// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "heap_tlsf.h" #include #include "multi_heap_internal.h" /* Note: Keep platform-specific parts in this header, this source file should depend on libc only */ #include "multi_heap_platform.h" /* Defines compile-time configuration macros */ #include "multi_heap_config.h" #ifndef MULTI_HEAP_POISONING /* if no heap poisoning, public API aliases directly to these implementations */ void *multi_heap_malloc(multi_heap_handle_t heap, size_t size) __attribute__((alias("multi_heap_malloc_impl"))); void *multi_heap_aligned_alloc(multi_heap_handle_t heap, size_t size, size_t alignment) __attribute__((alias("multi_heap_aligned_alloc_impl"))); void multi_heap_aligned_free(multi_heap_handle_t heap, void *p) __attribute__((alias("multi_heap_free_impl"))); void multi_heap_free(multi_heap_handle_t heap, void *p) __attribute__((alias("multi_heap_free_impl"))); void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size) __attribute__((alias("multi_heap_realloc_impl"))); size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p) __attribute__((alias("multi_heap_get_allocated_size_impl"))); multi_heap_handle_t multi_heap_register(void *start, size_t size) __attribute__((alias("multi_heap_register_impl"))); void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info) __attribute__((alias("multi_heap_get_info_impl"))); size_t multi_heap_free_size(multi_heap_handle_t heap) __attribute__((alias("multi_heap_free_size_impl"))); size_t multi_heap_minimum_free_size(multi_heap_handle_t heap) __attribute__((alias("multi_heap_minimum_free_size_impl"))); void *multi_heap_get_block_address(multi_heap_block_handle_t block) __attribute__((alias("multi_heap_get_block_address_impl"))); void *multi_heap_get_block_owner(multi_heap_block_handle_t block) { return NULL; } #endif #define ALIGN(X) ((X) & ~(sizeof(void *)-1)) #define ALIGN_UP(X) ALIGN((X)+sizeof(void *)-1) #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) typedef struct multi_heap_info { void *lock; size_t free_bytes; size_t minimum_free_bytes; size_t pool_size; tlsf_t heap_data; } heap_t; /* Check a block is valid for this heap. Used to verify parameters. */ static void assert_valid_block(const heap_t *heap, const block_header_t *block) { pool_t pool = tlsf_get_pool(heap->heap_data); void *ptr = block_to_ptr(block); MULTI_HEAP_ASSERT((ptr >= pool) && (ptr < pool + heap->pool_size), (uintptr_t)ptr); } void *multi_heap_get_block_address_impl(multi_heap_block_handle_t block) { return block_to_ptr(block); } size_t multi_heap_get_allocated_size_impl(multi_heap_handle_t heap, void *p) { return tlsf_block_size(p); } multi_heap_handle_t multi_heap_register_impl(void *start_ptr, size_t size) { assert(start_ptr); if(size < (sizeof(heap_t))) { //Region too small to be a heap. return NULL; } heap_t *result = (heap_t *)start_ptr; size -= sizeof(heap_t); /* Do not specify any maximum size for the allocations so that the default configuration is used */ const size_t max_bytes = 0; result->heap_data = tlsf_create_with_pool(start_ptr + sizeof(heap_t), size, max_bytes); if(!result->heap_data) { return NULL; } result->lock = NULL; result->free_bytes = size - tlsf_size(result->heap_data); result->pool_size = size; result->minimum_free_bytes = result->free_bytes; return result; } void multi_heap_set_lock(multi_heap_handle_t heap, void *lock) { heap->lock = lock; } void inline multi_heap_internal_lock(multi_heap_handle_t heap) { MULTI_HEAP_LOCK(heap->lock); } void inline multi_heap_internal_unlock(multi_heap_handle_t heap) { MULTI_HEAP_UNLOCK(heap->lock); } multi_heap_block_handle_t multi_heap_get_first_block(multi_heap_handle_t heap) { assert(heap != NULL); pool_t pool = tlsf_get_pool(heap->heap_data); block_header_t* block = offset_to_block(pool, -(int)block_header_overhead); return (multi_heap_block_handle_t)block; } multi_heap_block_handle_t multi_heap_get_next_block(multi_heap_handle_t heap, multi_heap_block_handle_t block) { assert(heap != NULL); assert_valid_block(heap, block); block_header_t* next = block_next(block); if(block_size(next) == 0) { //Last block: return NULL; } else { return (multi_heap_block_handle_t)next; } } bool multi_heap_is_free(multi_heap_block_handle_t block) { return block_is_free(block); } void *multi_heap_malloc_impl(multi_heap_handle_t heap, size_t size) { if (size == 0 || heap == NULL) { return NULL; } multi_heap_internal_lock(heap); void *result = tlsf_malloc(heap->heap_data, size); if(result) { heap->free_bytes -= tlsf_block_size(result); heap->free_bytes -= tlsf_alloc_overhead(); if (heap->free_bytes < heap->minimum_free_bytes) { heap->minimum_free_bytes = heap->free_bytes; } } multi_heap_internal_unlock(heap); return result; } void multi_heap_free_impl(multi_heap_handle_t heap, void *p) { if (heap == NULL || p == NULL) { return; } assert_valid_block(heap, block_from_ptr(p)); multi_heap_internal_lock(heap); heap->free_bytes += tlsf_block_size(p); heap->free_bytes += tlsf_alloc_overhead(); tlsf_free(heap->heap_data, p); multi_heap_internal_unlock(heap); } void *multi_heap_realloc_impl(multi_heap_handle_t heap, void *p, size_t size) { assert(heap != NULL); if (p == NULL) { return multi_heap_malloc_impl(heap, size); } assert_valid_block(heap, block_from_ptr(p)); if (heap == NULL) { return NULL; } multi_heap_internal_lock(heap); size_t previous_block_size = tlsf_block_size(p); void *result = tlsf_realloc(heap->heap_data, p, size); if(result) { /* No need to subtract the tlsf_alloc_overhead() as it has already * been subtracted when allocating the block at first with malloc */ heap->free_bytes += previous_block_size; heap->free_bytes -= tlsf_block_size(result); if (heap->free_bytes < heap->minimum_free_bytes) { heap->minimum_free_bytes = heap->free_bytes; } } multi_heap_internal_unlock(heap); return result; } void *multi_heap_aligned_alloc_impl_offs(multi_heap_handle_t heap, size_t size, size_t alignment, size_t offset) { if(heap == NULL) { return NULL; } if(!size) { return NULL; } //Alignment must be a power of two: if(((alignment & (alignment - 1)) != 0) ||(!alignment)) { return NULL; } multi_heap_internal_lock(heap); void *result = tlsf_memalign_offs(heap->heap_data, alignment, size, offset); if(result) { heap->free_bytes -= tlsf_block_size(result); heap->free_bytes -= tlsf_alloc_overhead(); if(heap->free_bytes < heap->minimum_free_bytes) { heap->minimum_free_bytes = heap->free_bytes; } } multi_heap_internal_unlock(heap); return result; } void *multi_heap_aligned_alloc_impl(multi_heap_handle_t heap, size_t size, size_t alignment) { return multi_heap_aligned_alloc_impl_offs(heap, size, alignment, 0); } #ifdef MULTI_HEAP_POISONING /*! * @brief Global definition of print_errors set in multi_heap_check() when * MULTI_HEAP_POISONING is active. Allows the transfer of the value to * multi_heap_poisoning.c without having to propagate it to the tlsf submodule * and back. */ static bool g_print_errors = false; /*! * @brief Definition of the weak function declared in TLSF repository. * The call of this function execute a check for block poisoning on the memory * chunk passed as parameter. * * @param start: pointer to the start of the memory region to check for corruption * @param size: size of the memory region to check for corruption * @param is_free: indicate if the pattern to use the fill the region should be * an after free or after allocation pattern. * * @return bool: true if the the memory is not corrupted, false if the memory if corrupted. */ bool tlsf_check_hook(void *start, size_t size, bool is_free) { return multi_heap_internal_check_block_poisoning(start, size, is_free, g_print_errors); } #endif // MULTI_HEAP_POISONING bool multi_heap_check(multi_heap_handle_t heap, bool print_errors) { bool valid = true; assert(heap != NULL); multi_heap_internal_lock(heap); #ifdef MULTI_HEAP_POISONING g_print_errors = print_errors; #else (void) print_errors; #endif if(tlsf_check(heap->heap_data)) { valid = false; } if(tlsf_check_pool(tlsf_get_pool(heap->heap_data))) { valid = false; } multi_heap_internal_unlock(heap); return valid; } static void multi_heap_dump_tlsf(void* ptr, size_t size, int used, void* user) { (void)user; MULTI_HEAP_STDERR_PRINTF("Block %p data, size: %d bytes, Free: %s \n", (void *)ptr, size, used ? "No" : "Yes"); } void multi_heap_dump(multi_heap_handle_t heap) { assert(heap != NULL); multi_heap_internal_lock(heap); MULTI_HEAP_STDERR_PRINTF("Showing data for heap: %p \n", (void *)heap); tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_dump_tlsf, NULL); multi_heap_internal_unlock(heap); } size_t multi_heap_free_size_impl(multi_heap_handle_t heap) { if (heap == NULL) { return 0; } return heap->free_bytes; } size_t multi_heap_minimum_free_size_impl(multi_heap_handle_t heap) { if (heap == NULL) { return 0; } return heap->minimum_free_bytes; } static void multi_heap_get_info_tlsf(void* ptr, size_t size, int used, void* user) { multi_heap_info_t *info = user; if(used) { info->allocated_blocks++; } else { info->free_blocks++; if(size > info->largest_free_block ) { info->largest_free_block = size; } } info->total_blocks++; } void multi_heap_get_info_impl(multi_heap_handle_t heap, multi_heap_info_t *info) { uint32_t overhead; memset(info, 0, sizeof(multi_heap_info_t)); if (heap == NULL) { return; } multi_heap_internal_lock(heap); tlsf_walk_pool(tlsf_get_pool(heap->heap_data), multi_heap_get_info_tlsf, info); /* TLSF has an overhead per block. Calculate the total amount of overhead, it shall not be * part of the allocated bytes */ overhead = info->allocated_blocks * tlsf_alloc_overhead(); info->total_allocated_bytes = (heap->pool_size - tlsf_size(heap->heap_data)) - heap->free_bytes - overhead; info->minimum_free_bytes = heap->minimum_free_bytes; info->total_free_bytes = heap->free_bytes; info->largest_free_block = tlsf_fit_size(heap->heap_data, info->largest_free_block); multi_heap_internal_unlock(heap); }