, xYieldEqualPriority ) ( prvCheckForYieldUsingPrioritySMP( ( pxTCB )->uxPriority, ( pxTCB )->xCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE ) #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) ( prvCheckForYieldUsingPrioritySMP( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) == pdTRUE ) #else #define prvCheckForYield( pxTargetTCB, xCurCoreID, xYieldEqualPriority ) ( ( ( pxTargetTCB )->uxPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) > pxCurrentTCB[ 0 ]->uxPriority ) #define prvCheckForYieldUsingPriority( uxTaskPriority, xTaskCoreID, xCurCoreID, xYieldEqualPriority ) ( ( uxTaskPriority + ( ( xYieldEqualPriority == pdTRUE ) ? 1 : 0 ) ) >= pxCurrentTCB[ 0 ]->uxPriority ) #endif /* configNUM_CORES > 1 */ /*-----------------------------------------------------------*/ /* * Check if a particular task (using its xCoreID) can run on a designated core. * On single core, this macro always evaluates to true. */ #if ( configNUM_CORES > 1 ) #define taskCAN_RUN_ON_CORE( xCore, xCoreID ) ( ( ( ( xCoreID ) == xCore ) || ( ( xCoreID ) == tskNO_AFFINITY ) ) ? pdTRUE : pdFALSE ) #else #define taskCAN_RUN_ON_CORE( xCore, xCoreID ) ( pdTRUE ) #endif /* configNUM_CORES > 1 */ /* Check if a task is a currently running task. */ #if ( configNUM_CORES > 1 ) #define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( ( pxTCB ) == pxCurrentTCB[ 0 ] ) || ( ( pxTCB ) == pxCurrentTCB[ 1 ] ) ) #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) ( ( pxTCB ) == pxCurrentTCB[ ( xCoreID ) ] ) #else #define taskIS_CURRENTLY_RUNNING( pxTCB ) ( ( pxTCB ) == pxCurrentTCB[ 0 ] ) #define taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xCoreID ) taskIS_CURRENTLY_RUNNING( ( pxTCB ) ) #endif /* configNUM_CORES > 1 */ /* * Check if a task can be scheduled on a core. * On a dual-core system: * - If a task is pinned, check the scheduler suspension state on the task's pinned core. The task can be scheduled * if the scheduler is not suspended on the pinned core. * - If a task is unpinned, check the scheduler suspension state on both cores. The task can be scheduled if the * scheduler is not suspended on either of the cores. * On a single-core system: * - Check the scheduler suspension state on core 0. The task can be scheduled if the scheduler is not suspended. */ #if ( configNUM_CORES > 1 ) #define taskCAN_BE_SCHEDULED( pxTCB ) \ ( ( ( pxTCB->xCoreID != tskNO_AFFINITY ) ) ? ( uxSchedulerSuspended[ pxTCB->xCoreID ] == ( UBaseType_t ) 0U ) : \ ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) || ( uxSchedulerSuspended[ 1 ] == ( UBaseType_t ) 0U ) ) ) #else #define taskCAN_BE_SCHEDULED( pxTCB ) ( ( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) ) #endif /* configNUM_CORES > 1 */ /* * Several functions take a TaskHandle_t parameter that can optionally be NULL, * where NULL is used to indicate that the handle of the currently executing * task should be used in place of the parameter. This macro simply checks to * see if the parameter is NULL and returns a pointer to the appropriate TCB. */ #if configNUM_CORES > 1 /* In SMP, we need to disable interrupts if getting the current task handle outside a critical section. Calling xTaskGetCurrentTaskHandle() ensures this. */ #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? xTaskGetCurrentTaskHandle() : ( ( TaskHandle_t ) pxHandle ) ) #else #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TaskHandle_t ) pxCurrentTCB[ 0 ] : ( ( TaskHandle_t ) pxHandle ) ) #endif /* * There are various blocking tasks.c API that call configASSERT() to check if * the API is being called while the scheduler is suspended. However, these * asserts are done outside a critical section or interrupt disabled block. * Directly checking uxSchedulerSuspended[ xPortGetCoreID() ] outside a critical * section can lead to false positives in SMP. Thus for SMP, we call * xTaskGetSchedulerState() instead. * * Take the following example of an unpinned Task A in SMP calling * uxSchedulerSuspended[ xPortGetCoreID() ]: * - Task A calls xPortGetCoreID() which is 0 * - Task A gets preempted by Task B, Task A switches to core 1 * - Task B on core 0 calls vTaskSuspendAll() * - Task A checks uxSchedulerSuspended[ 0 ] leading to a false positive */ #if ( configNUM_CORES > 1 ) #define taskIS_SCHEDULER_SUSPENDED() ( xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED ) #else #define taskIS_SCHEDULER_SUSPENDED() ( ( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U ) ) #endif /* configNUM_CORES > 1 */ /* The item value of the event list item is normally used to hold the priority * of the task to which it belongs (coded to allow it to be held in reverse * priority order). However, it is occasionally borrowed for other purposes. It * is important its value is not updated due to a task priority change while it is * being used for another purpose. The following bit definition is used to inform * the scheduler that the value should not be changed - in which case it is the * responsibility of whichever module is using the value to ensure it gets set back * to its original value when it is released. */ #if ( configUSE_16_BIT_TICKS == 1 ) #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U #else #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL #endif /* * Task control block. A task control block (TCB) is allocated for each task, * and stores task state information, including a pointer to the task's context * (the task's run time environment, including register values) */ typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */ { volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ #if ( portUSING_MPU_WRAPPERS == 1 ) xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ #endif ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ ListItem_t xEventListItem; /*< Used to reference a task from an event list. */ UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */ StackType_t * pxStack; /*< Points to the start of the stack. */ char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ BaseType_t xCoreID; /*< Core this task is pinned to */ #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */ #endif #if ( portCRITICAL_NESTING_IN_TCB == 1 ) UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ #endif #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */ #endif #if ( configUSE_MUTEXES == 1 ) UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ UBaseType_t uxMutexesHeld; #endif #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t pxTaskTag; #endif #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */ #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) /* Allocate a Newlib reent structure that is specific to this task. * Note Newlib support has been included by popular demand, but is not * used by the FreeRTOS maintainers themselves. FreeRTOS is not * responsible for resulting newlib operation. User must be familiar with * newlib and must provide system-wide implementations of the necessary * stubs. Be warned that (at the time of writing) the current newlib design * implements a system-wide malloc() that must be provided with locks. * * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ struct _reent xNewLib_reent; #endif #if ( configUSE_TASK_NOTIFICATIONS == 1 ) volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; #endif /* See the comments in FreeRTOS.h with the definition of * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */ #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) uint8_t ucDelayAborted; #endif #if ( configUSE_POSIX_ERRNO == 1 ) int iTaskErrno; #endif } tskTCB; /* The old tskTCB name is maintained above then typedefed to the new TCB_t name * below to enable the use of older kernel aware debuggers. */ typedef tskTCB TCB_t; /*lint -save -e956 A manual analysis and inspection has been used to determine * which static variables must be declared volatile. */ PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[ configNUM_CORES ] = { NULL }; /* Lists for ready and blocked tasks. -------------------- * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but * doing so breaks some kernel aware debuggers and debuggers that rely on removing * the static qualifier. */ PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t xPendingReadyList[ configNUM_CORES ]; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ /* Spinlock required for SMP critical sections. This lock protects all of the * kernel's data structures such as various tasks lists, flags, and tick counts. */ PRIVILEGED_DATA static portMUX_TYPE xKernelLock = portMUX_INITIALIZER_UNLOCKED; #if ( INCLUDE_vTaskDelete == 1 ) PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */ PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U; #endif #if ( INCLUDE_vTaskSuspend == 1 ) PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */ #endif /* Global POSIX errno. Its value is changed upon context switching to match * the errno of the currently running task. */ #if ( configUSE_POSIX_ERRNO == 1 ) int FreeRTOS_errno = 0; #endif /* Other file private variables. --------------------------------*/ PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U; PRIVILEGED_DATA static volatile BaseType_t xYieldPending[ configNUM_CORES ] = { pdFALSE }; PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */ PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[ configNUM_CORES ] = { NULL }; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */ /* Context switches are held pending while the scheduler is suspended. Also, * interrupts must not manipulate the xStateListItem of a TCB, or any of the * lists the xStateListItem can be referenced from, if the scheduler is suspended. * If an interrupt needs to unblock a task while the scheduler is suspended then it * moves the task's event list item into the xPendingReadyList, ready for the * kernel to move the task from the pending ready list into the real ready list * when the scheduler is unsuspended. The pending ready list itself can only be * accessed from a critical section. */ PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ configNUM_CORES ] = { ( UBaseType_t ) 0U }; #if ( configGENERATE_RUN_TIME_STATS == 1 ) /* Do not move these variables to function scope as doing so prevents the * code working with debuggers that need to remove the static qualifier. */ PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime[ configNUM_CORES ] = { 0U }; /*< Holds the value of a timer/counter the last time a task was switched in. */ PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */ #endif /* per-CPU flags indicating that we are doing context switch, it is used by apptrace and sysview modules */ /* in order to avoid calls of vPortYield from traceTASK_SWITCHED_IN/OUT when waiting */ /* for locks to be free or for host to read full trace buffer */ PRIVILEGED_DATA static volatile BaseType_t xSwitchingContext[ configNUM_CORES ] = { pdFALSE }; /*lint -restore */ /*-----------------------------------------------------------*/ /* File private functions. --------------------------------*/ /* * Creates the idle tasks during scheduler start. */ static BaseType_t prvCreateIdleTasks( void ); /** * Utility task that simply returns pdTRUE if the task referenced by xTask is * currently in the Suspended state, or pdFALSE if the task referenced by xTask * is in any other state. */ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; #endif /* INCLUDE_vTaskSuspend */ /* * Utility to ready all the lists used by the scheduler. This is called * automatically upon the creation of the first task. */ static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; /* * The idle task, which as all tasks is implemented as a never ending loop. * The idle task is automatically created and added to the ready lists upon * creation of the first user task. * * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION; /* * Utility to free all memory allocated by the scheduler to hold a TCB, * including the stack pointed to by the TCB. * * This does not free memory allocated by the task itself (i.e. memory * allocated by calls to pvPortMalloc from within the tasks application code). */ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION; #endif /* * Used only by the idle task. This checks to see if anything has been placed * in the list of tasks waiting to be deleted. If so the task is cleaned up * and its TCB deleted. */ static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; /* * The currently executing task is entering the Blocked state. Add the task to * either the current or the overflow delayed task list. */ static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION; /* * Fills an TaskStatus_t structure with information on each task that is * referenced from the pxList list (which may be a ready list, a delayed list, * a suspended list, etc.). * * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM * NORMAL APPLICATION CODE. */ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) PRIVILEGED_FUNCTION; #endif /* * Searches pxList for a task with name pcNameToQuery - returning a handle to * the task if it is found, or NULL if the task is not found. */ #if ( INCLUDE_xTaskGetHandle == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION; #endif /* * When a task is created, the stack of the task is filled with a known value. * This function determines the 'high water mark' of the task stack by * determining how much of the stack remains at the original preset value. */ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; #endif /* * Return the amount of time, in ticks, that will pass before the kernel will * next move a task from the Blocked state to the Running state. * * This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user * defined low power mode implementations require configUSE_TICKLESS_IDLE to be * set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; #endif /* * Set xNextTaskUnblockTime to the time at which the next Blocked state task * will exit the Blocked state. */ static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION; #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) /* * Helper function used to pad task names with spaces when printing out * human readable tables of task information. */ static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) PRIVILEGED_FUNCTION; #endif /* * Called after a Task_t structure has been allocated either statically or * dynamically to fill in the structure's members. */ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions, BaseType_t xCoreID ) PRIVILEGED_FUNCTION; /* * Called after a new task has been created and initialised to place the task * under the control of the scheduler. */ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION; #if ( configNUM_CORES > 1 ) /* * Check whether a yield (on either core) is required after unblocking (or * changing the priority of) a particular task. * * - This function is the SMP replacement for checking if an unblocked task has * a higher (or equal) priority than the current task. * - It should be called before calling taskYIELD_IF_USING_PREEMPTION() or * before setting xYieldRequired * - If it is the other core that requires a yield, this function will * internally trigger the other core to yield * * Note: In some special instances, a yield is triggered if the unblocked task * has an equal priority (such as in xTaskResumeAll). Thus the * xYieldEqualPriority parameter specifies whether to yield if the current * task has equal priority. * * Scheduling Algorithm: * This function will bias towards yielding the current core. * - If the unblocked task has a higher (or equal) priority than the current * core, the current core is yielded regardless of the current priority of the * other core. * - A core (current or other) will only yield if their schedulers are not * suspended. * * Todo: This can be optimized (IDF-5772) * * Entry: * - This function must be called in a critical section * - A task must just have been unblocked, or its priority raised * Exit: * - Returns pdTRUE if the current core requires yielding * - The other core will be triggered to yield if required */ static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority, BaseType_t xTaskCoreID, BaseType_t xCurCoreID, BaseType_t xYieldEqualPriority ) PRIVILEGED_FUNCTION; #endif /* configNUM_CORES > 1 */ /* * freertos_tasks_c_additions_init() should only be called if the user definable * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro * called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION; #endif /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; configASSERT( pxTaskDefinition->puxStackBuffer != NULL ); configASSERT( pxTaskDefinition->pxTaskBuffer != NULL ); if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) ) { /* Allocate space for the TCB. Where the memory comes from depends * on the implementation of the port malloc function and whether or * not static allocation is being used. */ pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer; /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note this * task was created statically in case the task is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions, tskNO_AFFINITY ); prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } return xReturn; } #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; configASSERT( pxTaskDefinition->puxStackBuffer ); if( pxTaskDefinition->puxStackBuffer != NULL ) { /* Allocate space for the TCB. Where the memory comes from depends * on the implementation of the port malloc function and whether or * not static allocation is being used. */ pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note * this task had a statically allocated stack in case it is * later deleted. The TCB was allocated dynamically. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions, tskNO_AFFINITY ); prvAddNewTaskToReadyList( pxNewTCB ); xReturn = pdPASS; } } return xReturn; } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions, BaseType_t xCoreID ) { StackType_t * pxTopOfStack; UBaseType_t x; #if ( configNUM_CORES == 1 ) { xCoreID = 0; } #endif #if ( portUSING_MPU_WRAPPERS == 1 ) /* Should the task be created in privileged mode? */ BaseType_t xRunPrivileged; if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) { xRunPrivileged = pdTRUE; } else { xRunPrivileged = pdFALSE; } uxPriority &= ~portPRIVILEGE_BIT; #endif /* portUSING_MPU_WRAPPERS == 1 */ /* Avoid dependency on memset() if it is not required. */ #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 ) { /* Fill the stack with a known value to assist debugging. */ ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) ); } #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */ #if ( configUSE_TRACE_FACILITY == 1 ) { /* Zero the uxTaskNumber TCB member to avoid random value from dynamically allocated TCBs */ pxNewTCB->uxTaskNumber = 0; } #endif /* ( configUSE_TRACE_FACILITY == 1 ) */ /* Calculate the top of stack address. This depends on whether the stack * grows from high memory to low (as per the 80x86) or vice versa. * portSTACK_GROWTH is used to make the result positive or negative as required * by the port. */ #if ( portSTACK_GROWTH < 0 ) { pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] ); pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */ /* Check the alignment of the calculated top of stack is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); #if ( configRECORD_STACK_HIGH_ADDRESS == 1 ) { /* Also record the stack's high address, which may assist * debugging. */ pxNewTCB->pxEndOfStack = pxTopOfStack; } #endif /* configRECORD_STACK_HIGH_ADDRESS */ } #else /* portSTACK_GROWTH */ { pxTopOfStack = pxNewTCB->pxStack; /* Check the alignment of the stack buffer is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); /* The other extreme of the stack space is required if stack checking is * performed. */ pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); } #endif /* portSTACK_GROWTH */ /* Store the task name in the TCB. */ if( pcName != NULL ) { for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { pxNewTCB->pcTaskName[ x ] = pcName[ x ]; /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than * configMAX_TASK_NAME_LEN characters just in case the memory after the * string is not accessible (extremely unlikely). */ if( pcName[ x ] == ( char ) 0x00 ) { break; } else { mtCOVERAGE_TEST_MARKER(); } } /* Ensure the name string is terminated in the case that the string length * was greater or equal to configMAX_TASK_NAME_LEN. */ pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; } else { /* The task has not been given a name, so just ensure there is a NULL * terminator when it is read out. */ pxNewTCB->pcTaskName[ 0 ] = 0x00; } /* This is used as an array index so must ensure it's not too large. First * remove the privilege bit if one is present. */ if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } pxNewTCB->uxPriority = uxPriority; pxNewTCB->xCoreID = xCoreID; #if ( configUSE_MUTEXES == 1 ) { pxNewTCB->uxBasePriority = uxPriority; pxNewTCB->uxMutexesHeld = 0; } #endif /* configUSE_MUTEXES */ vListInitialiseItem( &( pxNewTCB->xStateListItem ) ); vListInitialiseItem( &( pxNewTCB->xEventListItem ) ); /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get * back to the containing TCB from a generic item in a list. */ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB ); /* Event lists are always in priority order. */ listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB ); #if ( portCRITICAL_NESTING_IN_TCB == 1 ) { pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U; } #endif /* portCRITICAL_NESTING_IN_TCB */ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) { pxNewTCB->pxTaskTag = NULL; } #endif /* configUSE_APPLICATION_TASK_TAG */ #if ( configGENERATE_RUN_TIME_STATS == 1 ) { pxNewTCB->ulRunTimeCounter = 0UL; } #endif /* configGENERATE_RUN_TIME_STATS */ #if ( portUSING_MPU_WRAPPERS == 1 ) { vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth ); } #else { /* Avoid compiler warning about unreferenced parameter. */ ( void ) xRegions; } #endif #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) { for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ ) { pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL; } } #endif #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) ); memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) ); } #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Initialise this task's Newlib reent structure. */ _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) ); } #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) { pxNewTCB->ucDelayAborted = pdFALSE; } #endif /* Initialize the TCB stack to look as if the task was already running, * but had been interrupted by the scheduler. The return address is set * to the start of the task function. Once the stack has been initialised * the top of stack variable is updated. */ #if ( portUSING_MPU_WRAPPERS == 1 ) { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #else /* portUSING_MPU_WRAPPERS */ { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #endif /* portUSING_MPU_WRAPPERS */ if( pxCreatedTask != NULL ) { /* Pass the handle out in an anonymous way. The handle can be used to * change the created task's priority, delete the created task, etc.*/ *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) { /* Ensure interrupts don't access the task lists while the lists are being * updated. */ taskENTER_CRITICAL( &xKernelLock ); { uxCurrentNumberOfTasks++; if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) { /* This is the first task to be created so do the preliminary * initialisation required. We will not recover if this call * fails, but we will report the failure. */ prvInitialiseTaskLists(); } else { mtCOVERAGE_TEST_MARKER(); } if( ( pxCurrentTCB[ 0 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) ) { /* On core 0, there are no other tasks, or all the other tasks * are in the suspended state - make this the current task. */ pxCurrentTCB[ 0 ] = pxNewTCB; } #if ( configNUM_CORES > 1 ) else if( ( pxCurrentTCB[ 1 ] == NULL ) && ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) ) { /* On core 1, there are no other tasks, or all the other tasks * are in the suspended state - make this the current task. */ pxCurrentTCB[ 1 ] = pxNewTCB; } #endif /* configNUM_CORES > 1 */ else { /* If the scheduler is not already running, make this task the * current task if it is the highest priority task to be created * so far. */ if( xSchedulerRunning == pdFALSE ) { if( ( pxCurrentTCB[ 0 ] != NULL ) && ( taskCAN_RUN_ON_CORE( 0, pxNewTCB->xCoreID ) == pdTRUE ) && ( pxCurrentTCB[ 0 ]->uxPriority <= pxNewTCB->uxPriority ) ) { pxCurrentTCB[ 0 ] = pxNewTCB; } #if ( configNUM_CORES > 1 ) else if( ( pxCurrentTCB[ 1 ] != NULL ) && ( taskCAN_RUN_ON_CORE( 1, pxNewTCB->xCoreID ) == pdTRUE ) && ( pxCurrentTCB[ 1 ]->uxPriority <= pxNewTCB->uxPriority ) ) { pxCurrentTCB[ 1 ] = pxNewTCB; } #endif /* configNUM_CORES > 1 */ else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } uxTaskNumber++; #if ( configUSE_TRACE_FACILITY == 1 ) { /* Add a counter into the TCB for tracing only. */ pxNewTCB->uxTCBNumber = uxTaskNumber; } #endif /* configUSE_TRACE_FACILITY */ traceTASK_CREATE( pxNewTCB ); prvAddTaskToReadyList( pxNewTCB ); portSETUP_TCB( pxNewTCB ); if( xSchedulerRunning != pdFALSE ) { /* If the created task is of a higher priority than the current task * then it should run now. */ if( prvCheckForYield( pxNewTCB, xPortGetCoreID(), pdTRUE ) ) { taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); } /*-----------------------------------------------------------*/ #if ( configNUM_CORES > 1 ) static BaseType_t prvCheckForYieldUsingPrioritySMP( UBaseType_t uxTaskPriority, BaseType_t xTaskCoreID, BaseType_t xCurCoreID, BaseType_t xYieldEqualPriority ) { if( xYieldEqualPriority == pdTRUE ) { /* Increment the task priority to achieve the same affect as if( uxTaskPriority >= pxCurrentTCB->uxPriority ) */ uxTaskPriority++; } /* Indicate whether the current core needs to yield */ BaseType_t xYieldRequiredCurrentCore; /* If the target task can run on the current core, and has a higher priority than the current core, and the core has not suspended scheduling, then yield the current core */ if( ( ( xTaskCoreID == xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) && ( uxTaskPriority > pxCurrentTCB[ xCurCoreID ]->uxPriority ) && ( uxSchedulerSuspended[ xCurCoreID ] == ( UBaseType_t ) 0U ) ) { /* Return true for the caller to yield the current core */ xYieldRequiredCurrentCore = pdTRUE; } /* If the target task can run on the other core, and has a higher priority then the other core, and the other core has not suspended scheduling, then yield the other core */ else if( ( ( xTaskCoreID == !xCurCoreID ) || ( xTaskCoreID == tskNO_AFFINITY ) ) && ( uxTaskPriority > pxCurrentTCB[ !xCurCoreID ]->uxPriority ) && ( uxSchedulerSuspended[ !xCurCoreID ] == ( UBaseType_t ) 0U ) ) { /* Signal the other core to yield */ vPortYieldOtherCore( !xCurCoreID ); xYieldRequiredCurrentCore = pdFALSE; } else { xYieldRequiredCurrentCore = pdFALSE; } return xYieldRequiredCurrentCore; } #endif /* configNUM_CORES > 1 */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelete == 1 ) void vTaskDelete( TaskHandle_t xTaskToDelete ) { TCB_t * pxTCB; BaseType_t xFreeNow; taskENTER_CRITICAL( &xKernelLock ); { BaseType_t xCurCoreID; #if ( configNUM_CORES > 1 ) xCurCoreID = xPortGetCoreID(); #else xCurCoreID = 0; ( void ) xCurCoreID; #endif /* If null is passed in here then it is the calling task that is * being deleted. */ pxTCB = prvGetTCBFromHandle( xTaskToDelete ); /* Remove task from the ready/delayed list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Increment the uxTaskNumber also so kernel aware debuggers can * detect that the task lists need re-generating. This is done before * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will * not return. */ uxTaskNumber++; /* We cannot free the task immediately if it is currently running (on either core) */ xFreeNow = ( taskIS_CURRENTLY_RUNNING( pxTCB ) ) ? pdFALSE : pdTRUE; if( xFreeNow == pdFALSE ) { /* A task is deleting itself. This cannot complete within the * task itself, as a context switch to another task is required. * Place the task in the termination list. The idle task will * check the termination list and free up any memory allocated by * the scheduler for the TCB and stack of the deleted task. */ vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) ); /* Increment the ucTasksDeleted variable so the idle task knows * there is a task that has been deleted and that it should therefore * check the xTasksWaitingTermination list. */ ++uxDeletedTasksWaitingCleanUp; /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */ traceTASK_DELETE( pxTCB ); /* The pre-delete hook is primarily for the Windows simulator, * in which Windows specific clean up operations are performed, * after which it is not possible to yield away from this task - * hence xYieldPending is used to latch that a context switch is * required. */ portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[ xCurCoreID ] ); #if ( configNUM_CORES > 1 ) if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xCurCoreID ) ) { /* SMP case of deleting a task currently running on a different core. Same issue * as a task deleting itself, but we need to send a yield to this task now * before we release xKernelLock. * * Specifically there is a case where the other core may already be spinning on * xKernelLock waiting to go into a blocked state. A check is added in * prvAddCurrentTaskToDelayedList() to prevent it from removing itself from * xTasksWaitingTermination list in this case (instead it will immediately * release xKernelLock again and be yielded before the FreeRTOS function * returns.) */ vPortYieldOtherCore( !xCurCoreID ); } #endif /* configNUM_CORES > 1 */ } else { --uxCurrentNumberOfTasks; traceTASK_DELETE( pxTCB ); /* Reset the next expected unblock time in case it referred to * the task that has just been deleted. */ prvResetNextTaskUnblockTime(); } } taskEXIT_CRITICAL( &xKernelLock ); if( xFreeNow == pdTRUE ) { prvDeleteTCB( pxTCB ); } /* Force a reschedule if it is the currently running task that has just * been deleted. */ if( xSchedulerRunning != pdFALSE ) { taskENTER_CRITICAL( &xKernelLock ); if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) ) { configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U ); portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL( &xKernelLock ); } } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskDelayUntil == 1 ) BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) { TickType_t xTimeToWake; BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; configASSERT( pxPreviousWakeTime ); configASSERT( ( xTimeIncrement > 0U ) ); configASSERT( !taskIS_SCHEDULER_SUSPENDED() ); prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount; /* Generate the tick time at which the task wants to wake. */ xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; if( xConstTickCount < *pxPreviousWakeTime ) { /* The tick count has overflowed since this function was * lasted called. In this case the only time we should ever * actually delay is if the wake time has also overflowed, * and the wake time is greater than the tick time. When this * is the case it is as if neither time had overflowed. */ if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The tick time has not overflowed. In this case we will * delay if either the wake time has overflowed, and/or the * tick time is less than the wake time. */ if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } /* Update the wake time ready for the next call. */ *pxPreviousWakeTime = xTimeToWake; if( xShouldDelay != pdFALSE ) { traceTASK_DELAY_UNTIL( xTimeToWake ); /* prvAddCurrentTaskToDelayedList() needs the block time, not * the time to wake, so subtract the current tick count. */ prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE ); } else { mtCOVERAGE_TEST_MARKER(); } } xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); /* Force a reschedule if xTaskResumeAll has not already done so, we may * have put ourselves to sleep. */ if( xAlreadyYielded == pdFALSE ) { portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } return xShouldDelay; } #endif /* INCLUDE_xTaskDelayUntil */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelay == 1 ) void vTaskDelay( const TickType_t xTicksToDelay ) { BaseType_t xAlreadyYielded = pdFALSE; /* A delay time of zero just forces a reschedule. */ if( xTicksToDelay > ( TickType_t ) 0U ) { configASSERT( !taskIS_SCHEDULER_SUSPENDED() ); prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { traceTASK_DELAY(); /* A task that is removed from the event list while the * scheduler is suspended will not get placed in the ready * list or removed from the blocked list until the scheduler * is resumed. * * This task cannot be in an event list as it is the currently * executing task. */ prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE ); } xAlreadyYielded = prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); } else { mtCOVERAGE_TEST_MARKER(); } /* Force a reschedule if xTaskResumeAll has not already done so, we may * have put ourselves to sleep. */ if( xAlreadyYielded == pdFALSE ) { portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* INCLUDE_vTaskDelay */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) ) eTaskState eTaskGetState( TaskHandle_t xTask ) { eTaskState eReturn; List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList; const TCB_t * const pxTCB = xTask; configASSERT( pxTCB ); taskENTER_CRITICAL( &xKernelLock ); /*Need critical section incase either core context switches in between */ if( taskIS_CURRENTLY_RUNNING( pxTCB ) ) { /* The task calling this function is querying its own state. */ eReturn = eRunning; } else { pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) ); pxDelayedList = pxDelayedTaskList; pxOverflowedDelayedList = pxOverflowDelayedTaskList; if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) ) { /* The task being queried is referenced from one of the Blocked * lists. */ eReturn = eBlocked; } #if ( INCLUDE_vTaskSuspend == 1 ) else if( pxStateList == &xSuspendedTaskList ) { /* The task being queried is referenced from the suspended * list. Is it genuinely suspended or is it blocked * indefinitely? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) { #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; /* The task does not appear on the event list item of * and of the RTOS objects, but could still be in the * blocked state if it is waiting on its notification * rather than waiting on an object. If not, is * suspended. */ eReturn = eSuspended; for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { eReturn = eBlocked; break; } } } #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ { eReturn = eSuspended; } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } else { eReturn = eBlocked; } } #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */ #if ( INCLUDE_vTaskDelete == 1 ) else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) ) { /* The task being queried is referenced from the deleted * tasks list, or it is not referenced from any lists at * all. */ eReturn = eDeleted; } #endif else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */ { /* If the task is not in any other state, it must be in the * Ready (including pending ready) state. */ eReturn = eReady; } } taskEXIT_CRITICAL( &xKernelLock ); return eReturn; } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ #endif /* INCLUDE_eTaskGetState */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; taskENTER_CRITICAL( &xKernelLock ); { /* If null is passed in here then it is the priority of the task * that called uxTaskPriorityGet() that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } taskEXIT_CRITICAL( &xKernelLock ); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); taskENTER_CRITICAL_ISR( &xKernelLock ); { /* If null is passed in here then it is the priority of the calling * task that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } taskEXIT_CRITICAL_ISR( &xKernelLock ); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskPrioritySet == 1 ) void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) { TCB_t * pxTCB; UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; BaseType_t xYieldRequired = pdFALSE; configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) ); /* Ensure the new priority is valid. */ if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } taskENTER_CRITICAL( &xKernelLock ); { /* If null is passed in here then it is the priority of the calling * task that is being changed. */ pxTCB = prvGetTCBFromHandle( xTask ); traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); #if ( configUSE_MUTEXES == 1 ) { uxCurrentBasePriority = pxTCB->uxBasePriority; } #else { uxCurrentBasePriority = pxTCB->uxPriority; } #endif if( uxCurrentBasePriority != uxNewPriority ) { /* The priority change may have readied a task of higher * priority than the calling task. */ if( uxNewPriority > uxCurrentBasePriority ) { if( !taskIS_CURRENTLY_RUNNING( pxTCB ) ) { /* The priority of a task other than the currently * running task is being raised. Is the priority being * raised above that of the running task? */ if( prvCheckForYieldUsingPriority( uxNewPriority, pxTCB->xCoreID, xPortGetCoreID(), pdTRUE ) ) { xYieldRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The priority of the running task is being raised, * but the running task must already be the highest * priority task able to run so no yield is required. */ } } else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 0 ) ) { /* Setting the priority of the running task down means * there may now be another task of higher priority that * is ready to execute. */ xYieldRequired = pdTRUE; } #if ( configNUM_CORES > 1 ) else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, 1 ) ) { /* Setting the priority of the running task on the other * core down means there may now be another task of * higher priority that is ready to execute. */ vPortYieldOtherCore( 1 ); } #endif /* configNUM_CORES > 1 */ else { /* Setting the priority of any other task down does not * require a yield as the running task must be above the * new priority of the task being modified. */ } /* Remember the ready list the task might be referenced from * before its uxPriority member is changed so the * taskRESET_READY_PRIORITY() macro can function correctly. */ uxPriorityUsedOnEntry = pxTCB->uxPriority; #if ( configUSE_MUTEXES == 1 ) { /* Only change the priority being used if the task is not * currently using an inherited priority. */ if( pxTCB->uxBasePriority == pxTCB->uxPriority ) { pxTCB->uxPriority = uxNewPriority; } else { mtCOVERAGE_TEST_MARKER(); } /* The base priority gets set whatever. */ pxTCB->uxBasePriority = uxNewPriority; } #else /* if ( configUSE_MUTEXES == 1 ) */ { pxTCB->uxPriority = uxNewPriority; } #endif /* if ( configUSE_MUTEXES == 1 ) */ /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the task is in the blocked or suspended list we need do * nothing more than change its priority variable. However, if * the task is in a ready list it needs to be removed and placed * in the list appropriate to its new priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* The task is currently in its ready list - remove before * adding it to its new ready list. As we are in a critical * section we can do this even if the scheduler is suspended. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } if( xYieldRequired != pdFALSE ) { taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } /* Remove compiler warning about unused variables when the port * optimised task selection is not being used. */ ( void ) uxPriorityUsedOnEntry; } } taskEXIT_CRITICAL( &xKernelLock ); } #endif /* INCLUDE_vTaskPrioritySet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskSuspend( TaskHandle_t xTaskToSuspend ) { TCB_t * pxTCB; taskENTER_CRITICAL( &xKernelLock ); { /* If null is passed in here then it is the running task that is * being suspended. */ pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); traceTASK_SUSPEND( pxTCB ); /* Remove task from the ready/delayed list and place in the * suspended list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ); #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { /* The task was blocked to wait for a notification, but is * now suspended, so no notification was received. */ pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION; } } } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ if( xSchedulerRunning != pdFALSE ) { /* Reset the next expected unblock time in case it referred to the * task that is now in the Suspended state. */ prvResetNextTaskUnblockTime(); } else { mtCOVERAGE_TEST_MARKER(); } if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, xPortGetCoreID() ) ) { if( xSchedulerRunning != pdFALSE ) { /* The current task has just been suspended. */ configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U ); portYIELD_WITHIN_API(); } else { /* The scheduler is not running, but the task that was pointed * to by pxCurrentTCB has just been suspended and pxCurrentTCB * must be adjusted to point to a different task. */ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */ { /* No other tasks are ready, so set pxCurrentTCB back to * NULL so when the next task is created pxCurrentTCB will * be set to point to it no matter what its relative priority * is. */ pxCurrentTCB[ xPortGetCoreID() ] = NULL; } else { vTaskSwitchContext(); } } } #if ( configNUM_CORES > 1 ) else if( taskIS_CURRENTLY_RUNNING_ON_CORE( pxTCB, !xPortGetCoreID() ) ) { /* The other core's current task has just been suspended */ if( xSchedulerRunning != pdFALSE ) { vPortYieldOtherCore( !xPortGetCoreID() ); } else { /* The scheduler is not running, but the task that was pointed * to by pxCurrentTCB[ otherCore ] has just been suspended. * We simply set the pxCurrentTCB[ otherCore ] to NULL for now. * Todo: Update vTaskSwitchContext() to be runnable on * behalf of the other core. */ pxCurrentTCB[ !xPortGetCoreID() ] = NULL; } } #endif /* configNUM_CORES > 1 */ else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) { BaseType_t xReturn = pdFALSE; const TCB_t * const pxTCB = xTask; /* Accesses xPendingReadyList so must be called from a critical * section. */ /* It does not make sense to check if the calling task is suspended. */ configASSERT( xTask ); /* Is the task being resumed actually in the suspended list? */ if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* Has the task already been resumed from within an ISR? */ #if ( configNUM_CORES > 1 ) if( ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) && ( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 1 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) ) #else if( listIS_CONTAINED_WITHIN( &xPendingReadyList[ 0 ], &( pxTCB->xEventListItem ) ) == pdFALSE ) #endif { /* Is it in the suspended list because it is in the Suspended * state, or because is is blocked with no timeout? */ if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */ { xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } return xReturn; } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskResume( TaskHandle_t xTaskToResume ) { TCB_t * const pxTCB = xTaskToResume; /* It does not make sense to resume the calling task. */ configASSERT( xTaskToResume ); taskENTER_CRITICAL( &xKernelLock ); { /* The parameter cannot be NULL as it is impossible to resume the * currently executing task. */ if( !taskIS_CURRENTLY_RUNNING( pxTCB ) && ( pxTCB != NULL ) ) { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME( pxTCB ); /* The ready list can be accessed even if the scheduler is * suspended because this is inside a critical section. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* A higher priority task may have just been resumed. */ if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) ) { /* This yield may not cause the task just resumed to run, * but will leave the lists in the correct state for the * next yield. */ taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) { BaseType_t xYieldRequired = pdFALSE; TCB_t * const pxTCB = xTaskToResume; configASSERT( xTaskToResume ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); taskENTER_CRITICAL_ISR( &xKernelLock ); { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME_FROM_ISR( pxTCB ); /* Check the ready lists can be accessed. */ if( taskCAN_BE_SCHEDULED( pxTCB ) ) { /* Ready lists can be accessed so move the task from the * suspended list to the ready list directly. */ if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) ) { xYieldRequired = pdTRUE; /* Mark that a yield is pending in case the user is not * using the return value to initiate a context switch * from the ISR using portYIELD_FROM_ISR. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed or ready lists cannot be accessed so the task * is held in the pending ready list until the scheduler is * unsuspended. */ vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) ); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL_ISR( &xKernelLock ); return xYieldRequired; } #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ /*-----------------------------------------------------------*/ static BaseType_t prvCreateIdleTasks( void ) { BaseType_t xReturn = pdPASS; #if ( configNUM_CORES == 1 ) { /* Add the idle task at the lowest priority. */ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) { StaticTask_t * pxIdleTaskTCBBuffer = NULL; StackType_t * pxIdleTaskStackBuffer = NULL; uint32_t ulIdleTaskStackSize; /* The Idle task is created using user provided RAM - obtain the * address of the RAM then create the idle task. */ vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); xIdleTaskHandle[ 0 ] = xTaskCreateStaticPinnedToCore( prvIdleTask, configIDLE_TASK_NAME, ulIdleTaskStackSize, ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */ portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ pxIdleTaskStackBuffer, pxIdleTaskTCBBuffer, 0 ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ if( xIdleTaskHandle[ 0 ] != NULL ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } } #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ { /* The Idle task is being created using dynamically allocated RAM. */ xReturn = xTaskCreatePinnedToCore( prvIdleTask, configIDLE_TASK_NAME, configMINIMAL_STACK_SIZE, ( void * ) NULL, portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ &xIdleTaskHandle[ 0 ], 0 ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ } #endif /* configSUPPORT_STATIC_ALLOCATION */ } #else /* #if ( configNUM_CORES == 1 ) */ { BaseType_t xCoreID; char cIdleName[ configMAX_TASK_NAME_LEN ]; /* Add each idle task at the lowest priority. */ for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUM_CORES; xCoreID++ ) { BaseType_t x; if( xReturn == pdFAIL ) { /* TODO: IDF-8240 - Memory leaks occur if IDLE task creation fails on some core * as we do not free memory for the successfully created IDLE tasks. */ break; } else { mtCOVERAGE_TEST_MARKER(); } for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { cIdleName[ x ] = configIDLE_TASK_NAME[ x ]; /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than * configMAX_TASK_NAME_LEN characters just in case the memory after the * string is not accessible (extremely unlikely). */ if( cIdleName[ x ] == ( char ) 0x00 ) { break; } else { mtCOVERAGE_TEST_MARKER(); } } /* Append the idle task number to the end of the name if there is space. */ if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN ) { cIdleName[ x ] = ( char ) ( xCoreID + '0' ); x++; /* And append a null character if there is space. */ if( x < ( BaseType_t ) configMAX_TASK_NAME_LEN ) { cIdleName[ x ] = '\0'; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) { StaticTask_t * pxIdleTaskTCBBuffer = NULL; StackType_t * pxIdleTaskStackBuffer = NULL; uint32_t ulIdleTaskStackSize; /* The Idle task is created using user provided RAM - obtain the * address of the RAM then create the idle task. */ vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); xIdleTaskHandle[ xCoreID ] = xTaskCreateStaticPinnedToCore( prvIdleTask, cIdleName, ulIdleTaskStackSize, ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */ portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ pxIdleTaskStackBuffer, pxIdleTaskTCBBuffer, xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ if( xIdleTaskHandle[ xCoreID ] != NULL ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } } #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ { /* The Idle task is being created using dynamically allocated RAM. */ xReturn = xTaskCreatePinnedToCore( prvIdleTask, cIdleName, configMINIMAL_STACK_SIZE, ( void * ) NULL, portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ &xIdleTaskHandle[ xCoreID ], xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ } #endif /* configSUPPORT_STATIC_ALLOCATION */ } } #endif /* #if ( configNUM_CORES == 1 ) */ return xReturn; } /*-----------------------------------------------------------*/ void vTaskStartScheduler( void ) { BaseType_t xReturn; /* The code for prvCreateIdleTasks() has been backported from the upstream * FreeRTOS-Kernel source. The reference for the same is on the mainline * at the commit id# 2f94b181a2f049ec342deba0927bed51f7174ab0. */ xReturn = prvCreateIdleTasks(); #if ( configUSE_TIMERS == 1 ) { if( xReturn == pdPASS ) { xReturn = xTimerCreateTimerTask(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TIMERS */ if( xReturn == pdPASS ) { /* freertos_tasks_c_additions_init() should only be called if the user * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is * the only macro called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT { freertos_tasks_c_additions_init(); } #endif /* Interrupts are turned off here, to ensure a tick does not occur * before or during the call to xPortStartScheduler(). The stacks of * the created tasks contain a status word with interrupts switched on * so interrupts will automatically get re-enabled when the first task * starts to run. */ portDISABLE_INTERRUPTS(); #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Switch Newlib's _impure_ptr variable to point to the _reent * structure specific to the task that will run first. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ /* _impure_ptr = &( pxCurrentTCB[xPortGetCoreID()]->xNewLib_reent ); */ } #endif /* configUSE_NEWLIB_REENTRANT */ xNextTaskUnblockTime = portMAX_DELAY; xSchedulerRunning = pdTRUE; xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; /* If configGENERATE_RUN_TIME_STATS is defined then the following * macro must be defined to configure the timer/counter used to generate * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS * is set to 0 and the following line fails to build then ensure you do not * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your * FreeRTOSConfig.h file. */ portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); traceTASK_SWITCHED_IN(); /* Setting up the timer tick is hardware specific and thus in the * portable interface. */ if( xPortStartScheduler() != pdFALSE ) { /* Should not reach here as if the scheduler is running the * function will not return. */ } else { /* Should only reach here if a task calls xTaskEndScheduler(). */ } } else { /* This line will only be reached if the kernel could not be started, * because there was not enough FreeRTOS heap to create the idle task * or the timer task. */ configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ); } /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0, * meaning xIdleTaskHandle is not used anywhere else. */ ( void ) xIdleTaskHandle[ 0 ]; } /*-----------------------------------------------------------*/ void vTaskEndScheduler( void ) { /* Stop the scheduler interrupts and call the portable scheduler end * routine so the original ISRs can be restored if necessary. The port * layer must ensure interrupts enable bit is left in the correct state. */ portDISABLE_INTERRUPTS(); xSchedulerRunning = pdFALSE; vPortEndScheduler(); } /*----------------------------------------------------------*/ void vTaskSuspendAll( void ) { /* A critical section is not required as the variable is of type * BaseType_t. Please read Richard Barry's reply in the following link to a * post in the FreeRTOS support forum before reporting this as a bug! - * https://goo.gl/wu4acr */ #if ( configNUM_CORES > 1 ) /* For SMP, although each core has their own uxSchedulerSuspended, we still * need enter a critical section when accessing. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that * do not otherwise exhibit real time behaviour. */ portSOFTWARE_BARRIER(); /* The scheduler is suspended if uxSchedulerSuspended is non-zero. An increment * is used to allow calls to vTaskSuspendAll() to nest. */ ++uxSchedulerSuspended[ xPortGetCoreID() ]; /* Enforces ordering for ports and optimised compilers that may otherwise place * the above increment elsewhere. */ portMEMORY_BARRIER(); #if ( configNUM_CORES > 1 ) taskEXIT_CRITICAL( &xKernelLock ); #endif } /*----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) static TickType_t prvGetExpectedIdleTime( void ) { TickType_t xReturn; UBaseType_t uxHigherPriorityReadyTasks = pdFALSE; /* We need a critical section here as we are about to access kernel data structures */ taskENTER_CRITICAL( &xKernelLock ); /* uxHigherPriorityReadyTasks takes care of the case where * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority * task that are in the Ready state, even though the idle task is * running. */ #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) { if( uxTopReadyPriority > tskIDLE_PRIORITY ) { uxHigherPriorityReadyTasks = pdTRUE; } } #else { const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01; /* When port optimised task selection is used the uxTopReadyPriority * variable is used as a bit map. If bits other than the least * significant bit are set then there are tasks that have a priority * above the idle priority that are in the Ready state. This takes * care of the case where the co-operative scheduler is in use. */ if( uxTopReadyPriority > uxLeastSignificantBit ) { uxHigherPriorityReadyTasks = pdTRUE; } } #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */ if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY ) { xReturn = 0; } else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > configNUM_CORES ) { /* There are other idle priority tasks in the ready state. If * time slicing is used then the very next tick interrupt must be * processed. */ xReturn = 0; } else if( uxHigherPriorityReadyTasks != pdFALSE ) { /* There are tasks in the Ready state that have a priority above the * idle priority. This path can only be reached if * configUSE_PREEMPTION is 0. */ xReturn = 0; } else { xReturn = xNextTaskUnblockTime - xTickCount; } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskResumeAll( void ) { TCB_t * pxTCB = NULL; BaseType_t xAlreadyYielded = pdFALSE; /* If uxSchedulerSuspended is zero then this function does not match a * previous call to vTaskSuspendAll(). */ configASSERT( taskIS_SCHEDULER_SUSPENDED() ); /* It is possible that an ISR caused a task to be removed from an event * list while the scheduler was suspended. If this was the case then the * removed task will have been added to the xPendingReadyList. Once the * scheduler has been resumed it is safe to move all the pending ready * tasks from this list into their appropriate ready list. */ taskENTER_CRITICAL( &xKernelLock ); { /* Minor optimization. Core ID can't change while inside a critical section */ BaseType_t xCoreID = xPortGetCoreID(); --uxSchedulerSuspended[ xCoreID ]; if( uxSchedulerSuspended[ xCoreID ] == ( UBaseType_t ) 0U ) { if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) { /* Move any readied tasks from the pending list into the * appropriate ready list. */ while( listLIST_IS_EMPTY( &xPendingReadyList[ xCoreID ] ) == pdFALSE ) { pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[ xCoreID ] ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* If the moved task has a priority higher than the current * task then a yield must be performed. */ if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdTRUE ) ) { xYieldPending[ xCoreID ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } if( pxTCB != NULL ) { /* A task was unblocked while the scheduler was suspended, * which may have prevented the next unblock time from being * re-calculated, in which case re-calculate it now. Mainly * important for low power tickless implementations, where * this can prevent an unnecessary exit from low power * state. */ prvResetNextTaskUnblockTime(); } /* If any ticks occurred while the scheduler was suspended then * they should be processed now. This ensures the tick count does * not slip, and that any delayed tasks are resumed at the correct * time. */ /* Core 0 is solely responsible for managing tick count, thus it * must be the only core to unwind the pended ticks */ if( xCoreID == 0 ) { TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */ if( xPendedCounts > ( TickType_t ) 0U ) { do { if( xTaskIncrementTick() != pdFALSE ) { xYieldPending[ xCoreID ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } --xPendedCounts; } while( xPendedCounts > ( TickType_t ) 0U ); xPendedTicks = 0; } else { mtCOVERAGE_TEST_MARKER(); } } if( xYieldPending[ xCoreID ] != pdFALSE ) { #if ( configUSE_PREEMPTION != 0 ) { xAlreadyYielded = pdTRUE; } #endif taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); return xAlreadyYielded; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCount( void ) { TickType_t xTicks; /* Critical section required if running on a 16 bit processor. */ portTICK_TYPE_ENTER_CRITICAL(); { xTicks = xTickCount; } portTICK_TYPE_EXIT_CRITICAL(); return xTicks; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCountFromISR( void ) { TickType_t xReturn; /* RTOS ports that support interrupt nesting have the concept of a maximum * system call (or maximum API call) interrupt priority. Interrupts that are * above the maximum system call priority are kept permanently enabled, even * when the RTOS kernel is in a critical section, but cannot make any calls to * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has been * assigned a priority above the configured maximum system call priority. * Only FreeRTOS functions that end in FromISR can be called from interrupts * that have been assigned a priority at or (logically) below the maximum * system call interrupt priority. FreeRTOS maintains a separate interrupt * safe API to ensure interrupt entry is as fast and as simple as possible. * More information (albeit Cortex-M specific) is provided on the following * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); #if ( configNUM_CORES > 1 ) /* We need a critical section here as we are about to access kernel data structures */ taskENTER_CRITICAL_ISR( &xKernelLock ); #else UBaseType_t uxSavedInterruptStatus; uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR(); #endif { xReturn = xTickCount; } #if ( configNUM_CORES > 1 ) taskEXIT_CRITICAL_ISR( &xKernelLock ); #else portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); #endif return xReturn; } /*-----------------------------------------------------------*/ UBaseType_t uxTaskGetNumberOfTasks( void ) { /* A critical section is not required because the variables are of type * BaseType_t. */ return uxCurrentNumberOfTasks; } /*-----------------------------------------------------------*/ char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ { TCB_t * pxTCB; /* If null is passed in here then the name of the calling task is being * queried. */ pxTCB = prvGetTCBFromHandle( xTaskToQuery ); configASSERT( pxTCB ); return &( pxTCB->pcTaskName[ 0 ] ); } /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) { TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL; UBaseType_t x; char cNextChar; BaseType_t xBreakLoop; /* This function is called with the scheduler suspended. */ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ do { listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ /* Check each character in the name looking for a match or * mismatch. */ xBreakLoop = pdFALSE; for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { cNextChar = pxNextTCB->pcTaskName[ x ]; if( cNextChar != pcNameToQuery[ x ] ) { /* Characters didn't match. */ xBreakLoop = pdTRUE; } else if( cNextChar == ( char ) 0x00 ) { /* Both strings terminated, a match must have been * found. */ pxReturn = pxNextTCB; xBreakLoop = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } if( xBreakLoop != pdFALSE ) { break; } } if( pxReturn != NULL ) { /* The handle has been found. */ break; } } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return pxReturn; } #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ { UBaseType_t uxQueue = configMAX_PRIORITIES; TCB_t * pxTCB; /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */ configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN ); prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { /* Search the ready lists. */ do { uxQueue--; pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery ); if( pxTCB != NULL ) { /* Found the handle. */ break; } } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ /* Search the delayed lists. */ if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery ); } if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery ); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( pxTCB == NULL ) { /* Search the suspended list. */ pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery ); } } #endif #if ( INCLUDE_vTaskDelete == 1 ) { if( pxTCB == NULL ) { /* Search the deleted list. */ pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery ); } } #endif } ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); return pxTCB; } #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) BaseType_t xTaskGetStaticBuffers( TaskHandle_t xTask, StackType_t ** ppuxStackBuffer, StaticTask_t ** ppxTaskBuffer ) { BaseType_t xReturn; TCB_t * pxTCB; configASSERT( ppuxStackBuffer != NULL ); configASSERT( ppxTaskBuffer != NULL ); pxTCB = prvGetTCBFromHandle( xTask ); #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 ) { if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ) { *ppuxStackBuffer = pxTCB->pxStack; *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; xReturn = pdTRUE; } else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) { *ppuxStackBuffer = pxTCB->pxStack; *ppxTaskBuffer = NULL; xReturn = pdTRUE; } else { xReturn = pdFALSE; } } #else /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ { *ppuxStackBuffer = pxTCB->pxStack; *ppxTaskBuffer = ( StaticTask_t * ) pxTCB; xReturn = pdTRUE; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 */ return xReturn; } #endif /* configSUPPORT_STATIC_ALLOCATION */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) { UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { /* Is there a space in the array for each task in the system? */ if( uxArraySize >= uxCurrentNumberOfTasks ) { /* Fill in an TaskStatus_t structure with information on each * task in the Ready state. */ do { uxQueue--; uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ); } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ /* Fill in an TaskStatus_t structure with information on each * task in the Blocked state. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ); uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ); #if ( INCLUDE_vTaskDelete == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task that has been deleted but not yet cleaned up. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ); } #endif #if ( INCLUDE_vTaskSuspend == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task in the Suspended state. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ); } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { if( pulTotalRunTime != NULL ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); #else *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); #endif } } #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ { if( pulTotalRunTime != NULL ) { *pulTotalRunTime = 0; } } #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) TaskHandle_t xTaskGetIdleTaskHandle( void ) { /* If xTaskGetIdleTaskHandle() is called before the scheduler has been * started, then xIdleTaskHandle will be NULL. */ configASSERT( ( xIdleTaskHandle[ xPortGetCoreID() ] != NULL ) ); return xIdleTaskHandle[ xPortGetCoreID() ]; } #endif /* INCLUDE_xTaskGetIdleTaskHandle */ /*----------------------------------------------------------*/ /* This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure vTaskStepTick() is available when user defined low power mode * implementations require configUSE_TICKLESS_IDLE to be set to a value other than * 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) void vTaskStepTick( const TickType_t xTicksToJump ) { #if ( configNUM_CORES > 1 ) /* Although this is called with the scheduler suspended. For SMP, we * still need to take the kernel lock to access xTickCount. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ /* Correct the tick count value after a period during which the tick * was suppressed. Note this does *not* call the tick hook function for * each stepped tick. */ configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); xTickCount += xTicksToJump; traceINCREASE_TICK_COUNT( xTicksToJump ); #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) { BaseType_t xYieldOccurred; /* Must not be called with the scheduler suspended as the implementation * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */ configASSERT( !taskIS_SCHEDULER_SUSPENDED() ); /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */ vTaskSuspendAll(); #if ( configNUM_CORES > 1 ) /* Although the scheduler is suspended. For SMP, we still need to take * the kernel lock to access xPendedTicks. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ xPendedTicks += xTicksToCatchUp; #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ xYieldOccurred = xTaskResumeAll(); return xYieldOccurred; } /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskAbortDelay == 1 ) BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) { TCB_t * pxTCB = xTask; BaseType_t xReturn; configASSERT( pxTCB ); prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { /* A task can only be prematurely removed from the Blocked state if * it is actually in the Blocked state. */ if( eTaskGetState( xTask ) == eBlocked ) { xReturn = pdPASS; /* Remove the reference to the task from the blocked list. An * interrupt won't touch the xStateListItem because the * scheduler is suspended. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove it from * the event list too. Interrupts can touch the event list item, * even though the scheduler is suspended, so a critical section * is used. */ taskENTER_CRITICAL( &xKernelLock ); { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); /* This lets the task know it was forcibly removed from the * blocked state so it should not re-evaluate its block time and * then block again. */ pxTCB->ucDelayAborted = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); /* Place the unblocked task into the appropriate ready list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate context * switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { /* Preemption is on, but a context switch should only be * performed if the unblocked task has a priority that is * equal to or higher than the currently executing task. */ if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) ) { /* Pend the yield to be performed when the scheduler * is unsuspended. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ } else { xReturn = pdFAIL; } } ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); return xReturn; } #endif /* INCLUDE_xTaskAbortDelay */ /*----------------------------------------------------------*/ BaseType_t xTaskIncrementTick( void ) { #if ( configNUM_CORES > 1 ) /* Only Core 0 should ever call this function. */ configASSERT( xPortGetCoreID() == 0 ); #endif /* ( configNUM_CORES > 1 ) */ TCB_t * pxTCB; TickType_t xItemValue; BaseType_t xSwitchRequired = pdFALSE; /* Called by the portable layer each time a tick interrupt occurs. * Increments the tick then checks to see if the new tick value will cause any * tasks to be unblocked. */ traceTASK_INCREMENT_TICK( xTickCount ); #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures (unlike single core which calls this * function with interrupts disabled). */ taskENTER_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ if( uxSchedulerSuspended[ 0 ] == ( UBaseType_t ) 0U ) { /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1; /* Increment the RTOS tick, switching the delayed and overflowed * delayed lists if it wraps to 0. */ xTickCount = xConstTickCount; if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */ { taskSWITCH_DELAYED_LISTS(); } else { mtCOVERAGE_TEST_MARKER(); } /* See if this tick has made a timeout expire. Tasks are stored in * the queue in the order of their wake time - meaning once one task * has been found whose block time has not expired there is no need to * look any further down the list. */ if( xConstTickCount >= xNextTaskUnblockTime ) { for( ; ; ) { if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The delayed list is empty. Set xNextTaskUnblockTime * to the maximum possible value so it is extremely * unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass * next time through. */ xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ break; } else { /* The delayed list is not empty, get the value of the * item at the head of the delayed list. This is the time * at which the task at the head of the delayed list must * be removed from the Blocked state. */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) ); if( xConstTickCount < xItemValue ) { /* It is not time to unblock this item yet, but the * item value is the time at which the task at the head * of the blocked list must be removed from the Blocked * state - so record the item value in * xNextTaskUnblockTime. */ xNextTaskUnblockTime = xItemValue; break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */ } else { mtCOVERAGE_TEST_MARKER(); } /* It is time to remove the item from the Blocked state. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove * it from the event list. */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Place the unblocked task into the appropriate ready * list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate * context switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { /* Preemption is on, but a context switch should * only be performed if the unblocked task has a * priority that is equal to or higher than the * currently executing task. * * For SMP, since this function is only run on core * 0, only need to switch contexts if the unblocked * task can run on core 0. */ if( ( taskCAN_RUN_ON_CORE( 0, pxTCB->xCoreID ) == pdTRUE ) && ( pxTCB->uxPriority >= pxCurrentTCB[ 0 ]->uxPriority ) ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ } } } /* Tasks of equal priority to the currently running task will share * processing time (time slice) if preemption is on, and the application * writer has not explicitly turned time slicing off. */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) { if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ 0 ]->uxPriority ] ) ) > ( UBaseType_t ) 1 ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ #if ( configUSE_TICK_HOOK == 1 ) TickType_t xPendedTicksTemp = xPendedTicks; /* Non-volatile copy. */ #endif /* configUSE_TICK_HOOK */ #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock as we have finished * accessing the kernel data structures. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ #if ( configUSE_TICK_HOOK == 1 ) { /* Guard against the tick hook being called when the pended tick * count is being unwound (when the scheduler is being unlocked). */ if( xPendedTicksTemp == ( TickType_t ) 0 ) { vApplicationTickHook(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TICK_HOOK */ #if ( configUSE_PREEMPTION == 1 ) { if( xYieldPending[ 0 ] != pdFALSE ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ } else { ++xPendedTicks; #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock as we have finished * accessing the kernel data structures. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ /* The tick hook gets called at regular intervals, even if the * scheduler is locked. */ #if ( configUSE_TICK_HOOK == 1 ) { vApplicationTickHook(); } #endif } return xSwitchRequired; } /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) { TCB_t * xTCB; /* If xTask is NULL then it is the task hook of the calling task that is * getting set. */ if( xTask == NULL ) { xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ]; } else { xTCB = xTask; } /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL( &xKernelLock ); { xTCB->pxTaskTag = pxHookFunction; } taskEXIT_CRITICAL( &xKernelLock ); } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL( &xKernelLock ); { xReturn = pxTCB->pxTaskTag; } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; UBaseType_t uxSavedInterruptStatus; /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus ); { xReturn = pxTCB->pxTaskTag; } prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus ); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void * pvParameter ) { TCB_t * xTCB; BaseType_t xReturn; /* If xTask is NULL then we are calling our own task hook. */ if( xTask == NULL ) { xTCB = xTaskGetCurrentTaskHandle(); } else { xTCB = xTask; } if( xTCB->pxTaskTag != NULL ) { xReturn = xTCB->pxTaskTag( pvParameter ); } else { xReturn = pdFAIL; } return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configNUM_CORES > 1 ) static void taskSelectHighestPriorityTaskSMP( void ) { /* This function is called from a critical section. So some optimizations are made */ BaseType_t uxCurPriority; BaseType_t xTaskScheduled = pdFALSE; BaseType_t xNewTopPrioritySet = pdFALSE; BaseType_t xCoreID = xPortGetCoreID(); /* Optimization: Read once */ /* Search for tasks, starting form the highest ready priority. If nothing is * found, we eventually default to the IDLE tasks at priority 0 */ for( uxCurPriority = uxTopReadyPriority; uxCurPriority >= 0 && xTaskScheduled == pdFALSE; uxCurPriority-- ) { /* Check if current priority has one or more ready tasks. Skip if none */ if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurPriority ] ) ) ) { continue; } /* Save a copy of highest priority that has a ready state task */ if( xNewTopPrioritySet == pdFALSE ) { xNewTopPrioritySet = pdTRUE; uxTopReadyPriority = uxCurPriority; } /* We now search this priority's ready task list for a runnable task. * We always start searching from the head of the list, so we reset * pxIndex to point to the tail so that we start walking the list from * the first item */ pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd ); /* Get the first item on the list */ TCB_t * pxTCBCur; TCB_t * pxTCBFirst; listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) ); pxTCBFirst = pxTCBCur; do { /* Check if the current task is currently being executed. However, if * it's being executed by the current core, we can still schedule it. * Todo: Each task can store a xTaskRunState, instead of needing to * check each core */ UBaseType_t ux; for( ux = 0; ux < ( UBaseType_t ) configNUM_CORES; ux++ ) { if( ux == xCoreID ) { continue; } else if( pxCurrentTCB[ ux ] == pxTCBCur ) { /* Current task is already being executed. Get the next task */ goto get_next_task; } } /* Check if the current task has a compatible affinity */ if( ( pxTCBCur->xCoreID != xCoreID ) && ( pxTCBCur->xCoreID != tskNO_AFFINITY ) ) { goto get_next_task; } /* The current task is runnable. Schedule it */ pxCurrentTCB[ xCoreID ] = pxTCBCur; xTaskScheduled = pdTRUE; /* Move the current tasks list item to the back of the list in order * to implement best effort round robin. To do this, we need to reset * the pxIndex to point to the tail again. */ pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd ); uxListRemove( &( pxTCBCur->xStateListItem ) ); vListInsertEnd( &( pxReadyTasksLists[ uxCurPriority ] ), &( pxTCBCur->xStateListItem ) ); break; get_next_task: /* The current task cannot be scheduled. Get the next task in the list */ listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) ); } while( pxTCBCur != pxTCBFirst ); /* Check to see if we've walked the entire list */ } assert( xTaskScheduled == pdTRUE ); /* At this point, a task MUST have been scheduled */ } #endif /* configNUM_CORES > 1 */ void vTaskSwitchContext( void ) { #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures (unlike single core which calls this * function with either interrupts disabled or when the scheduler hasn't * started yet). */ taskENTER_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) 0U ) { /* The scheduler is currently suspended - do not allow a context * switch. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { xYieldPending[ xPortGetCoreID() ] = pdFALSE; #ifdef ESP_PLATFORM xSwitchingContext[ xPortGetCoreID() ] = pdTRUE; #endif // ESP_PLATFORM traceTASK_SWITCHED_OUT(); #if ( configGENERATE_RUN_TIME_STATS == 1 ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime ); #else ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); #endif /* Add the amount of time the task has been running to the * accumulated time so far. The time the task started running was * stored in ulTaskSwitchedInTime. Note that there is no overflow * protection here so count values are only valid until the timer * overflows. The guard against negative values is to protect * against suspect run time stat counter implementations - which * are provided by the application, not the kernel. */ if( ulTotalRunTime > ulTaskSwitchedInTime[ xPortGetCoreID() ] ) { pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xPortGetCoreID() ] ); } else { mtCOVERAGE_TEST_MARKER(); } ulTaskSwitchedInTime[ xPortGetCoreID() ] = ulTotalRunTime; } #endif /* configGENERATE_RUN_TIME_STATS */ /* Check for stack overflow, if configured. */ #ifdef ESP_PLATFORM taskFIRST_CHECK_FOR_STACK_OVERFLOW(); taskSECOND_CHECK_FOR_STACK_OVERFLOW(); #else taskCHECK_FOR_STACK_OVERFLOW(); /* Before the currently running task is switched out, save its errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { pxCurrentTCB->iTaskErrno = FreeRTOS_errno; } #endif #endif // ESP_PLATFORM /* Select a new task to run using either the generic C or port * optimised asm code. */ taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ traceTASK_SWITCHED_IN(); #ifdef ESP_PLATFORM xSwitchingContext[ xPortGetCoreID() ] = pdFALSE; #if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK vPortSetStackWatchpoint( pxCurrentTCB[ xPortGetCoreID() ]->pxStack ); #endif #else /* After the new task is switched in, update the global errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { FreeRTOS_errno = pxCurrentTCB->iTaskErrno; } #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Switch Newlib's _impure_ptr variable to point to the _reent * structure specific to this task. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); } #endif /* configUSE_NEWLIB_REENTRANT */ #endif // ESP_PLATFORM } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock as we have finished * accessing the kernel data structures. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ } /*-----------------------------------------------------------*/ void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) { configASSERT( pxEventList ); #if ( configNUM_CORES > 1 ) /* In SMP, we need to take the kernel lock as we are about to access the * task lists. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ /* Place the event list item of the TCB in the appropriate event list. * This is placed in the list in priority order so the highest priority task * is the first to be woken by the event. The queue that contains the event * list is locked, preventing simultaneous access from interrupts. */ vListInsert( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } /*-----------------------------------------------------------*/ void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) { configASSERT( pxEventList ); #if ( configNUM_CORES > 1 ) /* In SMP, the event groups haven't suspended the scheduler at this * point. We need to take the kernel lock instead as we are about to * access the task lists. */ taskENTER_CRITICAL( &xKernelLock ); #else /* configNUM_CORES > 1 */ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by * the event groups implementation. */ configASSERT( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U ); #endif /* configNUM_CORES > 1 */ /* Store the item value in the event list item. It is safe to access the * event list item here as interrupts won't access the event list item of a * task that is not in the Blocked state. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Place the event list item of the TCB at the end of the appropriate event * list. It is safe to access the event list here because it is part of an * event group implementation - and interrupts don't access event groups * directly (instead they access them indirectly by pending function calls to * the task level). */ vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } /*-----------------------------------------------------------*/ #if ( configUSE_TIMERS == 1 ) void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) { configASSERT( pxEventList ); #if ( configNUM_CORES > 1 ) /* In SMP, we need to take the kernel lock as we are about to access * the task lists. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ /* This function should not be called by application code hence the * 'Restricted' in its name. It is not part of the public API. It is * designed for use by kernel code, and has special calling requirements - * it should be called with the scheduler suspended. */ /* Place the event list item of the TCB in the appropriate event list. * In this case it is assume that this is the only task that is going to * be waiting on this event list, so the faster vListInsertEnd() function * can be used in place of vListInsert. */ vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) ); /* If the task should block indefinitely then set the block time to a * value that will be recognised as an indefinite delay inside the * prvAddCurrentTaskToDelayedList() function. */ if( xWaitIndefinitely != pdFALSE ) { xTicksToWait = portMAX_DELAY; } traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) ); prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely ); #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } #endif /* configUSE_TIMERS */ /*-----------------------------------------------------------*/ BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) { TCB_t * pxUnblockedTCB; BaseType_t xReturn; /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be * called from a critical section within an ISR. */ #if ( configNUM_CORES > 1 ) /* In SMP, we need to take the kernel lock (even if the caller is * already in a critical section by taking a different lock) as we are * about to access the task lists, which are protected by the kernel * lock. This function can also be called from an ISR context, so we * need to check whether we are in an ISR.*/ if( portCHECK_IF_IN_ISR() == pdFALSE ) { taskENTER_CRITICAL( &xKernelLock ); } else { taskENTER_CRITICAL_ISR( &xKernelLock ); } #endif /* configNUM_CORES > 1 */ { /* The event list is sorted in priority order, so the first in the list can * be removed as it is known to be the highest priority. Remove the TCB from * the delayed list, and add it to the ready list. */ #if ( configNUM_CORES > 1 ) /* Before taking the kernel lock, another task/ISR could have already * emptied the pxEventList. So we insert a check here to see if * pxEventList is empty before attempting to remove an item from it. */ if( listLIST_IS_EMPTY( pxEventList ) == pdTRUE ) { /* The pxEventList was emptied before we entered the critical section, * Nothing to do except return pdFALSE. */ xReturn = pdFALSE; } else #else /* configNUM_CORES > 1 */ /* If an event is for a queue that is locked then this function will never * get called - the lock count on the queue will get modified instead. This * means exclusive access to the event list is guaranteed here. * * This function assumes that a check has already been made to ensure that * pxEventList is not empty. */ #endif /* configNUM_CORES > 1 */ { BaseType_t xCurCoreID = xPortGetCoreID(); pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ configASSERT( pxUnblockedTCB ); ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) ); /* Add the task to the ready list if a core with compatible affinity * has NOT suspended its scheduler. This occurs when: * - The task is pinned, and the pinned core's scheduler is running * - The task is unpinned, and at least one of the core's scheduler is running */ if( taskCAN_BE_SCHEDULED( pxUnblockedTCB ) ) { ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked on a kernel object then xNextTaskUnblockTime * might be set to the blocked task's time out time. If the task is * unblocked for a reason other than a timeout xNextTaskUnblockTime is * normally left unchanged, because it is automatically reset to a new * value when the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter sleep mode * at the earliest possible time - so reset xNextTaskUnblockTime here to * ensure it is updated at the earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif } else { /* We arrive here due to one of the following possibilities: * - The task is pinned to core X and core X has suspended its scheduler * - The task is unpinned and both cores have suspend their schedulers * Therefore, we add the task to one of the pending lists: * - If the task is pinned to core X, add it to core X's pending list * - If the task is unpinned, add it to the current core's pending list */ BaseType_t xPendingListCore; #if ( configNUM_CORES > 1 ) xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID ); #else xPendingListCore = 0; #endif /* configNUM_CORES > 1 */ configASSERT( uxSchedulerSuspended[ xPendingListCore ] != ( UBaseType_t ) 0U ); /* The delayed and ready lists cannot be accessed, so hold this task * pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) ); } if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) ) { /* Return true if the task removed from the event list has a higher * priority than the calling task. This allows the calling task to know if * it should force a context switch now. */ xReturn = pdTRUE; /* Mark that a yield is pending in case the user is not using the * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ xYieldPending[ xCurCoreID ] = pdTRUE; } else { xReturn = pdFALSE; } } } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ if( portCHECK_IF_IN_ISR() == pdFALSE ) { taskEXIT_CRITICAL( &xKernelLock ); } else { taskEXIT_CRITICAL_ISR( &xKernelLock ); } #endif /* configNUM_CORES > 1 */ return xReturn; } /*-----------------------------------------------------------*/ void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) { TCB_t * pxUnblockedTCB; BaseType_t xCurCoreID = xPortGetCoreID(); #if ( configNUM_CORES > 1 ) /* THIS FUNCTION MUST BE CALLED WITH THE KERNEL LOCK ALREADY TAKEN. * It is used by the event flags implementation, thus those functions * should call prvTakeKernelLock() before calling this function. */ #else /* configNUM_CORES > 1 */ /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by * the event flags implementation. */ configASSERT( uxSchedulerSuspended[ 0 ] != ( UBaseType_t ) 0U ); #endif /* configNUM_CORES > 1 */ /* Store the new item value in the event list. */ listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Remove the event list form the event flag. Interrupts do not access * event flags. */ pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ configASSERT( pxUnblockedTCB ); ( void ) uxListRemove( pxEventListItem ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked on a kernel object then xNextTaskUnblockTime * might be set to the blocked task's time out time. If the task is * unblocked for a reason other than a timeout xNextTaskUnblockTime is * normally left unchanged, because it is automatically reset to a new * value when the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter sleep mode * at the earliest possible time - so reset xNextTaskUnblockTime here to * ensure it is updated at the earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif #if ( configNUM_CORES > 1 ) /* Add the task to the ready list if a core with compatible affinity * has NOT suspended its scheduler. This occurs when: * - The task is pinned, and the pinned core's scheduler is running * - The task is unpinned, and at least one of the core's scheduler is * running */ if( !taskCAN_BE_SCHEDULED( pxUnblockedTCB ) ) { /* We arrive here due to one of the following possibilities: * - The task is pinned to core X and core X has suspended its scheduler * - The task is unpinned and both cores have suspend their schedulers * Therefore, we add the task to one of the pending lists: * - If the task is pinned to core X, add it to core X's pending list * - If the task is unpinned, add it to the current core's pending list */ BaseType_t xPendingListCore = ( ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) ? xCurCoreID : pxUnblockedTCB->xCoreID ); configASSERT( uxSchedulerSuspended[ xPendingListCore ] != ( UBaseType_t ) 0U ); /* The delayed and ready lists cannot be accessed, so hold this task * pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[ xPendingListCore ] ), &( pxUnblockedTCB->xEventListItem ) ); } else #else /* configNUM_CORES > 1 */ /* In single core, the caller of this function has already suspended the * scheduler, which means we have exclusive access to the ready list. * We add the unblocked task to the ready list directly. */ #endif /* configNUM_CORES > 1 */ { /* Remove the task from the delayed list and add it to the ready list. The * scheduler is suspended so interrupts will not be accessing the ready * lists. */ ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); if( prvCheckForYield( pxUnblockedTCB, xCurCoreID, pdFALSE ) ) { /* The unblocked task has a priority above that of the calling task, so * a context switch is required. This function is called with the * scheduler suspended so xYieldPending is set so the context switch * occurs immediately that the scheduler is resumed (unsuspended). */ xYieldPending[ xCurCoreID ] = pdTRUE; } } } /*-----------------------------------------------------------*/ void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) { configASSERT( pxTimeOut ); taskENTER_CRITICAL( &xKernelLock ); { pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; } taskEXIT_CRITICAL( &xKernelLock ); } /*-----------------------------------------------------------*/ void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) { /** * In case of we are building for SMP, we need to protect the following instructions in order to make them * atomic. * Indeed, without this, it would be possible to get preempted by the tick hook right after storing the number * of overflows with `pxTimeOut->xOverflowCount = xNumOfOverflows`. Then, the tick hook increments the timer, * which overflows, and thus resets the xTickCount to 0. * Resuming our task would result in an invalid state of the timer where the number of overflow corresponds * to the previous value and not the current one. * * On a single core configuration, this problem doesn't appear as this function is meant to be called from * a critical section, disabling the (tick) interrupts. */ #if ( configNUM_CORES > 1 ) configASSERT( pxTimeOut ); taskENTER_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ /* For internal use only as it does not use a critical section. */ pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } /*-----------------------------------------------------------*/ BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) { BaseType_t xReturn; configASSERT( pxTimeOut ); configASSERT( pxTicksToWait ); taskENTER_CRITICAL( &xKernelLock ); { /* Minor optimisation. The tick count cannot change in this block. */ const TickType_t xConstTickCount = xTickCount; const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering; #if ( INCLUDE_xTaskAbortDelay == 1 ) if( pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted != ( uint8_t ) pdFALSE ) { /* The delay was aborted, which is not the same as a time out, * but has the same result. */ pxCurrentTCB[ xPortGetCoreID() ]->ucDelayAborted = pdFALSE; xReturn = pdTRUE; } else #endif #if ( INCLUDE_vTaskSuspend == 1 ) if( *pxTicksToWait == portMAX_DELAY ) { /* If INCLUDE_vTaskSuspend is set to 1 and the block time * specified is the maximum block time then the task should block * indefinitely, and therefore never time out. */ xReturn = pdFALSE; } else #endif if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ { /* The tick count is greater than the time at which * vTaskSetTimeout() was called, but has also overflowed since * vTaskSetTimeOut() was called. It must have wrapped all the way * around and gone past again. This passed since vTaskSetTimeout() * was called. */ xReturn = pdTRUE; *pxTicksToWait = ( TickType_t ) 0; } else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */ { /* Not a genuine timeout. Adjust parameters for time remaining. */ *pxTicksToWait -= xElapsedTime; vTaskInternalSetTimeOutState( pxTimeOut ); xReturn = pdFALSE; } else { *pxTicksToWait = ( TickType_t ) 0; xReturn = pdTRUE; } } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } /*-----------------------------------------------------------*/ void vTaskMissedYield( void ) { xYieldPending[ xPortGetCoreID() ] = pdTRUE; } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) { UBaseType_t uxReturn; TCB_t const * pxTCB; if( xTask != NULL ) { pxTCB = xTask; uxReturn = pxTCB->uxTaskNumber; } else { uxReturn = 0U; } return uxReturn; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) { TCB_t * pxTCB; if( xTask != NULL ) { pxTCB = xTask; pxTCB->uxTaskNumber = uxHandle; } } #endif /* configUSE_TRACE_FACILITY */ /* * ----------------------------------------------------------- * The Idle task. * ---------------------------------------------------------- * * The portTASK_FUNCTION() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION( prvIdleTask, pvParameters ) { /* Stop warnings. */ ( void ) pvParameters; /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE * SCHEDULER IS STARTED. **/ /* In case a task that has a secure context deletes itself, in which case * the idle task is responsible for deleting the task's secure context, if * any. */ portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE ); for( ; ; ) { /* See if any tasks have deleted themselves - if so then the idle task * is responsible for freeing the deleted task's TCB and stack. */ prvCheckTasksWaitingTermination(); #if ( configUSE_PREEMPTION == 0 ) { /* If we are not using preemption we keep forcing a task switch to * see if any other task has become available. If we are using * preemption we don't need to do this as any task becoming available * will automatically get the processor anyway. */ taskYIELD(); } #endif /* configUSE_PREEMPTION */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) { /* When using preemption tasks of equal priority will be * timesliced. If a task that is sharing the idle priority is ready * to run then the idle task should yield before the end of the * timeslice. * * A critical region is not required here as we are just reading from * the list, and an occasional incorrect value will not matter. If * the ready list at the idle priority contains more than one task * then a task other than the idle task is ready to execute. */ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 ) { taskYIELD(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ #if ( configUSE_IDLE_HOOK == 1 ) { extern void vApplicationIdleHook( void ); /* Call the user defined function from within the idle task. This * allows the application designer to add background functionality * without the overhead of a separate task. * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, * CALL A FUNCTION THAT MIGHT BLOCK. */ vApplicationIdleHook(); } #endif /* configUSE_IDLE_HOOK */ #ifdef ESP_PLATFORM /* Call the esp-idf idle hook system */ esp_vApplicationIdleHook(); #endif // ESP_PLATFORM /* This conditional compilation should use inequality to 0, not equality * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when * user defined low power mode implementations require * configUSE_TICKLESS_IDLE to be set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) { TickType_t xExpectedIdleTime; /* It is not desirable to suspend then resume the scheduler on * each iteration of the idle task. Therefore, a preliminary * test of the expected idle time is performed without the * scheduler suspended. The result here is not necessarily * valid. */ xExpectedIdleTime = prvGetExpectedIdleTime(); if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { /* Now the scheduler is suspended, the expected idle * time can be sampled again, and this time its value can * be used. */ configASSERT( xNextTaskUnblockTime >= xTickCount ); xExpectedIdleTime = prvGetExpectedIdleTime(); /* Define the following macro to set xExpectedIdleTime to 0 * if the application does not want * portSUPPRESS_TICKS_AND_SLEEP() to be called. */ configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime ); if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { traceLOW_POWER_IDLE_BEGIN(); portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); traceLOW_POWER_IDLE_END(); } else { mtCOVERAGE_TEST_MARKER(); } } ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TICKLESS_IDLE */ } } /*-----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) eSleepModeStatus eTaskConfirmSleepModeStatus( void ) { /* The idle task exists in addition to the application tasks. */ const UBaseType_t uxNonApplicationTasks = 1; eSleepModeStatus eReturn = eStandardSleep; taskENTER_CRITICAL( &xKernelLock ); if( listCURRENT_LIST_LENGTH( &xPendingReadyList[ xPortGetCoreID() ] ) != 0 ) { /* A task was made ready while the scheduler was suspended. */ eReturn = eAbortSleep; } else if( xYieldPending[ xPortGetCoreID() ] != pdFALSE ) { /* A yield was pended while the scheduler was suspended. */ eReturn = eAbortSleep; } else { /* If all the tasks are in the suspended list (which might mean they * have an infinite block time rather than actually being suspended) * then it is safe to turn all clocks off and just wait for external * interrupts. */ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) { eReturn = eNoTasksWaitingTimeout; } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); return eReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void * pvValue ) { #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 ) { /* TLSP Deletion Callbacks are enabled. Call the TLSPDC funciton * instead with a NULL callback. */ vTaskSetThreadLocalStoragePointerAndDelCallback( xTaskToSet, xIndex, pvValue, NULL ); } #else /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */ { TCB_t * pxTCB; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we * another core could also update this task's TLSP at the * same time. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) { pxTCB = prvGetTCBFromHandle( xTaskToSet ); configASSERT( pxTCB != NULL ); pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* configNUM_CORES > 1 */ } #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */ } #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) { void * pvReturn = NULL; TCB_t * pxTCB; #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 ) /* If TLSP deletion callbacks are enabled, then * configNUM_THREAD_LOCAL_STORAGE_POINTERS is doubled in size so * that the latter half of the pvThreadLocalStoragePointers stores * the deletion callbacks. */ if( xIndex < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ) #else /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */ if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1 */ { pxTCB = prvGetTCBFromHandle( xTaskToQuery ); pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ]; } else { pvReturn = NULL; } return pvReturn; } #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( portUSING_MPU_WRAPPERS == 1 ) void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions ) { TCB_t * pxTCB; /* If null is passed in here then we are modifying the MPU settings of * the calling task. */ pxTCB = prvGetTCBFromHandle( xTaskToModify ); vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 ); } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ static void prvInitialiseTaskLists( void ) { UBaseType_t uxPriority; for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) { vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); } vListInitialise( &xDelayedTaskList1 ); vListInitialise( &xDelayedTaskList2 ); for( BaseType_t x = 0; x < configNUM_CORES; x++ ) { vListInitialise( &xPendingReadyList[ x ] ); } #if ( INCLUDE_vTaskDelete == 1 ) { vListInitialise( &xTasksWaitingTermination ); } #endif /* INCLUDE_vTaskDelete */ #if ( INCLUDE_vTaskSuspend == 1 ) { vListInitialise( &xSuspendedTaskList ); } #endif /* INCLUDE_vTaskSuspend */ /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList * using list2. */ pxDelayedTaskList = &xDelayedTaskList1; pxOverflowDelayedTaskList = &xDelayedTaskList2; } /*-----------------------------------------------------------*/ static void prvCheckTasksWaitingTermination( void ) { /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/ #if ( INCLUDE_vTaskDelete == 1 ) { TCB_t * pxTCB; /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL() * being called too often in the idle task. */ while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) { #if ( configNUM_CORES > 1 ) pxTCB = NULL; taskENTER_CRITICAL( &xKernelLock ); { /* List may have already been cleared by the other core. Check again */ if ( listLIST_IS_EMPTY( &xTasksWaitingTermination ) == pdFALSE ) { /* We can't delete a task if it is still running on * the other core. Keep walking the list until we * find a task we can free, or until we walk the * entire list. */ ListItem_t *xEntry; for ( xEntry = listGET_HEAD_ENTRY( &xTasksWaitingTermination ); xEntry != listGET_END_MARKER( &xTasksWaitingTermination ); xEntry = listGET_NEXT( xEntry ) ) { if ( !taskIS_CURRENTLY_RUNNING( ( ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry ) ) ) ) { pxTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( xEntry ); ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); --uxCurrentNumberOfTasks; --uxDeletedTasksWaitingCleanUp; break; } } } } taskEXIT_CRITICAL( &xKernelLock ); if ( pxTCB != NULL ) { prvDeleteTCB( pxTCB ); } else { /* No task found to delete, break out of loop */ break; } #else taskENTER_CRITICAL( &xKernelLock ); { pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); --uxCurrentNumberOfTasks; --uxDeletedTasksWaitingCleanUp; } taskEXIT_CRITICAL( &xKernelLock ); prvDeleteTCB( pxTCB ); #endif /* configNUM_CORES > 1 */ } } #endif /* INCLUDE_vTaskDelete */ } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t * pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) { TCB_t * pxTCB; /* xTask is NULL then get the state of the calling task. */ pxTCB = prvGetTCBFromHandle( xTask ); pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB; pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] ); pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority; pxTaskStatus->pxStackBase = pxTCB->pxStack; pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber; #if ( configTASKLIST_INCLUDE_COREID == 1 ) pxTaskStatus->xCoreID = pxTCB->xCoreID; #endif /* configTASKLIST_INCLUDE_COREID */ #if ( configUSE_MUTEXES == 1 ) { pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority; } #else { pxTaskStatus->uxBasePriority = 0; } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter; } #else { pxTaskStatus->ulRunTimeCounter = 0; } #endif /* Obtaining the task state is a little fiddly, so is only done if the * value of eState passed into this function is eInvalid - otherwise the * state is just set to whatever is passed in. */ if( eState != eInvalid ) { if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] ) { pxTaskStatus->eCurrentState = eRunning; } else { pxTaskStatus->eCurrentState = eState; #if ( INCLUDE_vTaskSuspend == 1 ) { /* If the task is in the suspended list then there is a * chance it is actually just blocked indefinitely - so really * it should be reported as being in the Blocked state. */ if( eState == eSuspended ) { prvENTER_CRITICAL_OR_SUSPEND_ALL( &xKernelLock ); { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { pxTaskStatus->eCurrentState = eBlocked; } } ( void ) prvEXIT_CRITICAL_OR_RESUME_ALL( &xKernelLock ); } } #endif /* INCLUDE_vTaskSuspend */ } } else { pxTaskStatus->eCurrentState = eTaskGetState( pxTCB ); } /* Obtaining the stack space takes some time, so the xGetFreeStackSpace * parameter is provided to allow it to be skipped. */ if( xGetFreeStackSpace != pdFALSE ) { #if ( portSTACK_GROWTH > 0 ) { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack ); } #else { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack ); } #endif } else { pxTaskStatus->usStackHighWaterMark = 0; } } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) { configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB; UBaseType_t uxTask = 0; if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ /* Populate an TaskStatus_t structure within the * pxTaskStatusArray array for each task that is referenced from * pxList. See the definition of TaskStatus_t in task.h for the * meaning of each TaskStatus_t structure member. */ do { listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState ); uxTask++; } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) { uint32_t ulCount = 0U; while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE ) { pucStackByte -= portSTACK_GROWTH; ulCount++; } ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */ return ( configSTACK_DEPTH_TYPE ) ulCount; } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the * same except for their return type. Using configSTACK_DEPTH_TYPE allows the * user to determine the return type. It gets around the problem of the value * overflowing on 8-bit types without breaking backward compatibility for * applications that expect an 8-bit return type. */ configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; configSTACK_DEPTH_TYPE uxReturn; /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are * the same except for their return type. Using configSTACK_DEPTH_TYPE * allows the user to determine the return type. It gets around the * problem of the value overflowing on 8-bit types without breaking * backward compatibility for applications that expect an 8-bit return * type. */ pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; UBaseType_t uxReturn; pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) { /* This call is required specifically for the TriCore port. It must be * above the vPortFree() calls. The call is also used by ports/demos that * want to allocate and clean RAM statically. */ portCLEAN_UP_TCB( pxTCB ); /* Free up the memory allocated by the scheduler for the task. It is up * to the task to free any memory allocated at the application level. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ #if ( configUSE_NEWLIB_REENTRANT == 1 ) { _reclaim_reent( &( pxTCB->xNewLib_reent ) ); } #endif /* configUSE_NEWLIB_REENTRANT */ #if ( portUSING_MPU_WRAPPERS == 1 ) vPortReleaseTaskMPUSettings( &( pxTCB->xMPUSettings ) ); #endif #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) { /* The task can only have been allocated dynamically - free both * the stack and TCB. */ vPortFree( pxTCB->pxStack ); vPortFree( pxTCB ); } #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ { /* The task could have been allocated statically or dynamically, so * check what was statically allocated before trying to free the * memory. */ if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ) { /* Both the stack and TCB were allocated dynamically, so both * must be freed. */ vPortFree( pxTCB->pxStack ); vPortFree( pxTCB ); } else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) { /* Only the stack was statically allocated, so the TCB is the * only memory that must be freed. */ vPortFree( pxTCB ); } else { /* Neither the stack nor the TCB were allocated dynamically, so * nothing needs to be freed. */ configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ); mtCOVERAGE_TEST_MARKER(); } } #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ static void prvResetNextTaskUnblockTime( void ) { TCB_t * pxTCB; if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The new current delayed list is empty. Set xNextTaskUnblockTime to * the maximum possible value so it is extremely unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass until * there is an item in the delayed list. */ xNextTaskUnblockTime = portMAX_DELAY; } else { /* The new current delayed list is not empty, get the value of * the item at the head of the delayed list. This is the time at * which the task at the head of the delayed list should be removed * from the Blocked state. */ ( pxTCB ) = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) ); } } /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) TaskHandle_t xTaskGetCurrentTaskHandle( void ) { TaskHandle_t xReturn; unsigned state; state = portSET_INTERRUPT_MASK_FROM_ISR(); xReturn = pxCurrentTCB[ xPortGetCoreID() ]; portCLEAR_INTERRUPT_MASK_FROM_ISR( state ); return xReturn; } #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) BaseType_t xTaskGetSchedulerState( void ) { BaseType_t xReturn; unsigned state; /* Known issue. This should use critical sections. See IDF-5889 */ state = portSET_INTERRUPT_MASK_FROM_ISR(); if( xSchedulerRunning == pdFALSE ) { xReturn = taskSCHEDULER_NOT_STARTED; } else { if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) 0U ) { xReturn = taskSCHEDULER_RUNNING; } else { xReturn = taskSCHEDULER_SUSPENDED; } } portCLEAR_INTERRUPT_MASK_FROM_ISR( state ); return xReturn; } #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxMutexHolderTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ /* If the mutex was given back by an interrupt while the queue was * locked then the mutex holder might now be NULL. _RB_ Is this still * needed as interrupts can no longer use mutexes? */ if( pxMutexHolder != NULL ) { /* If the holder of the mutex has a priority below the priority of * the task attempting to obtain the mutex then it will temporarily * inherit the priority of the task attempting to obtain the mutex. */ if( pxMutexHolderTCB->uxPriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* Adjust the mutex holder state to account for its new * priority. Only reset the event list item value if the value is * not being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the task being modified is in the ready state it will need * to be moved into a new list. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Inherit the priority before being moved into the new list. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority; prvAddTaskToReadyList( pxMutexHolderTCB ); } else { /* Just inherit the priority. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority; } traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /* Inheritance occurred. */ xReturn = pdTRUE; } else { if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* The base priority of the mutex holder is lower than the * priority of the task attempting to take the mutex, but the * current priority of the mutex holder is not lower than the * priority of the task attempting to take the mutex. * Therefore the mutex holder must have already inherited a * priority, but inheritance would have occurred if that had * not been the case. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ if( pxMutexHolder != NULL ) { /* A task can only have an inherited priority if it holds the mutex. * If the mutex is held by a task then it cannot be given from an * interrupt, and if a mutex is given by the holding task then it must * be the running state task. */ configASSERT( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] ); configASSERT( pxTCB->uxMutexesHeld ); ( pxTCB->uxMutexesHeld )--; /* Has the holder of the mutex inherited the priority of another * task? */ if( pxTCB->uxPriority != pxTCB->uxBasePriority ) { /* Only disinherit if no other mutexes are held. */ if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 ) { /* A task can only have an inherited priority if it holds * the mutex. If the mutex is held by a task then it cannot be * given from an interrupt, and if a mutex is given by the * holding task then it must be the running state task. Remove * the holding task from the ready list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Disinherit the priority before adding the task into the * new ready list. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); pxTCB->uxPriority = pxTCB->uxBasePriority; /* Reset the event list item value. It cannot be in use for * any other purpose if this task is running, and it must be * running to give back the mutex. */ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ prvAddTaskToReadyList( pxTCB ); /* Return true to indicate that a context switch is required. * This is only actually required in the corner case whereby * multiple mutexes were held and the mutexes were given back * in an order different to that in which they were taken. * If a context switch did not occur when the first mutex was * returned, even if a task was waiting on it, then a context * switch should occur when the last mutex is returned whether * a task is waiting on it or not. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask ) { TCB_t * const pxTCB = pxMutexHolder; UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse; const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ if( pxMutexHolder != NULL ) { /* If pxMutexHolder is not NULL then the holder must hold at least * one mutex. */ configASSERT( pxTCB->uxMutexesHeld ); /* Determine the priority to which the priority of the task that * holds the mutex should be set. This will be the greater of the * holding task's base priority and the priority of the highest * priority task that is waiting to obtain the mutex. */ if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask ) { uxPriorityToUse = uxHighestPriorityWaitingTask; } else { uxPriorityToUse = pxTCB->uxBasePriority; } /* Does the priority need to change? */ if( pxTCB->uxPriority != uxPriorityToUse ) { /* Only disinherit if no other mutexes are held. This is a * simplification in the priority inheritance implementation. If * the task that holds the mutex is also holding other mutexes then * the other mutexes may have caused the priority inheritance. */ if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld ) { /* If a task has timed out because it already holds the * mutex it was trying to obtain then it cannot of inherited * its own priority. */ configASSERT( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] ); /* Disinherit the priority, remembering the previous * priority to facilitate determining the subject task's * state. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); uxPriorityUsedOnEntry = pxTCB->uxPriority; pxTCB->uxPriority = uxPriorityToUse; /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the running task is not the task that holds the mutex * then the task that holds the mutex could be in either the * Ready, Blocked or Suspended states. Only remove the task * from its current state list if it is in the Ready state as * the task's priority is going to change and there is one * Ready list per priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( portCRITICAL_NESTING_IN_TCB == 1 ) void vTaskEnterCritical( void ) { portDISABLE_INTERRUPTS(); if( xSchedulerRunning != pdFALSE ) { ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )++; /* This is not the interrupt safe version of the enter critical * function so assert() if it is being called from an interrupt * context. Only API functions that end in "FromISR" can be used in an * interrupt. Only assert if the critical nesting count is 1 to * protect against recursive calls if the assert function also uses a * critical section. */ if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 1 ) { portASSERT_IF_IN_ISR(); } } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* portCRITICAL_NESTING_IN_TCB */ /*-----------------------------------------------------------*/ #if ( portCRITICAL_NESTING_IN_TCB == 1 ) void vTaskExitCritical( void ) { if( xSchedulerRunning != pdFALSE ) { if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting > 0U ) { ( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting )--; if( pxCurrentTCB[ xPortGetCoreID() ]->uxCriticalNesting == 0U ) { portENABLE_INTERRUPTS(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* portCRITICAL_NESTING_IN_TCB */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) { size_t x; /* Start by copying the entire string. */ strcpy( pcBuffer, pcTaskName ); /* Pad the end of the string with spaces to ensure columns line up when * printed out. */ for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ ) { pcBuffer[ x ] = ' '; } /* Terminate. */ pcBuffer[ x ] = ( char ) 0x00; /* Return the new end of string. */ return &( pcBuffer[ x ] ); } #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) void vTaskList( char * pcWriteBuffer ) { TaskStatus_t * pxTaskStatusArray; UBaseType_t uxArraySize, x; char cStatus; /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskList() calls uxTaskGetSystemState(), then formats part of the * uxTaskGetSystemState() output into a human readable table that * displays task names, states and stack usage. * * vTaskList() has a dependency on the sprintf() C library function that * might bloat the code size, use a lot of stack, and provide different * results on different platforms. An alternative, tiny, third party, * and limited functionality implementation of sprintf() is provided in * many of the FreeRTOS/Demo sub-directories in a file called * printf-stdarg.c (note printf-stdarg.c does not provide a full * snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskList(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! if * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { switch( pxTaskStatusArray[ x ].eCurrentState ) { case eRunning: cStatus = tskRUNNING_CHAR; break; case eReady: cStatus = tskREADY_CHAR; break; case eBlocked: cStatus = tskBLOCKED_CHAR; break; case eSuspended: cStatus = tskSUSPENDED_CHAR; break; case eDeleted: cStatus = tskDELETED_CHAR; break; case eInvalid: /* Fall through. */ default: /* Should not get here, but it is included * to prevent static checking errors. */ cStatus = ( char ) 0x00; break; } /* Write the task name to the string, padding with spaces so it * can be printed in tabular form more easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); /* Write the rest of the string. */ #if configTASKLIST_INCLUDE_COREID sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%hd\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) pxTaskStatusArray[ x ].xCoreID ); #else sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ #endif pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ /*----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) void vTaskGetRunTimeStats( char * pcWriteBuffer ) { TaskStatus_t * pxTaskStatusArray; UBaseType_t uxArraySize, x; uint32_t ulTotalTime, ulStatsAsPercentage; #if ( configUSE_TRACE_FACILITY != 1 ) { #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats(). } #endif /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part * of the uxTaskGetSystemState() output into a human readable table that * displays the amount of time each task has spent in the Running state * in both absolute and percentage terms. * * vTaskGetRunTimeStats() has a dependency on the sprintf() C library * function that might bloat the code size, use a lot of stack, and * provide different results on different platforms. An alternative, * tiny, third party, and limited functionality implementation of * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in * a file called printf-stdarg.c (note printf-stdarg.c does not provide * a full snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskGetRunTimeStats(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! If * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); /* For percentage calculations. */ ulTotalTime /= 100UL; /* Avoid divide by zero errors. */ if( ulTotalTime > 0UL ) { /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { /* What percentage of the total run time has the task used? * This will always be rounded down to the nearest integer. * ulTotalRunTimeDiv100 has already been divided by 100. */ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; /* Write the task name to the string, padding with * spaces so it can be printed in tabular form more * easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); if( ulStatsAsPercentage > 0UL ) { #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); } #else { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ } #endif } else { /* If the percentage is zero here then the task has * consumed less than 1% of the total run time. */ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter ); } #else { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ } #endif } pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ } } else { mtCOVERAGE_TEST_MARKER(); } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */ /*-----------------------------------------------------------*/ TickType_t uxTaskResetEventItemValue( void ) { TickType_t uxReturn; BaseType_t xCoreID; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here to ensure nothing else * modifies the task's event item value simultaneously. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ xCoreID = xPortGetCoreID(); uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ) ); /* Reset the event list item to its normal value - so it can be used with * queues and semaphores. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xCoreID ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL_ISR( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ return uxReturn; } /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) TaskHandle_t pvTaskIncrementMutexHeldCount( void ) { TCB_t * pxCurTCB; BaseType_t xCoreID; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ xCoreID = xPortGetCoreID(); /* If xSemaphoreCreateMutex() is called before any tasks have been created * then pxCurrentTCB will be NULL. */ if( pxCurrentTCB[ xCoreID ] != NULL ) { ( pxCurrentTCB[ xCoreID ]->uxMutexesHeld )++; } pxCurTCB = pxCurrentTCB[ xCoreID ]; #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ return pxCurTCB; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait, BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) { uint32_t ulReturn; configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL( &xKernelLock ); { /* Only block if the notification count is not already non-zero. */ if( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] == 0UL ) { /* Mark this task as waiting for a notification. */ pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait ); /* All ports are written to allow a yield in a critical * section (some will yield immediately, others wait until the * critical section exits) - but it is not something that * application code should ever do. */ portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); taskENTER_CRITICAL( &xKernelLock ); { traceTASK_NOTIFY_TAKE( uxIndexToWait ); ulReturn = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ]; if( ulReturn != 0UL ) { if( xClearCountOnExit != pdFALSE ) { pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = 0UL; } else { pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1; } } else { mtCOVERAGE_TEST_MARKER(); } pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL( &xKernelLock ); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t * pulNotificationValue, TickType_t xTicksToWait ) { BaseType_t xReturn; configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL( &xKernelLock ); { /* Only block if a notification is not already pending. */ if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED ) { /* Clear bits in the task's notification value as bits may get * set by the notifying task or interrupt. This can be used to * clear the value to zero. */ pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry; /* Mark this task as waiting for a notification. */ pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE ); traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait ); /* All ports are written to allow a yield in a critical * section (some will yield immediately, others wait until the * critical section exits) - but it is not something that * application code should ever do. */ portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); taskENTER_CRITICAL( &xKernelLock ); { traceTASK_NOTIFY_WAIT( uxIndexToWait ); if( pulNotificationValue != NULL ) { /* Output the current notification value, which may or may not * have changed. */ *pulNotificationValue = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ]; } /* If ucNotifyValue is set then either the task never entered the * blocked state (because a notification was already pending) or the * task unblocked because of a notification. Otherwise the task * unblocked because of a timeout. */ if( pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED ) { /* A notification was not received. */ xReturn = pdFALSE; } else { /* A notification was already pending or a notification was * received while the task was waiting. */ pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit; xReturn = pdTRUE; } pxCurrentTCB[ xPortGetCoreID() ]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue ) { TCB_t * pxTCB; BaseType_t xReturn = pdPASS; uint8_t ucOriginalNotifyState; configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); configASSERT( xTaskToNotify ); pxTCB = xTaskToNotify; taskENTER_CRITICAL( &xKernelLock ); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL ); break; } traceTASK_NOTIFY( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked waiting for a notification then * xNextTaskUnblockTime might be set to the blocked task's time * out time. If the task is unblocked for a reason other than * a timeout xNextTaskUnblockTime is normally left unchanged, * because it will automatically get reset to a new value when * the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter * sleep mode at the earliest possible time - so reset * xNextTaskUnblockTime here to ensure it is updated at the * earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; BaseType_t xReturn = pdPASS; UBaseType_t uxSavedInterruptStatus; configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus ); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL ); break; } traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( taskCAN_BE_SCHEDULED( pxTCB ) ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) ); } if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } /* Mark that a yield is pending in case the user is not * using the "xHigherPriorityTaskWoken" parameter to an ISR * safe FreeRTOS function. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; UBaseType_t uxSavedInterruptStatus; configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; prvENTER_CRITICAL_OR_MASK_ISR( &xKernelLock, uxSavedInterruptStatus ); { ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; /* 'Giving' is equivalent to incrementing a count in a counting * semaphore. */ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( taskCAN_BE_SCHEDULED( pxTCB ) ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) ); } if( prvCheckForYield( pxTCB, xPortGetCoreID(), pdFALSE ) ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } /* Mark that a yield is pending in case the user is not * using the "xHigherPriorityTaskWoken" parameter in an ISR * safe FreeRTOS function. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } prvEXIT_CRITICAL_OR_UNMASK_ISR( &xKernelLock, uxSavedInterruptStatus ); } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear ) { TCB_t * pxTCB; BaseType_t xReturn; configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL( &xKernelLock ); { if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED ) { pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION; xReturn = pdPASS; } else { xReturn = pdFAIL; } } taskEXIT_CRITICAL( &xKernelLock ); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear ) { TCB_t * pxTCB; uint32_t ulReturn; /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL( &xKernelLock ); { /* Return the notification as it was before the bits were cleared, * then clear the bit mask. */ ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ]; pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear; } taskEXIT_CRITICAL( &xKernelLock ); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) uint32_t ulTaskGetIdleRunTimeCounter( void ) { uint32_t ulRunTimeCounter; #if ( configNUM_CORES > 1 ) /* For SMP, we need to take the kernel lock here as we are about to * access kernel data structures. */ taskENTER_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ ulRunTimeCounter = xIdleTaskHandle[ xPortGetCoreID() ]->ulRunTimeCounter; #if ( configNUM_CORES > 1 ) /* Release the previously taken kernel lock. */ taskEXIT_CRITICAL( &xKernelLock ); #endif /* ( configNUM_CORES > 1 ) */ return ulRunTimeCounter; } #endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */ /*-----------------------------------------------------------*/ static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait, const BaseType_t xCanBlockIndefinitely ) { TickType_t xTimeToWake; const TickType_t xConstTickCount = xTickCount; BaseType_t xCurCoreID = xPortGetCoreID(); #if ( configNUM_CORES > 1 ) if( listIS_CONTAINED_WITHIN( &xTasksWaitingTermination, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == pdTRUE ) { /* vTaskDelete() has been called to delete this task. This would have happened from the other core while this task was spinning on xTaskQueueMutex, * so don't move the running task to the delayed list - as soon as this core re-enables interrupts this task will * be suspended permanently. Todo: IDF-5844. */ return; } #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) { /* About to enter a delayed list, so ensure the ucDelayAborted flag is * reset to pdFALSE so it can be detected as having been set to pdTRUE * when the task leaves the Blocked state. */ pxCurrentTCB[ xCurCoreID ]->ucDelayAborted = pdFALSE; } #endif /* Remove the task from the ready list before adding it to the blocked list * as the same list item is used for both lists. */ if( uxListRemove( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* The current task must be in a ready list, so there is no need to * check, and the port reset macro can be called directly. */ portRESET_READY_PRIORITY( pxCurrentTCB[ xCurCoreID ]->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */ } else { mtCOVERAGE_TEST_MARKER(); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) ) { /* Add the task to the suspended task list instead of a delayed task * list to ensure it is not woken by a timing event. It will block * indefinitely. */ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ); } else { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the * kernel will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { /* Wake time has overflowed. Place this item in the overflow * list. */ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ); } else { /* The wake time has not overflowed, so the current block list * is used. */ vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ); /* If the task entering the blocked state was placed at the * head of the list of blocked tasks then xNextTaskUnblockTime * needs to be updated too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } } } #else /* INCLUDE_vTaskSuspend */ { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the kernel * will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { /* Wake time has overflowed. Place this item in the overflow list. */ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ); } else { /* The wake time has not overflowed, so the current block list is used. */ vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCurCoreID ]->xStateListItem ) ); /* If the task entering the blocked state was placed at the head of the * list of blocked tasks then xNextTaskUnblockTime needs to be updated * too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */ ( void ) xCanBlockIndefinitely; } #endif /* INCLUDE_vTaskSuspend */ } /* Code below here allows additional code to be inserted into this source file, * especially where access to file scope functions and data is needed (for example * when performing module tests). */ #ifdef FREERTOS_MODULE_TEST #include "tasks_test_access_functions.h" #endif #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) #include "freertos_tasks_c_additions.h" #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) { FREERTOS_TASKS_C_ADDITIONS_INIT(); } #endif #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */