// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /******************************************************************************* * NOTICE * The ll is not public api, don't use in application code. * See readme.md in soc/include/hal/readme.md ******************************************************************************/ #pragma once #include #include "soc/dac_periph.h" #include "hal/dac_types.h" /** * Power on dac module and start output voltage. * * @note Before powering up, make sure the DAC PAD is set to RTC PAD and floating status. * @param channel DAC channel num. */ static inline void dac_ll_power_on(dac_channel_t channel) { RTCIO.pad_dac[channel].dac_xpd_force = 1; RTCIO.pad_dac[channel].xpd_dac = 1; } /** * Power done dac module and stop output voltage. * * @param channel DAC channel num. */ static inline void dac_ll_power_down(dac_channel_t channel) { RTCIO.pad_dac[channel].dac_xpd_force = 0; RTCIO.pad_dac[channel].xpd_dac = 0; } /** * Output voltage with value (8 bit). * * @param channel DAC channel num. * @param value Output value. Value range: 0 ~ 255. * The corresponding range of voltage is 0v ~ VDD3P3_RTC. */ static inline void dac_ll_update_output_value(dac_channel_t channel, uint8_t value) { if (channel == DAC_CHANNEL_1) { SENS.sar_dac_ctrl2.dac_cw_en1 = 0; RTCIO.pad_dac[channel].dac = value; } else if (channel == DAC_CHANNEL_2) { SENS.sar_dac_ctrl2.dac_cw_en2 = 0; RTCIO.pad_dac[channel].dac = value; } } /** * Enable/disable the synchronization operation function of ADC1 and DAC. * * @note If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. * * @param enable Enable or disable adc and dac synchronization function. */ static inline void dac_ll_rtc_sync_by_adc(bool enable) { SENS.sar_meas_ctrl2.sar1_dac_xpd_fsm = enable; } /************************************/ /* DAC cosine wave generator API's */ /************************************/ /** * Enable cosine wave generator output. */ static inline void dac_ll_cw_generator_enable(void) { SENS.sar_dac_ctrl1.sw_tone_en = 1; } /** * Disable cosine wave generator output. */ static inline void dac_ll_cw_generator_disable(void) { SENS.sar_dac_ctrl1.sw_tone_en = 0; } /** * Enable the cosine wave generator of DAC channel. * * @param channel DAC channel num. * @param enable */ static inline void dac_ll_cw_set_channel(dac_channel_t channel, bool enable) { if (channel == DAC_CHANNEL_1) { SENS.sar_dac_ctrl2.dac_cw_en1 = enable; } else if (channel == DAC_CHANNEL_2) { SENS.sar_dac_ctrl2.dac_cw_en2 = enable; } } /** * Set frequency of cosine wave generator output. * * @note We know that CLK8M is about 8M, but don't know the actual value. so this freq have limited error. * @param freq_hz CW generator frequency. Range: 130(130Hz) ~ 55000(100KHz). */ static inline void dac_ll_cw_set_freq(uint32_t freq) { uint32_t sw_freq = freq * 0xFFFF / RTC_FAST_CLK_FREQ_APPROX; SENS.sar_dac_ctrl1.sw_fstep = (sw_freq > 0xFFFF) ? 0xFFFF : sw_freq; } /** * Set the amplitude of the cosine wave generator output. * * @param channel DAC channel num. * @param scale The multiple of the amplitude. The max amplitude is VDD3P3_RTC. */ static inline void dac_ll_cw_set_scale(dac_channel_t channel, dac_cw_scale_t scale) { if (channel == DAC_CHANNEL_1) { SENS.sar_dac_ctrl2.dac_scale1 = scale; } else if (channel == DAC_CHANNEL_2) { SENS.sar_dac_ctrl2.dac_scale2 = scale; } } /** * Set the phase of the cosine wave generator output. * * @param channel DAC channel num. * @param scale Phase value. */ static inline void dac_ll_cw_set_phase(dac_channel_t channel, dac_cw_phase_t phase) { if (channel == DAC_CHANNEL_1) { SENS.sar_dac_ctrl2.dac_inv1 = phase; } else if (channel == DAC_CHANNEL_2) { SENS.sar_dac_ctrl2.dac_inv2 = phase; } } /** * Set the voltage value of the DC component of the cosine wave generator output. * * @note The DC offset setting should be after phase setting. * @note Unreasonable settings can cause the signal to be oversaturated. * @param channel DAC channel num. * @param offset DC value. Range: -128 ~ 127. */ static inline void dac_ll_cw_set_dc_offset(dac_channel_t channel, int8_t offset) { if (channel == DAC_CHANNEL_1) { if (SENS.sar_dac_ctrl2.dac_inv1 == DAC_CW_PHASE_180) { offset = 0 - offset; } SENS.sar_dac_ctrl2.dac_dc1 = offset ? offset : (-128 - offset); } else if (channel == DAC_CHANNEL_2) { if (SENS.sar_dac_ctrl2.dac_inv2 == DAC_CW_PHASE_180) { offset = 0 - offset; } SENS.sar_dac_ctrl2.dac_dc2 = offset ? offset : (-128 - offset); } } /************************************/ /* DAC DMA API's */ /************************************/ /** * Enable DAC output data from I2S DMA. * I2S_CLK connect to DAC_CLK, I2S_DATA_OUT connect to DAC_DATA. */ static inline void dac_ll_dma_enable(void) { SENS.sar_dac_ctrl1.dac_dig_force = 1; } /** * Disable DAC output data from I2S DMA. */ static inline void dac_ll_dma_disable(void) { SENS.sar_dac_ctrl1.dac_dig_force = 0; }