/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "esp_attr.h" #include "multi_heap.h" #include "esp_log.h" #include "heap_private.h" #ifdef CONFIG_HEAP_USE_HOOKS #define CALL_HOOK(hook, ...) { \ if (hook != NULL) { \ hook(__VA_ARGS__); \ } \ } #else #define CALL_HOOK(hook, ...) {} #endif /* This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to IRAM in such a way that it can be later freed. It assumes both the address as well as the length to be word-aligned. It returns a region that's 1 word smaller than the region given because it stores the original Dram address there. */ HEAP_IRAM_ATTR static void *dram_alloc_to_iram_addr(void *addr, size_t len) { uintptr_t dstart = (uintptr_t)addr; //First word uintptr_t dend __attribute__((unused)) = dstart + len - 4; //Last word assert(esp_ptr_in_diram_dram((void *)dstart)); assert(esp_ptr_in_diram_dram((void *)dend)); assert((dstart & 3) == 0); assert((dend & 3) == 0); #if SOC_DIRAM_INVERTED // We want the word before the result to hold the DRAM address uint32_t *iptr = esp_ptr_diram_dram_to_iram((void *)dend); #else uint32_t *iptr = esp_ptr_diram_dram_to_iram((void *)dstart); #endif *iptr = dstart; return iptr + 1; } HEAP_IRAM_ATTR void heap_caps_free( void *ptr) { if (ptr == NULL) { return; } if (esp_ptr_in_diram_iram(ptr)) { //Memory allocated here is actually allocated in the DRAM alias region and //cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to //the equivalent DRAM address, though; free that. uint32_t *dramAddrPtr = (uint32_t *)ptr; ptr = (void *)dramAddrPtr[-1]; } heap_t *heap = find_containing_heap(ptr); assert(heap != NULL && "free() target pointer is outside heap areas"); multi_heap_free(heap->heap, ptr); CALL_HOOK(esp_heap_trace_free_hook, ptr); } /* This function should not be called directly as it does not check for failure / call heap_caps_alloc_failed() */ HEAP_IRAM_ATTR NOINLINE_ATTR void *heap_caps_malloc_base( size_t size, uint32_t caps) { void *ret = NULL; if (size == 0 || size > HEAP_SIZE_MAX ) { // Avoids int overflow when adding small numbers to size, or // calculating 'end' from start+size, by limiting 'size' to the possible range return NULL; } if (caps & MALLOC_CAP_EXEC) { //MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this as well as the following //caps, but the following caps are not possible for IRAM. Thus, the combination is impossible and we return //NULL directly, even although our heap capabilities (based on soc_memory_tags & soc_memory_regions) would //indicate there is a tag for this. if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) { return NULL; } caps |= MALLOC_CAP_32BIT; // IRAM is 32-bit accessible RAM } if (caps & MALLOC_CAP_32BIT) { /* 32-bit accessible RAM should allocated in 4 byte aligned sizes * (Future versions of ESP-IDF should possibly fail if an invalid size is requested) */ size = (size + 3) & (~3); // int overflow checked above } for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) { //Iterate over heaps and check capabilities at this priority heap_t *heap; SLIST_FOREACH(heap, ®istered_heaps, next) { if (heap->heap == NULL) { continue; } if ((heap->caps[prio] & caps) != 0) { //Heap has at least one of the caps requested. If caps has other bits set that this prio //doesn't cover, see if they're available in other prios. if ((get_all_caps(heap) & caps) == caps) { //This heap can satisfy all the requested capabilities. See if we can grab some memory using it. // If MALLOC_CAP_EXEC is requested but the DRAM and IRAM are on the same addresses (like on esp32c6) // proceed as for a default allocation. if ((caps & MALLOC_CAP_EXEC) && !esp_dram_match_iram() && esp_ptr_in_diram_dram((void *)heap->start)) { //This is special, insofar that what we're going to get back is a DRAM address. If so, //we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and //add a pointer to the DRAM equivalent before the address we're going to return. ret = multi_heap_malloc(heap->heap, size + 4); // int overflow checked above if (ret != NULL) { uint32_t *iptr = dram_alloc_to_iram_addr(ret, size + 4); // int overflow checked above CALL_HOOK(esp_heap_trace_alloc_hook, iptr, size, caps); return iptr; } } else { //Just try to alloc, nothing special. ret = multi_heap_malloc(heap->heap, size); if (ret != NULL) { CALL_HOOK(esp_heap_trace_alloc_hook, ret, size, caps); return ret; } } } } } } //Nothing usable found. return NULL; } /* This function should not be called directly as it does not check for failure / call heap_caps_alloc_failed() */ HEAP_IRAM_ATTR NOINLINE_ATTR void *heap_caps_realloc_base( void *ptr, size_t size, uint32_t caps) { bool ptr_in_diram_case = false; heap_t *heap = NULL; void *dram_ptr = NULL; if (ptr == NULL) { return heap_caps_malloc_base(size, caps); } if (size == 0) { heap_caps_free(ptr); return NULL; } if (size > HEAP_SIZE_MAX) { return NULL; } //The pointer to memory may be aliased, we need to //recover the corresponding address before to manage a new allocation: if(esp_ptr_in_diram_iram((void *)ptr)) { uint32_t *dram_addr = (uint32_t *)ptr; dram_ptr = (void *)dram_addr[-1]; heap = find_containing_heap(dram_ptr); assert(heap != NULL && "realloc() pointer is outside heap areas"); //with pointers that reside on diram space, we avoid using //the realloc implementation due to address translation issues, //instead force a malloc/copy/free ptr_in_diram_case = true; } else { heap = find_containing_heap(ptr); assert(heap != NULL && "realloc() pointer is outside heap areas"); } // are the existing heap's capabilities compatible with the // requested ones? bool compatible_caps = (caps & get_all_caps(heap)) == caps; if (compatible_caps && !ptr_in_diram_case) { // try to reallocate this memory within the same heap // (which will resize the block if it can) void *r = multi_heap_realloc(heap->heap, ptr, size); if (r != NULL) { CALL_HOOK(esp_heap_trace_alloc_hook, r, size, caps); return r; } } // if we couldn't do that, try to see if we can reallocate // in a different heap with requested capabilities. void *new_p = heap_caps_malloc_base(size, caps); if (new_p != NULL) { size_t old_size = 0; //If we're dealing with aliased ptr, information regarding its containing //heap can only be obtained with translated address. if(ptr_in_diram_case) { old_size = multi_heap_get_allocated_size(heap->heap, dram_ptr); } else { old_size = multi_heap_get_allocated_size(heap->heap, ptr); } assert(old_size > 0); memcpy(new_p, ptr, MIN(size, old_size)); heap_caps_free(ptr); return new_p; } return NULL; } /* This function should not be called directly as it does not check for failure / call heap_caps_alloc_failed() */ HEAP_IRAM_ATTR void *heap_caps_calloc_base( size_t n, size_t size, uint32_t caps) { void *result; size_t size_bytes; if (__builtin_mul_overflow(n, size, &size_bytes)) { return NULL; } result = heap_caps_malloc_base(size_bytes, caps); if (result != NULL) { memset(result, 0, size_bytes); } return result; } HEAP_IRAM_ATTR void *heap_caps_aligned_alloc_base(size_t alignment, size_t size, uint32_t caps) { for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) { //Iterate over heaps and check capabilities at this priority heap_t *heap; SLIST_FOREACH(heap, ®istered_heaps, next) { if (heap->heap == NULL) { continue; } if ((heap->caps[prio] & caps) != 0) { //Heap has at least one of the caps requested. If caps has other bits set that this prio //doesn't cover, see if they're available in other prios. if ((get_all_caps(heap) & caps) == caps) { //Just try to alloc, nothing special. void *ret = multi_heap_aligned_alloc(heap->heap, size, alignment); if (ret != NULL) { CALL_HOOK(esp_heap_trace_alloc_hook, ret, size, caps); return ret; } } } } } //Nothing usable found. return NULL; }