/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "esp_heap_caps.h" #include "esp_intr_alloc.h" #include "soc/interrupts.h" // For interrupt index #include "esp_err.h" #include "esp_log.h" #include "hal/usb_dwc_hal.h" #include "hal/usb_dwc_types.h" #include "hcd.h" #include "usb_private.h" #include "usb/usb_types_ch9.h" #include "soc/soc_caps.h" #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #include "esp_cache.h" #endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // ----------------------------------------------------- Macros -------------------------------------------------------- // ------------------ Target specific ---------------------- // TODO: Remove target specific section after support for multiple USB peripherals is implemented #include "sdkconfig.h" #if (CONFIG_IDF_TARGET_ESP32P4) #define USB_INTR ETS_USB_OTG_INTR_SOURCE #else #define USB_INTR ETS_USB_INTR_SOURCE #endif // --------------------- Constants ------------------------- #define INIT_DELAY_MS 30 // A delay of at least 25ms to enter Host mode. Make it 30ms to be safe #define DEBOUNCE_DELAY_MS CONFIG_USB_HOST_DEBOUNCE_DELAY_MS #define RESET_HOLD_MS CONFIG_USB_HOST_RESET_HOLD_MS #define RESET_RECOVERY_MS CONFIG_USB_HOST_RESET_RECOVERY_MS #define RESUME_HOLD_MS 30 // Spec requires at least 20ms, Make it 30ms to be safe #define RESUME_RECOVERY_MS 20 // Resume recovery of at least 10ms. Make it 20 ms to be safe. This will include the 3 LS bit times of the EOP #define CTRL_EP_MAX_MPS_LS 8 // Largest Maximum Packet Size for Low Speed control endpoints #define CTRL_EP_MAX_MPS_HSFS 64 // Largest Maximum Packet Size for High & Full Speed control endpoints #define NUM_PORTS 1 // The controller only has one port. // ----------------------- Configs ------------------------- #define FRAME_LIST_LEN USB_HAL_FRAME_LIST_LEN_32 #define NUM_BUFFERS 2 #define XFER_LIST_LEN_CTRL 3 // One descriptor for each stage #define XFER_LIST_LEN_BULK 2 // One descriptor for transfer, one to support an extra zero length packet // Periodic transfer descriptor lists: Same length as the frame list makes it easier to schedule. Must be power of 2 // FS: Must be 2-64. HS: Must be 8-256. See USB-OTG databook Table 5-47 #define XFER_LIST_LEN_INTR FRAME_LIST_LEN #define XFER_LIST_LEN_ISOC 64 // Implement longer ISOC transfer list to give us enough space for additional timing margin #define XFER_LIST_ISOC_MARGIN 2 // The 1st ISOC transfer is scheduled 2 (micro)frames later so we have enough timing margin // ------------------------ Flags -------------------------- /** * @brief Bit masks for the HCD to use in the URBs reserved_flags field * * The URB object has a reserved_flags member for host stack's internal use. The following flags will be set in * reserved_flags in order to keep track of state of an URB within the HCD. */ #define URB_HCD_STATE_IDLE 0 // The URB is not enqueued in an HCD pipe #define URB_HCD_STATE_PENDING 1 // The URB is enqueued and pending execution #define URB_HCD_STATE_INFLIGHT 2 // The URB is currently in flight #define URB_HCD_STATE_DONE 3 // The URB has completed execution or is retired, and is waiting to be dequeued #define URB_HCD_STATE_SET(reserved_flags, state) (reserved_flags = (reserved_flags & ~URB_HCD_STATE_MASK) | state) #define URB_HCD_STATE_GET(reserved_flags) (reserved_flags & URB_HCD_STATE_MASK) // -------------------- Convenience ------------------------ const char *HCD_DWC_TAG = "HCD DWC"; #define HCD_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&hcd_lock) #define HCD_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&hcd_lock) #define HCD_ENTER_CRITICAL() portENTER_CRITICAL(&hcd_lock) #define HCD_EXIT_CRITICAL() portEXIT_CRITICAL(&hcd_lock) #define HCD_CHECK(cond, ret_val) ({ \ if (!(cond)) { \ return (ret_val); \ } \ }) #define HCD_CHECK_FROM_CRIT(cond, ret_val) ({ \ if (!(cond)) { \ HCD_EXIT_CRITICAL(); \ return ret_val; \ } \ }) // ----------------------- Cache sync ---------------------- /** * @brief Cache sync macros * * This macros are relevant only for SOCs that have L1 cache for internal memory * For other SOCs this is no-operation */ #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) #define CACHE_SYNC_FRAME_LIST(frame_list) cache_sync_frame_list(frame_list) #define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer) cache_sync_xfer_descriptor_list(buffer, true) #define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer) cache_sync_xfer_descriptor_list(buffer, false) #define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb) cache_sync_data_buffer(pipe, urb, true) #define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb) cache_sync_data_buffer(pipe, urb, false) #else // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #define CACHE_SYNC_FRAME_LIST(frame_list) #define CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer) #define CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer) #define CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb) #define CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb) #endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // ------------------------------------------------------ Types -------------------------------------------------------- typedef struct pipe_obj pipe_t; typedef struct port_obj port_t; /** * @brief Object representing a single buffer of a pipe's multi buffer implementation */ typedef struct { void *xfer_desc_list; int xfer_desc_list_len_bytes; // Only for cache msync urb_t *urb; union { struct { uint32_t data_stg_in: 1; // Data stage of the control transfer is IN uint32_t data_stg_skip: 1; // Control transfer has no data stage uint32_t cur_stg: 2; // Index of the current stage (e.g., 0 is setup stage, 2 is status stage) uint32_t reserved28: 28; } ctrl; // Control transfer related struct { uint32_t zero_len_packet: 1; // Added a zero length packet, so transfer consists of 2 QTDs uint32_t reserved31: 31; } bulk; // Bulk transfer related struct { uint32_t num_qtds: 8; // Number of transfer descriptors filled (excluding zero length packet) uint32_t zero_len_packet: 1; // Added a zero length packet, so true number descriptors is num_qtds + 1 uint32_t reserved23: 23; } intr; // Interrupt transfer related struct { uint32_t num_qtds: 8; // Number of transfer descriptors filled (including NULL descriptors) uint32_t interval: 8; // Interval (in number of SOF i.e., ms) uint32_t start_idx: 8; // Index of the first transfer descriptor in the list uint32_t next_start_idx: 8; // Index for the first descriptor of the next buffer } isoc; uint32_t val; } flags; union { struct { uint32_t executing: 1; // The buffer is currently executing uint32_t was_canceled: 1; // Buffer was done due to a cancellation (i.e., a halt request) uint32_t reserved6: 6; uint32_t stop_idx: 8; // The descriptor index when the channel was halted hcd_pipe_event_t pipe_event: 8; // The pipe event when the buffer was done uint32_t reserved8: 8; }; uint32_t val; } status_flags; // Status flags for the buffer } dma_buffer_block_t; /** * @brief Object representing a pipe in the HCD layer */ struct pipe_obj { // URB queuing related TAILQ_HEAD(tailhead_urb_pending, urb_s) pending_urb_tailq; TAILQ_HEAD(tailhead_urb_done, urb_s) done_urb_tailq; int num_urb_pending; int num_urb_done; // Multi-buffer control dma_buffer_block_t *buffers[NUM_BUFFERS]; // Double buffering scheme union { struct { uint32_t buffer_num_to_fill: 2; // Number of buffers that can be filled uint32_t buffer_num_to_exec: 2; // Number of buffers that are filled and need to be executed uint32_t buffer_num_to_parse: 2;// Number of buffers completed execution and waiting to be parsed uint32_t reserved2: 2; uint32_t wr_idx: 1; // Index of the next buffer to fill. Bit width must allow NUM_BUFFERS to wrap automatically uint32_t rd_idx: 1; // Index of the current buffer in-flight. Bit width must allow NUM_BUFFERS to wrap automatically uint32_t fr_idx: 1; // Index of the next buffer to parse. Bit width must allow NUM_BUFFERS to wrap automatically uint32_t buffer_is_executing: 1;// One of the buffers is in flight uint32_t reserved20: 20; }; uint32_t val; } multi_buffer_control; // HAL related usb_dwc_hal_chan_t *chan_obj; usb_dwc_hal_ep_char_t ep_char; // Port related port_t *port; // The port to which this pipe is routed through TAILQ_ENTRY(pipe_obj) tailq_entry; // TailQ entry for port's list of pipes // Pipe status/state/events related hcd_pipe_state_t state; hcd_pipe_event_t last_event; volatile TaskHandle_t task_waiting_pipe_notif; // Task handle used for internal pipe events. Set by waiter, cleared by notifier union { struct { uint32_t waiting_halt: 1; uint32_t pipe_cmd_processing: 1; uint32_t has_urb: 1; // Indicates there is at least one URB either pending, in-flight, or done uint32_t reserved29: 29; }; uint32_t val; } cs_flags; // Pipe callback and context hcd_pipe_callback_t callback; void *callback_arg; void *context; }; /** * @brief Object representing a port in the HCD layer */ struct port_obj { usb_dwc_hal_context_t *hal; void *frame_list; // Pipes routed through this port TAILQ_HEAD(tailhead_pipes_idle, pipe_obj) pipes_idle_tailq; TAILQ_HEAD(tailhead_pipes_queued, pipe_obj) pipes_active_tailq; int num_pipes_idle; int num_pipes_queued; // Port status, state, and events hcd_port_state_t state; usb_speed_t speed; hcd_port_event_t last_event; volatile TaskHandle_t task_waiting_port_notif; // Task handle used for internal port events. Set by waiter, cleared by notifier union { struct { uint32_t event_pending: 1; // The port has an event that needs to be handled uint32_t event_processing: 1; // The port is current processing (handling) an event uint32_t cmd_processing: 1; // Used to indicate command handling is ongoing uint32_t disable_requested: 1; uint32_t conn_dev_ena: 1; // Used to indicate the port is connected to a device that has been reset uint32_t periodic_scheduling_enabled: 1; uint32_t reserved26: 26; }; uint32_t val; } flags; bool initialized; // FIFO biasing related usb_hal_fifo_bias_t fifo_bias; // Bias is saved so it can be reconfigured upon reset // Port callback and context hcd_port_callback_t callback; void *callback_arg; SemaphoreHandle_t port_mux; void *context; }; /** * @brief Object representing the HCD */ typedef struct { // Ports (Hardware only has one) port_t *port_obj; intr_handle_t isr_hdl; } hcd_obj_t; static portMUX_TYPE hcd_lock = portMUX_INITIALIZER_UNLOCKED; static hcd_obj_t *s_hcd_obj = NULL; // Note: "s_" is for the static pointer // ------------------------------------------------- Forward Declare --------------------------------------------------- // --------------------- Cache sync ------------------------ #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE /** * @brief Sync Frame List from cache to memory */ static inline void cache_sync_frame_list(void *frame_list) { esp_err_t ret = esp_cache_msync(frame_list, FRAME_LIST_LEN * sizeof(uint32_t), 0); assert(ret == ESP_OK); } /** * @brief Sync Transfer Descriptor List * * @param[in] buffer Buffer that holds the Transfer Descriptor List * @param[in] mem_to_cache Direction of cache sync */ static inline void cache_sync_xfer_descriptor_list(dma_buffer_block_t *buffer, bool mem_to_cache) { esp_err_t ret = esp_cache_msync(buffer->xfer_desc_list, buffer->xfer_desc_list_len_bytes, mem_to_cache ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : 0); assert(ret == ESP_OK); } /** * @brief Sync Transfer data buffer * * This function must be called before a URB is enqueued or dequeued. * Based on transfer direction (IN/OUT), this function will msync the data buffer associated with this URB. * * @note Here we also accept UNALIGNED data, for cases where the class drivers force overwrite the allocated data buffers * * @param[in] pipe Pipe belonging to this data buffer * @param[in] urb URB belonging to this data buffer * @param[in] done Whether data buffer was just processed or is about to be processed */ static inline void cache_sync_data_buffer(pipe_t *pipe, urb_t *urb, bool done) { const bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK; const bool is_ctrl = (pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL); if ((is_in == done) || is_ctrl) { uint32_t flags = (done) ? ESP_CACHE_MSYNC_FLAG_DIR_M2C : ESP_CACHE_MSYNC_FLAG_UNALIGNED; esp_err_t ret = esp_cache_msync(urb->transfer.data_buffer, urb->transfer.data_buffer_size, flags); assert(ret == ESP_OK); } } #endif // SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE // ------------------- Buffer Control ---------------------- /** * @brief Check if an inactive buffer can be filled with a pending URB * * @param pipe Pipe object * @return true There are one or more pending URBs, and the inactive buffer is yet to be filled * @return false Otherwise */ static inline bool _buffer_can_fill(pipe_t *pipe) { // We can only fill if there are pending URBs and at least one unfilled buffer if (pipe->num_urb_pending > 0 && pipe->multi_buffer_control.buffer_num_to_fill > 0) { return true; } else { return false; } } /** * @brief Fill an empty buffer with * * This function will: * - Remove an URB from the pending tailq * - Fill that URB into the inactive buffer * * @note _buffer_can_fill() must return true before calling this function * * @param pipe Pipe object */ static void _buffer_fill(pipe_t *pipe); /** * @brief Check if there are more filled buffers than can be executed * * @param pipe Pipe object * @return true There are more filled buffers to be executed * @return false No more buffers to execute */ static inline bool _buffer_can_exec(pipe_t *pipe) { // We can only execute if there is not already a buffer executing and if there are filled buffers awaiting execution if (!pipe->multi_buffer_control.buffer_is_executing && pipe->multi_buffer_control.buffer_num_to_exec > 0) { return true; } else { return false; } } /** * @brief Execute the next filled buffer * * - Must have called _buffer_can_exec() before calling this function * - Will start the execution of the buffer * * @param pipe Pipe object */ static void _buffer_exec(pipe_t *pipe); /** * @brief Check if a buffer as completed execution * * This should only be called after receiving a USB_DWC_HAL_CHAN_EVENT_CPLT event to check if a buffer is actually * done. * * @param pipe Pipe object * @return true Buffer complete * @return false Buffer not complete */ static inline bool _buffer_check_done(pipe_t *pipe) { if (pipe->ep_char.type != USB_DWC_XFER_TYPE_CTRL) { return true; } // Only control transfers need to be continued dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx]; return (buffer_inflight->flags.ctrl.cur_stg == 2); } /** * @brief Continue execution of a buffer * * This should only be called after checking if a buffer has completed execution using _buffer_check_done() * * @param pipe Pipe object */ static void _buffer_exec_cont(pipe_t *pipe); /** * @brief Marks the last executed buffer as complete * * This should be called on a pipe that has confirmed that a buffer is completed via _buffer_check_done() * * @param pipe Pipe object * @param stop_idx Descriptor index when the buffer stopped execution * @param pipe_event Pipe event that caused the buffer to be complete. Use HCD_PIPE_EVENT_NONE for halt request of disconnections * @param canceled Whether the buffer was done due to a canceled (i.e., halt request). Must set pipe_event to HCD_PIPE_EVENT_NONE */ static inline void _buffer_done(pipe_t *pipe, int stop_idx, hcd_pipe_event_t pipe_event, bool canceled) { // Store the stop_idx and pipe_event for later parsing dma_buffer_block_t *buffer_done = pipe->buffers[pipe->multi_buffer_control.rd_idx]; buffer_done->status_flags.executing = 0; buffer_done->status_flags.was_canceled = canceled; buffer_done->status_flags.stop_idx = stop_idx; buffer_done->status_flags.pipe_event = pipe_event; pipe->multi_buffer_control.rd_idx++; pipe->multi_buffer_control.buffer_num_to_exec--; pipe->multi_buffer_control.buffer_num_to_parse++; pipe->multi_buffer_control.buffer_is_executing = 0; } /** * @brief Checks if a pipe has one or more completed buffers to parse * * @param pipe Pipe object * @return true There are one or more buffers to parse * @return false There are no more buffers to parse */ static inline bool _buffer_can_parse(pipe_t *pipe) { if (pipe->multi_buffer_control.buffer_num_to_parse > 0) { return true; } else { return false; } } /** * @brief Parse a completed buffer * * This function will: * - Parse the results of an URB from a completed buffer * - Put the URB into the done tailq * * @note This function should only be called on the completion of a buffer * * @param pipe Pipe object * @param stop_idx (For INTR pipes only) The index of the descriptor that follows the last descriptor of the URB. Set to 0 otherwise */ static void _buffer_parse(pipe_t *pipe); /** * @brief Marks all buffers pending execution as completed, then parses those buffers * * @note This should only be called on pipes do not have any currently executing buffers. * * @param pipe Pipe object * @param canceled Whether this flush is due to cancellation * @return true One or more buffers were flushed * @return false There were no buffers that needed to be flushed */ static bool _buffer_flush_all(pipe_t *pipe, bool canceled); // ------------------------ Pipe --------------------------- /** * @brief Decode a HAL channel error to the corresponding pipe event * * @param chan_error The HAL channel error * @return hcd_pipe_event_t The corresponding pipe error event */ static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error); /** * @brief Halt a pipe * * - Attempts to halt a pipe. Pipe must be active in order to be halted * - If the underlying channel has an ongoing transfer, a halt will be requested, then the function will block until the * channel indicates it is halted * - If the channel is no on-going transfer, the pipe will simply be marked has halted (thus preventing any further URBs * from being enqueued) * * @note This function can block * @param pipe Pipe object * @return esp_err_t */ static esp_err_t _pipe_cmd_halt(pipe_t *pipe); /** * @brief Flush a pipe * * - Flushing a pipe causes all of its pending URBs to be become done, thus allowing them to be dequeued * - The pipe must be halted in order to be flushed * - The pipe callback will be run if one or more URBs become done * * @param pipe Pipe object * @return esp_err_t */ static esp_err_t _pipe_cmd_flush(pipe_t *pipe); /** * @brief Clear a pipe from its halt * * - Pipe must be halted in order to be cleared * - Clearing a pipe makes it active again * - If there are any enqueued URBs, they will executed * * @param pipe Pipe object * @return esp_err_t */ static esp_err_t _pipe_cmd_clear(pipe_t *pipe); // ------------------------ Port --------------------------- /** * @brief Checks if all pipes are in the halted state * * @param port Port object * @return true All pipes are halted * @return false Not all pipes are halted */ static bool _port_check_all_pipes_halted(port_t *port); /** * @brief Debounce port after a connection or disconnection event * * This function should be called after a port connection or disconnect event. This function will execute a debounce * delay then check the actual connection/disconnections state. * * @note This function can block * @param port Port object * @return true A device is connected * @return false No device connected */ static bool _port_debounce(port_t *port); /** * @brief Power ON the port * * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_power_on(port_t *port); /** * @brief Power OFF the port * * - If a device is currently connected, this function will cause a disconnect event * * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_power_off(port_t *port); /** * @brief Reset the port * * - This function issues a reset signal using the timings specified by the USB2.0 spec * * @note This function can block * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_reset(port_t *port); /** * @brief Suspend the port * * - Port must be enabled in order to to be suspended * - All pipes must be halted for the port to be suspended * - Suspending the port stops Keep Alive/SOF from being sent to the connected device * * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_bus_suspend(port_t *port); /** * @brief Resume the port * * - Port must be suspended in order to be resumed * * @note This function can block * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_bus_resume(port_t *port); /** * @brief Disable the port * * - All pipes must be halted for the port to be disabled * - The port must be enabled or suspended in order to be disabled * * @note This function can block * @param port Port object * @return esp_err_t */ static esp_err_t _port_cmd_disable(port_t *port); // ----------------------- Events -------------------------- /** * @brief Wait for an internal event from a port * * @note For each port, there can only be one thread/task waiting for an internal port event * @note This function is blocking (will exit and re-enter the critical section to do so) * * @param port Port object */ static void _internal_port_event_wait(port_t *port); /** * @brief Notify (from an ISR context) the thread/task waiting for the internal port event * * @param port Port object * @return true A yield is required * @return false Whether a yield is required or not */ static bool _internal_port_event_notify_from_isr(port_t *port); /** * @brief Wait for an internal event from a particular pipe * * @note For each pipe, there can only be one thread/task waiting for an internal port event * @note This function is blocking (will exit and re-enter the critical section to do so) * * @param pipe Pipe object */ static void _internal_pipe_event_wait(pipe_t *pipe); /** * @brief Notify (from an ISR context) the thread/task waiting for an internal pipe event * * @param pipe Pipe object * @param from_isr Whether this is called from an ISR or not * @return true A yield is required * @return false Whether a yield is required or not. Always false when from_isr is also false */ static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr); // ----------------------------------------------- Interrupt Handling -------------------------------------------------- // ------------------- Internal Event ---------------------- static void _internal_port_event_wait(port_t *port) { // There must NOT be another thread/task already waiting for an internal event assert(port->task_waiting_port_notif == NULL); port->task_waiting_port_notif = xTaskGetCurrentTaskHandle(); /* We need to loop as task notifications can come from anywhere. If we this was a port event notification, task_waiting_port_notif will have been cleared by the notifier. */ while (port->task_waiting_port_notif != NULL) { HCD_EXIT_CRITICAL(); // Wait to be notified from ISR ulTaskNotifyTake(pdTRUE, portMAX_DELAY); HCD_ENTER_CRITICAL(); } } static bool _internal_port_event_notify_from_isr(port_t *port) { // There must be a thread/task waiting for an internal event assert(port->task_waiting_port_notif != NULL); TaskHandle_t task_to_unblock = port->task_waiting_port_notif; // Clear task_waiting_port_notif to indicate to the waiter that the unblock was indeed an port event notification port->task_waiting_port_notif = NULL; // Unblock the thread/task waiting for the notification BaseType_t xTaskWoken = pdFALSE; // Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken); return (xTaskWoken == pdTRUE); } static void _internal_pipe_event_wait(pipe_t *pipe) { // There must NOT be another thread/task already waiting for an internal event assert(pipe->task_waiting_pipe_notif == NULL); pipe->task_waiting_pipe_notif = xTaskGetCurrentTaskHandle(); /* We need to loop as task notifications can come from anywhere. If we this was a pipe event notification, task_waiting_pipe_notif will have been cleared by the notifier. */ while (pipe->task_waiting_pipe_notif != NULL) { // Wait to be unblocked by notified HCD_EXIT_CRITICAL(); ulTaskNotifyTake(pdTRUE, portMAX_DELAY); HCD_ENTER_CRITICAL(); } } static bool _internal_pipe_event_notify(pipe_t *pipe, bool from_isr) { // There must be a thread/task waiting for an internal event assert(pipe->task_waiting_pipe_notif != NULL); TaskHandle_t task_to_unblock = pipe->task_waiting_pipe_notif; // Clear task_waiting_pipe_notif to indicate to the waiter that the unblock was indeed an pipe event notification pipe->task_waiting_pipe_notif = NULL; bool ret; if (from_isr) { BaseType_t xTaskWoken = pdFALSE; // Note: We don't exit the critical section to be atomic. vTaskNotifyGiveFromISR() doesn't block anyways // Unblock the thread/task waiting for the pipe notification vTaskNotifyGiveFromISR(task_to_unblock, &xTaskWoken); ret = (xTaskWoken == pdTRUE); } else { HCD_EXIT_CRITICAL(); xTaskNotifyGive(task_to_unblock); HCD_ENTER_CRITICAL(); ret = false; } return ret; } // ----------------- HAL <-> USB helpers -------------------- static usb_speed_t get_usb_port_speed(usb_dwc_speed_t priv) { switch (priv) { case USB_DWC_SPEED_LOW: return USB_SPEED_LOW; case USB_DWC_SPEED_FULL: return USB_SPEED_FULL; case USB_DWC_SPEED_HIGH: return USB_SPEED_HIGH; default: abort(); } } static usb_hal_fifo_bias_t get_hal_fifo_bias(hcd_port_fifo_bias_t public) { switch (public) { case HCD_PORT_FIFO_BIAS_BALANCED: return USB_HAL_FIFO_BIAS_DEFAULT; case HCD_PORT_FIFO_BIAS_RX: return USB_HAL_FIFO_BIAS_RX; case HCD_PORT_FIFO_BIAS_PTX: return USB_HAL_FIFO_BIAS_PTX; default: abort(); } } // ----------------- Interrupt Handlers -------------------- /** * @brief Handle a HAL port interrupt and obtain the corresponding port event * * @param[in] port Port object * @param[in] hal_port_event The HAL port event * @param[out] yield Set to true if a yield is required as a result of handling the interrupt * @return hcd_port_event_t Returns a port event, or HCD_PORT_EVENT_NONE if no port event occurred */ static hcd_port_event_t _intr_hdlr_hprt(port_t *port, usb_dwc_hal_port_event_t hal_port_event, bool *yield) { hcd_port_event_t port_event = HCD_PORT_EVENT_NONE; switch (hal_port_event) { case USB_DWC_HAL_PORT_EVENT_CONN: { // Don't update state immediately, we still need to debounce. port_event = HCD_PORT_EVENT_CONNECTION; break; } case USB_DWC_HAL_PORT_EVENT_DISCONN: { port->state = HCD_PORT_STATE_RECOVERY; port_event = HCD_PORT_EVENT_DISCONNECTION; port->flags.conn_dev_ena = 0; break; } case USB_DWC_HAL_PORT_EVENT_ENABLED: { usb_dwc_hal_port_enable(port->hal); // Initialize remaining host port registers port->speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal)); port->state = HCD_PORT_STATE_ENABLED; port->flags.conn_dev_ena = 1; // This was triggered by a command, so no event needs to be propagated. break; } case USB_DWC_HAL_PORT_EVENT_DISABLED: { port->flags.conn_dev_ena = 0; // Disabled could be due to a disable request or reset request, or due to a port error if (port->state != HCD_PORT_STATE_RESETTING) { // Ignore the disable event if it's due to a reset request if (port->flags.disable_requested) { // Disabled by request (i.e. by port command). Generate an internal event port->state = HCD_PORT_STATE_DISABLED; port->flags.disable_requested = 0; *yield |= _internal_port_event_notify_from_isr(port); } else { // Disabled due to a port error port->state = HCD_PORT_STATE_RECOVERY; port_event = HCD_PORT_EVENT_ERROR; } } break; } case USB_DWC_HAL_PORT_EVENT_OVRCUR: case USB_DWC_HAL_PORT_EVENT_OVRCUR_CLR: { // Could occur if a quick overcurrent then clear happens if (port->state != HCD_PORT_STATE_NOT_POWERED) { // We need to power OFF the port to protect it usb_dwc_hal_port_toggle_power(port->hal, false); port->state = HCD_PORT_STATE_RECOVERY; port_event = HCD_PORT_EVENT_OVERCURRENT; } port->flags.conn_dev_ena = 0; break; } default: { abort(); break; } } return port_event; } /** * @brief Handles a HAL channel interrupt * * This function should be called on a HAL channel when it has an interrupt. Most HAL channel events will correspond to * to a pipe event, but not always. This function will store the pipe event and return a pipe object pointer if a pipe * event occurred, or return NULL otherwise. * * @param[in] chan_obj Pointer to HAL channel object with interrupt * @param[out] yield Set to true if a yield is required as a result of handling the interrupt * @return hcd_pipe_event_t The pipe event */ static hcd_pipe_event_t _intr_hdlr_chan(pipe_t *pipe, usb_dwc_hal_chan_t *chan_obj, bool *yield) { usb_dwc_hal_chan_event_t chan_event = usb_dwc_hal_chan_decode_intr(chan_obj); hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE; switch (chan_event) { case USB_DWC_HAL_CHAN_EVENT_CPLT: { if (!_buffer_check_done(pipe)) { _buffer_exec_cont(pipe); break; } pipe->last_event = HCD_PIPE_EVENT_URB_DONE; event = pipe->last_event; // Mark the buffer as done int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj); _buffer_done(pipe, stop_idx, pipe->last_event, false); // First check if there is another buffer we can execute. But we only want to execute if there's still a valid device if (_buffer_can_exec(pipe) && pipe->port->flags.conn_dev_ena) { // If the next buffer is filled and ready to execute, execute it _buffer_exec(pipe); } // Handle the previously done buffer _buffer_parse(pipe); // Check to see if we can fill another buffer. But we only want to fill if there is still a valid device if (_buffer_can_fill(pipe) && pipe->port->flags.conn_dev_ena) { // Now that we've parsed a buffer, see if another URB can be filled in its place _buffer_fill(pipe); } break; } case USB_DWC_HAL_CHAN_EVENT_ERROR: { // Get and store the pipe error event usb_dwc_hal_chan_error_t chan_error = usb_dwc_hal_chan_get_error(chan_obj); pipe->last_event = pipe_decode_error_event(chan_error); event = pipe->last_event; pipe->state = HCD_PIPE_STATE_HALTED; // Mark the buffer as done with an error int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj); _buffer_done(pipe, stop_idx, pipe->last_event, false); // Parse the buffer _buffer_parse(pipe); break; } case USB_DWC_HAL_CHAN_EVENT_HALT_REQ: { assert(pipe->cs_flags.waiting_halt); // We've halted a transfer, so we need to trigger the pipe callback pipe->last_event = HCD_PIPE_EVENT_URB_DONE; event = pipe->last_event; // Halt request event is triggered when packet is successful completed. But just treat all halted transfers as errors pipe->state = HCD_PIPE_STATE_HALTED; int stop_idx = usb_dwc_hal_chan_get_qtd_idx(chan_obj); _buffer_done(pipe, stop_idx, HCD_PIPE_EVENT_NONE, true); // Parse the buffer _buffer_parse(pipe); // Notify the task waiting for the pipe halt *yield |= _internal_pipe_event_notify(pipe, true); break; } case USB_DWC_HAL_CHAN_EVENT_NONE: { break; // Nothing to do } default: abort(); break; } return event; } /** * @brief Main interrupt handler * * - Handle all HPRT (Host Port) related interrupts first as they may change the * state of the driver (e.g., a disconnect event) * - If any channels (pipes) have pending interrupts, handle them one by one * - The HCD has not blocking functions, so the user's ISR callback is run to * allow the users to send whatever OS primitives they need. * * @param arg Interrupt handler argument */ static void intr_hdlr_main(void *arg) { port_t *port = (port_t *) arg; bool yield = false; HCD_ENTER_CRITICAL_ISR(); usb_dwc_hal_port_event_t hal_port_evt = usb_dwc_hal_decode_intr(port->hal); if (hal_port_evt == USB_DWC_HAL_PORT_EVENT_CHAN) { // Channel event. Cycle through each pending channel usb_dwc_hal_chan_t *chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal); while (chan_obj != NULL) { pipe_t *pipe = (pipe_t *)usb_dwc_hal_chan_get_context(chan_obj); hcd_pipe_event_t event = _intr_hdlr_chan(pipe, chan_obj, &yield); // Run callback if a pipe event has occurred and the pipe also has a callback if (event != HCD_PIPE_EVENT_NONE && pipe->callback != NULL) { HCD_EXIT_CRITICAL_ISR(); yield |= pipe->callback((hcd_pipe_handle_t)pipe, event, pipe->callback_arg, true); HCD_ENTER_CRITICAL_ISR(); } // Check for more channels with pending interrupts. Returns NULL if there are no more chan_obj = usb_dwc_hal_get_chan_pending_intr(port->hal); } } else if (hal_port_evt != USB_DWC_HAL_PORT_EVENT_NONE) { // Port event hcd_port_event_t port_event = _intr_hdlr_hprt(port, hal_port_evt, &yield); if (port_event != HCD_PORT_EVENT_NONE) { port->last_event = port_event; port->flags.event_pending = 1; if (port->callback != NULL) { HCD_EXIT_CRITICAL_ISR(); yield |= port->callback((hcd_port_handle_t)port, port_event, port->callback_arg, true); HCD_ENTER_CRITICAL_ISR(); } } } HCD_EXIT_CRITICAL_ISR(); if (yield) { portYIELD_FROM_ISR(); } } // --------------------------------------------- Host Controller Driver ------------------------------------------------ static port_t *port_obj_alloc(void) { port_t *port = calloc(1, sizeof(port_t)); usb_dwc_hal_context_t *hal = malloc(sizeof(usb_dwc_hal_context_t)); void *frame_list = heap_caps_aligned_calloc(USB_DWC_FRAME_LIST_MEM_ALIGN, FRAME_LIST_LEN, sizeof(uint32_t), MALLOC_CAP_DMA | MALLOC_CAP_CACHE_ALIGNED | MALLOC_CAP_INTERNAL); SemaphoreHandle_t port_mux = xSemaphoreCreateMutex(); if (port == NULL || hal == NULL || frame_list == NULL || port_mux == NULL) { free(port); free(hal); free(frame_list); if (port_mux != NULL) { vSemaphoreDelete(port_mux); } return NULL; } port->hal = hal; port->frame_list = frame_list; port->port_mux = port_mux; return port; } static void port_obj_free(port_t *port) { if (port == NULL) { return; } vSemaphoreDelete(port->port_mux); free(port->frame_list); free(port->hal); free(port); } // ----------------------- Public -------------------------- esp_err_t hcd_install(const hcd_config_t *config) { HCD_ENTER_CRITICAL(); HCD_CHECK_FROM_CRIT(s_hcd_obj == NULL, ESP_ERR_INVALID_STATE); HCD_EXIT_CRITICAL(); esp_err_t err_ret; // Allocate memory for the driver object hcd_obj_t *p_hcd_obj_dmy = calloc(1, sizeof(hcd_obj_t)); if (p_hcd_obj_dmy == NULL) { return ESP_ERR_NO_MEM; } // Allocate each port object (the hardware currently only has one port) p_hcd_obj_dmy->port_obj = port_obj_alloc(); if (p_hcd_obj_dmy->port_obj == NULL) { err_ret = ESP_ERR_NO_MEM; goto port_alloc_err; } // Allocate interrupt err_ret = esp_intr_alloc(USB_INTR, config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, // The interrupt must be disabled until the port is initialized intr_hdlr_main, (void *)p_hcd_obj_dmy->port_obj, &p_hcd_obj_dmy->isr_hdl); if (err_ret != ESP_OK) { goto intr_alloc_err; } HCD_ENTER_CRITICAL(); if (s_hcd_obj != NULL) { HCD_EXIT_CRITICAL(); err_ret = ESP_ERR_INVALID_STATE; goto assign_err; } s_hcd_obj = p_hcd_obj_dmy; HCD_EXIT_CRITICAL(); return ESP_OK; assign_err: esp_intr_free(p_hcd_obj_dmy->isr_hdl); intr_alloc_err: port_obj_free(p_hcd_obj_dmy->port_obj); port_alloc_err: free(p_hcd_obj_dmy); return err_ret; } esp_err_t hcd_uninstall(void) { HCD_ENTER_CRITICAL(); // Check that all ports have been disabled (there's only one port) if (s_hcd_obj == NULL || s_hcd_obj->port_obj->initialized) { HCD_EXIT_CRITICAL(); return ESP_ERR_INVALID_STATE; } hcd_obj_t *p_hcd_obj_dmy = s_hcd_obj; s_hcd_obj = NULL; HCD_EXIT_CRITICAL(); // Free resources port_obj_free(p_hcd_obj_dmy->port_obj); esp_intr_free(p_hcd_obj_dmy->isr_hdl); free(p_hcd_obj_dmy); return ESP_OK; } // ------------------------------------------------------ Port --------------------------------------------------------- // ----------------------- Helpers ------------------------- static bool _port_check_all_pipes_halted(port_t *port) { bool all_halted = true; pipe_t *pipe; TAILQ_FOREACH(pipe, &port->pipes_active_tailq, tailq_entry) { if (pipe->state != HCD_PIPE_STATE_HALTED) { all_halted = false; break; } } TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) { if (pipe->state != HCD_PIPE_STATE_HALTED) { all_halted = false; break; } } return all_halted; } static bool _port_debounce(port_t *port) { if (port->state == HCD_PORT_STATE_NOT_POWERED) { // Disconnect event due to power off, no need to debounce or update port state. return false; } HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(DEBOUNCE_DELAY_MS)); HCD_ENTER_CRITICAL(); // Check the post-debounce state of the bus (i.e., whether it's actually connected/disconnected) bool is_connected = usb_dwc_hal_port_check_if_connected(port->hal); if (is_connected) { port->state = HCD_PORT_STATE_DISABLED; } else { port->state = HCD_PORT_STATE_DISCONNECTED; } // Disable debounce lock usb_dwc_hal_disable_debounce_lock(port->hal); return is_connected; } // ---------------------- Commands ------------------------- static esp_err_t _port_cmd_power_on(port_t *port) { esp_err_t ret; // Port can only be powered on if it's currently unpowered if (port->state == HCD_PORT_STATE_NOT_POWERED) { port->state = HCD_PORT_STATE_DISCONNECTED; usb_dwc_hal_port_init(port->hal); usb_dwc_hal_port_toggle_power(port->hal, true); ret = ESP_OK; } else { ret = ESP_ERR_INVALID_STATE; } return ret; } static esp_err_t _port_cmd_power_off(port_t *port) { esp_err_t ret; // Port can only be unpowered if already powered if (port->state != HCD_PORT_STATE_NOT_POWERED) { port->state = HCD_PORT_STATE_NOT_POWERED; usb_dwc_hal_port_deinit(port->hal); usb_dwc_hal_port_toggle_power(port->hal, false); // If a device is currently connected, this should trigger a disconnect event ret = ESP_OK; } else { ret = ESP_ERR_INVALID_STATE; } return ret; } static esp_err_t _port_cmd_reset(port_t *port) { esp_err_t ret; // Port can only a reset when it is in the enabled or disabled (in the case of a new connection)states. if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_DISABLED) { ret = ESP_ERR_INVALID_STATE; goto exit; } // Port can only be reset if all pipes are idle if (port->num_pipes_queued > 0) { ret = ESP_ERR_INVALID_STATE; goto exit; } /* Proceed to resetting the bus - Update the port's state variable - Hold the bus in the reset state for RESET_HOLD_MS. - Return the bus to the idle state for RESET_RECOVERY_MS */ port->state = HCD_PORT_STATE_RESETTING; // Place the bus into the reset state. If the port was previously enabled, a disabled event will occur after this usb_dwc_hal_port_toggle_reset(port->hal, true); HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(RESET_HOLD_MS)); HCD_ENTER_CRITICAL(); if (port->state != HCD_PORT_STATE_RESETTING) { // The port state has unexpectedly changed ret = ESP_ERR_INVALID_RESPONSE; goto bailout; } // Return the bus to the idle state. Port enabled event should occur usb_dwc_hal_port_toggle_reset(port->hal, false); HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(RESET_RECOVERY_MS)); HCD_ENTER_CRITICAL(); if (port->state != HCD_PORT_STATE_ENABLED || !port->flags.conn_dev_ena) { // The port state has unexpectedly changed ret = ESP_ERR_INVALID_RESPONSE; goto bailout; } // Reinitialize port registers. usb_dwc_hal_set_fifo_bias(port->hal, port->fifo_bias); // Set FIFO biases usb_dwc_hal_port_set_frame_list(port->hal, port->frame_list, FRAME_LIST_LEN); // Set periodic frame list usb_dwc_hal_port_periodic_enable(port->hal); // Enable periodic scheduling ret = ESP_OK; bailout: // Reinitialize channel registers (void) 0; // clang doesn't allow variable declarations after labels pipe_t *pipe; TAILQ_FOREACH(pipe, &port->pipes_idle_tailq, tailq_entry) { usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char); } CACHE_SYNC_FRAME_LIST(port->frame_list); exit: return ret; } static esp_err_t _port_cmd_bus_suspend(port_t *port) { esp_err_t ret; // Port must have been previously enabled, and all pipes must already be halted if (port->state == HCD_PORT_STATE_ENABLED && !_port_check_all_pipes_halted(port)) { ret = ESP_ERR_INVALID_STATE; goto exit; } // All pipes are guaranteed halted at this point. Proceed to suspend the port usb_dwc_hal_port_suspend(port->hal); port->state = HCD_PORT_STATE_SUSPENDED; ret = ESP_OK; exit: return ret; } static esp_err_t _port_cmd_bus_resume(port_t *port) { esp_err_t ret; // Port can only be resumed if it was previously suspended if (port->state != HCD_PORT_STATE_SUSPENDED) { ret = ESP_ERR_INVALID_STATE; goto exit; } // Put and hold the bus in the K state. usb_dwc_hal_port_toggle_resume(port->hal, true); port->state = HCD_PORT_STATE_RESUMING; HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(RESUME_HOLD_MS)); HCD_ENTER_CRITICAL(); // Return and hold the bus to the J state (as port of the LS EOP) usb_dwc_hal_port_toggle_resume(port->hal, false); if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) { // Port state unexpectedly changed ret = ESP_ERR_INVALID_RESPONSE; goto exit; } HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(RESUME_RECOVERY_MS)); HCD_ENTER_CRITICAL(); if (port->state != HCD_PORT_STATE_RESUMING || !port->flags.conn_dev_ena) { // Port state unexpectedly changed ret = ESP_ERR_INVALID_RESPONSE; goto exit; } port->state = HCD_PORT_STATE_ENABLED; ret = ESP_OK; exit: return ret; } static esp_err_t _port_cmd_disable(port_t *port) { esp_err_t ret; if (port->state != HCD_PORT_STATE_ENABLED && port->state != HCD_PORT_STATE_SUSPENDED) { ret = ESP_ERR_INVALID_STATE; goto exit; } // All pipes must be halted before disabling the port if (!_port_check_all_pipes_halted(port)) { ret = ESP_ERR_INVALID_STATE; goto exit; } // All pipes are guaranteed to be halted or freed at this point. Proceed to disable the port port->flags.disable_requested = 1; usb_dwc_hal_port_disable(port->hal); _internal_port_event_wait(port); if (port->state != HCD_PORT_STATE_DISABLED) { // Port state unexpectedly changed ret = ESP_ERR_INVALID_RESPONSE; goto exit; } ret = ESP_OK; exit: return ret; } // ----------------------- Public -------------------------- esp_err_t hcd_port_init(int port_number, const hcd_port_config_t *port_config, hcd_port_handle_t *port_hdl) { HCD_CHECK(port_number > 0 && port_config != NULL && port_hdl != NULL, ESP_ERR_INVALID_ARG); HCD_CHECK(port_number <= NUM_PORTS, ESP_ERR_NOT_FOUND); HCD_ENTER_CRITICAL(); HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && !s_hcd_obj->port_obj->initialized, ESP_ERR_INVALID_STATE); // Port object memory and resources (such as the mutex) already be allocated. Just need to initialize necessary fields only port_t *port_obj = s_hcd_obj->port_obj; TAILQ_INIT(&port_obj->pipes_idle_tailq); TAILQ_INIT(&port_obj->pipes_active_tailq); port_obj->state = HCD_PORT_STATE_NOT_POWERED; port_obj->last_event = HCD_PORT_EVENT_NONE; port_obj->fifo_bias = get_hal_fifo_bias(port_config->fifo_bias); port_obj->callback = port_config->callback; port_obj->callback_arg = port_config->callback_arg; port_obj->context = port_config->context; usb_dwc_hal_init(port_obj->hal); port_obj->initialized = true; // Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset memset(port_obj->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t)); esp_intr_enable(s_hcd_obj->isr_hdl); *port_hdl = (hcd_port_handle_t)port_obj; HCD_EXIT_CRITICAL(); vTaskDelay(pdMS_TO_TICKS(INIT_DELAY_MS)); // Need a short delay before host mode takes effect return ESP_OK; } esp_err_t hcd_port_deinit(hcd_port_handle_t port_hdl) { port_t *port = (port_t *)port_hdl; HCD_ENTER_CRITICAL(); HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->num_pipes_idle == 0 && port->num_pipes_queued == 0 && (port->state == HCD_PORT_STATE_NOT_POWERED || port->state == HCD_PORT_STATE_RECOVERY) && port->task_waiting_port_notif == NULL, ESP_ERR_INVALID_STATE); port->initialized = false; esp_intr_disable(s_hcd_obj->isr_hdl); usb_dwc_hal_deinit(port->hal); HCD_EXIT_CRITICAL(); return ESP_OK; } esp_err_t hcd_port_command(hcd_port_handle_t port_hdl, hcd_port_cmd_t command) { esp_err_t ret = ESP_ERR_INVALID_STATE; port_t *port = (port_t *)port_hdl; xSemaphoreTake(port->port_mux, portMAX_DELAY); HCD_ENTER_CRITICAL(); if (port->initialized && !port->flags.event_pending) { // Port events need to be handled first before issuing a command port->flags.cmd_processing = 1; switch (command) { case HCD_PORT_CMD_POWER_ON: { ret = _port_cmd_power_on(port); break; } case HCD_PORT_CMD_POWER_OFF: { ret = _port_cmd_power_off(port); break; } case HCD_PORT_CMD_RESET: { ret = _port_cmd_reset(port); break; } case HCD_PORT_CMD_SUSPEND: { ret = _port_cmd_bus_suspend(port); break; } case HCD_PORT_CMD_RESUME: { ret = _port_cmd_bus_resume(port); break; } case HCD_PORT_CMD_DISABLE: { ret = _port_cmd_disable(port); break; } } port->flags.cmd_processing = 0; } HCD_EXIT_CRITICAL(); xSemaphoreGive(port->port_mux); return ret; } hcd_port_state_t hcd_port_get_state(hcd_port_handle_t port_hdl) { port_t *port = (port_t *)port_hdl; hcd_port_state_t ret; HCD_ENTER_CRITICAL(); ret = port->state; HCD_EXIT_CRITICAL(); return ret; } esp_err_t hcd_port_get_speed(hcd_port_handle_t port_hdl, usb_speed_t *speed) { port_t *port = (port_t *)port_hdl; HCD_CHECK(speed != NULL, ESP_ERR_INVALID_ARG); HCD_ENTER_CRITICAL(); // Device speed is only valid if there is device connected to the port that has been reset HCD_CHECK_FROM_CRIT(port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE); *speed = get_usb_port_speed(usb_dwc_hal_port_get_conn_speed(port->hal)); HCD_EXIT_CRITICAL(); return ESP_OK; } hcd_port_event_t hcd_port_handle_event(hcd_port_handle_t port_hdl) { port_t *port = (port_t *)port_hdl; hcd_port_event_t ret = HCD_PORT_EVENT_NONE; xSemaphoreTake(port->port_mux, portMAX_DELAY); HCD_ENTER_CRITICAL(); if (port->initialized && port->flags.event_pending) { port->flags.event_pending = 0; port->flags.event_processing = 1; ret = port->last_event; switch (ret) { case HCD_PORT_EVENT_CONNECTION: { if (_port_debounce(port)) { ret = HCD_PORT_EVENT_CONNECTION; } break; } case HCD_PORT_EVENT_DISCONNECTION: case HCD_PORT_EVENT_ERROR: case HCD_PORT_EVENT_OVERCURRENT: { break; } default: { break; } } port->flags.event_processing = 0; } else { ret = HCD_PORT_EVENT_NONE; } HCD_EXIT_CRITICAL(); xSemaphoreGive(port->port_mux); return ret; } esp_err_t hcd_port_recover(hcd_port_handle_t port_hdl) { port_t *port = (port_t *)port_hdl; HCD_ENTER_CRITICAL(); HCD_CHECK_FROM_CRIT(s_hcd_obj != NULL && port->initialized && port->state == HCD_PORT_STATE_RECOVERY && port->num_pipes_idle == 0 && port->num_pipes_queued == 0 && port->flags.val == 0 && port->task_waiting_port_notif == NULL, ESP_ERR_INVALID_STATE); // We are about to do a soft reset on the peripheral. Disable the peripheral throughout esp_intr_disable(s_hcd_obj->isr_hdl); usb_dwc_hal_core_soft_reset(port->hal); port->state = HCD_PORT_STATE_NOT_POWERED; port->last_event = HCD_PORT_EVENT_NONE; port->flags.val = 0; // Soft reset wipes all registers so we need to reinitialize the HAL usb_dwc_hal_init(port->hal); // Clear the frame list. We set the frame list register and enable periodic scheduling after a successful reset memset(port->frame_list, 0, FRAME_LIST_LEN * sizeof(uint32_t)); esp_intr_enable(s_hcd_obj->isr_hdl); HCD_EXIT_CRITICAL(); return ESP_OK; } void *hcd_port_get_context(hcd_port_handle_t port_hdl) { port_t *port = (port_t *)port_hdl; void *ret; HCD_ENTER_CRITICAL(); ret = port->context; HCD_EXIT_CRITICAL(); return ret; } esp_err_t hcd_port_set_fifo_bias(hcd_port_handle_t port_hdl, hcd_port_fifo_bias_t bias) { esp_err_t ret; usb_hal_fifo_bias_t hal_bias = get_hal_fifo_bias(bias); // Configure the new FIFO sizes and store the pointers port_t *port = (port_t *)port_hdl; xSemaphoreTake(port->port_mux, portMAX_DELAY); HCD_ENTER_CRITICAL(); // Check that port is in the correct state to update FIFO sizes if (port->initialized && !port->flags.event_pending && port->num_pipes_idle == 0 && port->num_pipes_queued == 0) { usb_dwc_hal_set_fifo_bias(port->hal, hal_bias); port->fifo_bias = hal_bias; ret = ESP_OK; } else { ret = ESP_ERR_INVALID_STATE; } HCD_EXIT_CRITICAL(); xSemaphoreGive(port->port_mux); return ret; } // --------------------------------------------------- HCD Pipes ------------------------------------------------------- // ----------------------- Private ------------------------- static inline hcd_pipe_event_t pipe_decode_error_event(usb_dwc_hal_chan_error_t chan_error) { hcd_pipe_event_t event = HCD_PIPE_EVENT_NONE; switch (chan_error) { case USB_DWC_HAL_CHAN_ERROR_XCS_XACT: event = HCD_PIPE_EVENT_ERROR_XFER; break; case USB_DWC_HAL_CHAN_ERROR_BNA: event = HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL; break; case USB_DWC_HAL_CHAN_ERROR_PKT_BBL: event = HCD_PIPE_EVENT_ERROR_OVERFLOW; break; case USB_DWC_HAL_CHAN_ERROR_STALL: event = HCD_PIPE_EVENT_ERROR_STALL; break; } return event; } static dma_buffer_block_t *buffer_block_alloc(usb_transfer_type_t type) { int desc_list_len; switch (type) { case USB_TRANSFER_TYPE_CTRL: desc_list_len = XFER_LIST_LEN_CTRL; break; case USB_TRANSFER_TYPE_ISOCHRONOUS: desc_list_len = XFER_LIST_LEN_ISOC; break; case USB_TRANSFER_TYPE_BULK: desc_list_len = XFER_LIST_LEN_BULK; break; default: // USB_TRANSFER_TYPE_INTR: desc_list_len = XFER_LIST_LEN_INTR; break; } // DMA buffer lock: Software structure for managing the transfer buffer dma_buffer_block_t *buffer = calloc(1, sizeof(dma_buffer_block_t)); if (buffer == NULL) { return NULL; } // Transfer descriptor list: Must be 512 aligned and DMA capable (USB-DWC requirement) and its size must be cache aligned void *xfer_desc_list = heap_caps_aligned_calloc(USB_DWC_QTD_LIST_MEM_ALIGN, desc_list_len * sizeof(usb_dwc_ll_dma_qtd_t), 1, MALLOC_CAP_DMA | MALLOC_CAP_CACHE_ALIGNED | MALLOC_CAP_INTERNAL); if (xfer_desc_list == NULL) { free(buffer); heap_caps_free(xfer_desc_list); return NULL; } buffer->xfer_desc_list = xfer_desc_list; // For targets with L1CACHE, the allocated size might be bigger than requested, this value is than used during memory sync // We save this value here, so we don't have to call 'heap_caps_get_allocated_size()' during every memory sync buffer->xfer_desc_list_len_bytes = heap_caps_get_allocated_size(xfer_desc_list); return buffer; } static void buffer_block_free(dma_buffer_block_t *buffer) { if (buffer == NULL) { return; } heap_caps_free(buffer->xfer_desc_list); free(buffer); } static bool pipe_args_usb_compliance_verification(const hcd_pipe_config_t *pipe_config, usb_speed_t port_speed, usb_transfer_type_t type) { // Check if pipe can be supported if (port_speed == USB_SPEED_LOW && pipe_config->dev_speed == USB_SPEED_FULL) { ESP_LOGE(HCD_DWC_TAG, "Low speed port does not support full speed pipe"); return false; } if (pipe_config->dev_speed == USB_SPEED_LOW && (type == USB_TRANSFER_TYPE_BULK || type == USB_TRANSFER_TYPE_ISOCHRONOUS)) { ESP_LOGE(HCD_DWC_TAG, "Low speed does not support Bulk or Isochronous pipes"); return false; } return true; } static bool pipe_alloc_hcd_support_verification(usb_dwc_hal_context_t *hal, const usb_ep_desc_t * ep_desc) { assert(hal != NULL); assert(ep_desc != NULL); usb_hal_fifo_mps_limits_t mps_limits = {0}; usb_dwc_hal_get_mps_limits(hal, &mps_limits); const usb_transfer_type_t type = USB_EP_DESC_GET_XFERTYPE(ep_desc); // Check the pipe's interval is not zero if ((type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) && (ep_desc->bInterval == 0)) { ESP_LOGE(HCD_DWC_TAG, "bInterval value (%d) invalid for pipe type INTR/ISOC", ep_desc->bInterval); return false; } // Check if pipe MPS exceeds HCD MPS limits (due to DWC FIFO sizing) int limit; if (USB_EP_DESC_GET_EP_DIR(ep_desc)) { // IN limit = mps_limits.in_mps; } else { // OUT if (type == USB_TRANSFER_TYPE_CTRL || type == USB_TRANSFER_TYPE_BULK) { limit = mps_limits.non_periodic_out_mps; } else { limit = mps_limits.periodic_out_mps; } } if (USB_EP_DESC_GET_MPS(ep_desc) > limit) { ESP_LOGE(HCD_DWC_TAG, "EP MPS (%d) exceeds supported limit (%d)", USB_EP_DESC_GET_MPS(ep_desc), limit); return false; } return true; } static void pipe_set_ep_char(const hcd_pipe_config_t *pipe_config, usb_transfer_type_t type, bool is_default_pipe, int pipe_idx, usb_speed_t port_speed, usb_dwc_hal_ep_char_t *ep_char) { // Initialize EP characteristics usb_dwc_xfer_type_t hal_xfer_type; switch (type) { case USB_TRANSFER_TYPE_CTRL: hal_xfer_type = USB_DWC_XFER_TYPE_CTRL; break; case USB_TRANSFER_TYPE_ISOCHRONOUS: hal_xfer_type = USB_DWC_XFER_TYPE_ISOCHRONOUS; break; case USB_TRANSFER_TYPE_BULK: hal_xfer_type = USB_DWC_XFER_TYPE_BULK; break; default: // USB_TRANSFER_TYPE_INTR hal_xfer_type = USB_DWC_XFER_TYPE_INTR; break; } ep_char->type = hal_xfer_type; if (is_default_pipe) { ep_char->bEndpointAddress = 0; // Set the default pipe's MPS to the worst case MPS for the device's speed ep_char->mps = (pipe_config->dev_speed == USB_SPEED_LOW) ? CTRL_EP_MAX_MPS_LS : CTRL_EP_MAX_MPS_HSFS; } else { ep_char->bEndpointAddress = pipe_config->ep_desc->bEndpointAddress; ep_char->mps = USB_EP_DESC_GET_MPS(pipe_config->ep_desc); } ep_char->dev_addr = pipe_config->dev_addr; ep_char->ls_via_fs_hub = (port_speed == USB_SPEED_FULL && pipe_config->dev_speed == USB_SPEED_LOW); // Calculate the pipe's interval in terms of USB frames // @see USB-OTG programming guide chapter 6.5 for more information if (type == USB_TRANSFER_TYPE_INTR || type == USB_TRANSFER_TYPE_ISOCHRONOUS) { // Convert bInterval field to real value // @see USB 2.0 specs, Table 9-13 unsigned int interval_value; if (type == USB_TRANSFER_TYPE_INTR && pipe_config->dev_speed != USB_SPEED_HIGH) { interval_value = pipe_config->ep_desc->bInterval; } else { interval_value = (1 << (pipe_config->ep_desc->bInterval - 1)); } ep_char->periodic.interval = interval_value; // We are the Nth pipe to be allocated. Use N as a phase offset unsigned int xfer_list_len = (type == USB_TRANSFER_TYPE_INTR) ? XFER_LIST_LEN_INTR : XFER_LIST_LEN_ISOC; ep_char->periodic.offset = (pipe_idx % xfer_list_len) % interval_value; ep_char->periodic.is_hs = (pipe_config->dev_speed == USB_SPEED_HIGH); } else { ep_char->periodic.interval = 0; ep_char->periodic.offset = 0; } } // ---------------------- Commands ------------------------- static esp_err_t _pipe_cmd_halt(pipe_t *pipe) { esp_err_t ret; // If pipe is already halted, just return. if (pipe->state == HCD_PIPE_STATE_HALTED) { ret = ESP_OK; goto exit; } // If the pipe's port is invalid, we just mark the pipe as halted without needing to halt the underlying channel if (pipe->port->flags.conn_dev_ena // Skip halting the underlying channel if the port is invalid && !usb_dwc_hal_chan_request_halt(pipe->chan_obj)) { // Check if the channel is already halted // Channel is not halted, we need to request and wait for a haltWe need to wait for channel to be halted. pipe->cs_flags.waiting_halt = 1; _internal_pipe_event_wait(pipe); // State should have been updated in the ISR assert(pipe->state == HCD_PIPE_STATE_HALTED); } else { // We are already halted, just need to update the state usb_dwc_hal_chan_mark_halted(pipe->chan_obj); pipe->state = HCD_PIPE_STATE_HALTED; } ret = ESP_OK; exit: return ret; } static esp_err_t _pipe_cmd_flush(pipe_t *pipe) { esp_err_t ret; // The pipe must be halted in order to be flushed if (pipe->state != HCD_PIPE_STATE_HALTED) { ret = ESP_ERR_INVALID_STATE; goto exit; } // If the port is still valid, we are canceling transfers. Otherwise, we are flushing due to a port error bool canceled = pipe->port->flags.conn_dev_ena; bool call_pipe_cb; // Flush any filled buffers call_pipe_cb = _buffer_flush_all(pipe, canceled); // Move all URBs from the pending tailq to the done tailq if (pipe->num_urb_pending > 0) { // Process all remaining pending URBs urb_t *urb; TAILQ_FOREACH(urb, &pipe->pending_urb_tailq, tailq_entry) { // Update the URB's current state urb->hcd_var = URB_HCD_STATE_DONE; // URBs were never executed, Update the actual_num_bytes and status urb->transfer.actual_num_bytes = 0; urb->transfer.status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE; if (pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) { // Update the URB's isoc packet descriptors as well for (int pkt_idx = 0; pkt_idx < urb->transfer.num_isoc_packets; pkt_idx++) { urb->transfer.isoc_packet_desc[pkt_idx].actual_num_bytes = 0; urb->transfer.isoc_packet_desc[pkt_idx].status = (canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE; } } } // Concatenated pending tailq to the done tailq TAILQ_CONCAT(&pipe->done_urb_tailq, &pipe->pending_urb_tailq, tailq_entry); pipe->num_urb_done += pipe->num_urb_pending; pipe->num_urb_pending = 0; call_pipe_cb = true; } if (call_pipe_cb) { // One or more URBs can be dequeued as a result of the flush. We need to call the callback HCD_EXIT_CRITICAL(); pipe->callback((hcd_pipe_handle_t)pipe, HCD_PIPE_EVENT_URB_DONE, pipe->callback_arg, false); HCD_ENTER_CRITICAL(); } ret = ESP_OK; exit: return ret; } static esp_err_t _pipe_cmd_clear(pipe_t *pipe) { esp_err_t ret; // Pipe must be in the halted state in order to be made active, and there must be an enabled device on the port if (pipe->state != HCD_PIPE_STATE_HALTED || !pipe->port->flags.conn_dev_ena) { ret = ESP_ERR_INVALID_STATE; goto exit; } // Update the pipe's state pipe->state = HCD_PIPE_STATE_ACTIVE; if (pipe->num_urb_pending > 0) { // Fill as many buffers as possible while (_buffer_can_fill(pipe)) { _buffer_fill(pipe); } } // Execute any filled buffers if (_buffer_can_exec(pipe)) { _buffer_exec(pipe); } ret = ESP_OK; exit: return ret; } // ----------------------- Public -------------------------- esp_err_t hcd_pipe_alloc(hcd_port_handle_t port_hdl, const hcd_pipe_config_t *pipe_config, hcd_pipe_handle_t *pipe_hdl) { HCD_CHECK(port_hdl != NULL && pipe_config != NULL && pipe_hdl != NULL, ESP_ERR_INVALID_ARG); port_t *port = (port_t *)port_hdl; HCD_ENTER_CRITICAL(); // Can only allocate a pipe if the target port is initialized and connected to an enabled device HCD_CHECK_FROM_CRIT(port->initialized && port->flags.conn_dev_ena, ESP_ERR_INVALID_STATE); usb_speed_t port_speed = port->speed; int pipe_idx = port->num_pipes_idle + port->num_pipes_queued; HCD_EXIT_CRITICAL(); usb_transfer_type_t type; bool is_default; if (pipe_config->ep_desc == NULL) { // Default CTRL pipe allocation type = USB_TRANSFER_TYPE_CTRL; is_default = true; } else { type = USB_EP_DESC_GET_XFERTYPE(pipe_config->ep_desc); is_default = false; } esp_err_t ret; // Check if pipe configuration can be supported if (!pipe_args_usb_compliance_verification(pipe_config, port_speed, type)) { return ESP_ERR_NOT_SUPPORTED; } // Default pipes have a NULL ep_desc thus should skip the HCD support verification if (!is_default && !pipe_alloc_hcd_support_verification(port->hal, pipe_config->ep_desc)) { return ESP_ERR_NOT_SUPPORTED; } // Allocate the pipe resources pipe_t *pipe = calloc(1, sizeof(pipe_t)); usb_dwc_hal_chan_t *chan_obj = calloc(1, sizeof(usb_dwc_hal_chan_t)); dma_buffer_block_t *buffers[NUM_BUFFERS] = {0}; if (pipe == NULL || chan_obj == NULL) { ret = ESP_ERR_NO_MEM; goto err; } for (int i = 0; i < NUM_BUFFERS; i++) { buffers[i] = buffer_block_alloc(type); if (buffers[i] == NULL) { ret = ESP_ERR_NO_MEM; goto err; } } // Initialize pipe object TAILQ_INIT(&pipe->pending_urb_tailq); TAILQ_INIT(&pipe->done_urb_tailq); for (int i = 0; i < NUM_BUFFERS; i++) { pipe->buffers[i] = buffers[i]; } pipe->multi_buffer_control.buffer_num_to_fill = NUM_BUFFERS; pipe->port = port; pipe->chan_obj = chan_obj; usb_dwc_hal_ep_char_t ep_char; pipe_set_ep_char(pipe_config, type, is_default, pipe_idx, port_speed, &ep_char); memcpy(&pipe->ep_char, &ep_char, sizeof(usb_dwc_hal_ep_char_t)); pipe->state = HCD_PIPE_STATE_ACTIVE; pipe->callback = pipe_config->callback; pipe->callback_arg = pipe_config->callback_arg; pipe->context = pipe_config->context; // Allocate channel HCD_ENTER_CRITICAL(); if (!port->initialized || !port->flags.conn_dev_ena) { HCD_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto err; } bool chan_allocated = usb_dwc_hal_chan_alloc(port->hal, pipe->chan_obj, (void *) pipe); if (!chan_allocated) { HCD_EXIT_CRITICAL(); ret = ESP_ERR_NOT_SUPPORTED; goto err; } usb_dwc_hal_chan_set_ep_char(port->hal, pipe->chan_obj, &pipe->ep_char); CACHE_SYNC_FRAME_LIST(port->frame_list); // Add the pipe to the list of idle pipes in the port object TAILQ_INSERT_TAIL(&port->pipes_idle_tailq, pipe, tailq_entry); port->num_pipes_idle++; HCD_EXIT_CRITICAL(); *pipe_hdl = (hcd_pipe_handle_t)pipe; return ESP_OK; err: for (int i = 0; i < NUM_BUFFERS; i++) { buffer_block_free(buffers[i]); } free(chan_obj); free(pipe); return ret; } int hcd_pipe_get_mps(hcd_pipe_handle_t pipe_hdl) { pipe_t *pipe = (pipe_t *)pipe_hdl; int mps; HCD_ENTER_CRITICAL(); mps = pipe->ep_char.mps; HCD_EXIT_CRITICAL(); return mps; } esp_err_t hcd_pipe_free(hcd_pipe_handle_t pipe_hdl) { pipe_t *pipe = (pipe_t *)pipe_hdl; HCD_ENTER_CRITICAL(); // Check that all URBs have been removed and pipe has no pending events HCD_CHECK_FROM_CRIT(!pipe->multi_buffer_control.buffer_is_executing && !pipe->cs_flags.has_urb, ESP_ERR_INVALID_STATE); // Remove pipe from the list of idle pipes (it must be in the idle list because it should have no queued URBs) TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry); pipe->port->num_pipes_idle--; usb_dwc_hal_chan_free(pipe->port->hal, pipe->chan_obj); HCD_EXIT_CRITICAL(); // Free pipe resources for (int i = 0; i < NUM_BUFFERS; i++) { buffer_block_free(pipe->buffers[i]); } free(pipe->chan_obj); free(pipe); return ESP_OK; } esp_err_t hcd_pipe_update_mps(hcd_pipe_handle_t pipe_hdl, int mps) { pipe_t *pipe = (pipe_t *)pipe_hdl; HCD_ENTER_CRITICAL(); // Check if pipe is in the correct state to be updated HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing && !pipe->cs_flags.has_urb, ESP_ERR_INVALID_STATE); pipe->ep_char.mps = mps; // Update the underlying channel's registers usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char); HCD_EXIT_CRITICAL(); return ESP_OK; } esp_err_t hcd_pipe_update_dev_addr(hcd_pipe_handle_t pipe_hdl, uint8_t dev_addr) { pipe_t *pipe = (pipe_t *)pipe_hdl; HCD_ENTER_CRITICAL(); // Check if pipe is in the correct state to be updated HCD_CHECK_FROM_CRIT(!pipe->cs_flags.pipe_cmd_processing && !pipe->cs_flags.has_urb, ESP_ERR_INVALID_STATE); pipe->ep_char.dev_addr = dev_addr; // Update the underlying channel's registers usb_dwc_hal_chan_set_ep_char(pipe->port->hal, pipe->chan_obj, &pipe->ep_char); HCD_EXIT_CRITICAL(); return ESP_OK; } void *hcd_pipe_get_context(hcd_pipe_handle_t pipe_hdl) { pipe_t *pipe = (pipe_t *)pipe_hdl; void *ret; HCD_ENTER_CRITICAL(); ret = pipe->context; HCD_EXIT_CRITICAL(); return ret; } hcd_pipe_state_t hcd_pipe_get_state(hcd_pipe_handle_t pipe_hdl) { hcd_pipe_state_t ret; pipe_t *pipe = (pipe_t *)pipe_hdl; HCD_ENTER_CRITICAL(); ret = pipe->state; HCD_EXIT_CRITICAL(); return ret; } unsigned int hcd_pipe_get_num_urbs(hcd_pipe_handle_t pipe_hdl) { unsigned int ret; pipe_t *pipe = (pipe_t *)pipe_hdl; HCD_ENTER_CRITICAL(); ret = pipe->num_urb_pending + pipe->num_urb_done; HCD_EXIT_CRITICAL(); return ret; } esp_err_t hcd_pipe_command(hcd_pipe_handle_t pipe_hdl, hcd_pipe_cmd_t command) { pipe_t *pipe = (pipe_t *)pipe_hdl; esp_err_t ret = ESP_OK; HCD_ENTER_CRITICAL(); pipe->cs_flags.pipe_cmd_processing = 1; switch (command) { case HCD_PIPE_CMD_HALT: { ret = _pipe_cmd_halt(pipe); break; } case HCD_PIPE_CMD_FLUSH: { ret = _pipe_cmd_flush(pipe); break; } case HCD_PIPE_CMD_CLEAR: { ret = _pipe_cmd_clear(pipe); break; } } pipe->cs_flags.pipe_cmd_processing = 0; HCD_EXIT_CRITICAL(); return ret; } hcd_pipe_event_t hcd_pipe_get_event(hcd_pipe_handle_t pipe_hdl) { pipe_t *pipe = (pipe_t *)pipe_hdl; hcd_pipe_event_t ret; HCD_ENTER_CRITICAL(); ret = pipe->last_event; pipe->last_event = HCD_PIPE_EVENT_NONE; HCD_EXIT_CRITICAL(); return ret; } // ------------------------------------------------- Buffer Control ---------------------------------------------------- static inline void _buffer_fill_ctrl(dma_buffer_block_t *buffer, usb_transfer_t *transfer) { // Get information about the control transfer by analyzing the setup packet (the first 8 bytes of the URB's data) usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer; bool data_stg_in = (setup_pkt->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN); bool data_stg_skip = (setup_pkt->wLength == 0); // Fill setup stage usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, sizeof(usb_setup_packet_t), USB_DWC_HAL_XFER_DESC_FLAG_SETUP | USB_DWC_HAL_XFER_DESC_FLAG_HOC); // Fill data stage if (data_stg_skip) { // Not data stage. Fill with an empty descriptor usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, 1); } else { // Fill data stage. Note that we still fill with transfer->num_bytes instead of setup_pkt->wLength as it's possible to require more bytes than wLength usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, transfer->data_buffer + sizeof(usb_setup_packet_t), transfer->num_bytes - sizeof(usb_setup_packet_t), ((data_stg_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0) | USB_DWC_HAL_XFER_DESC_FLAG_HOC); } // Fill status stage (i.e., a zero length packet). If data stage is skipped, the status stage is always IN. usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 2, NULL, 0, ((data_stg_in && !data_stg_skip) ? 0 : USB_DWC_HAL_XFER_DESC_FLAG_IN) | USB_DWC_HAL_XFER_DESC_FLAG_HOC); // Update buffer flags buffer->flags.ctrl.data_stg_in = data_stg_in; buffer->flags.ctrl.data_stg_skip = data_stg_skip; buffer->flags.ctrl.cur_stg = 0; } static inline void _buffer_fill_bulk(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps) { // Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS // Minor optimization: Do the mod operation last bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (transfer->num_bytes % mps == 0); if (is_in) { usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USB_DWC_HAL_XFER_DESC_FLAG_IN | USB_DWC_HAL_XFER_DESC_FLAG_HOC); } else { // OUT if (zero_len_packet) { // Adding a zero length packet, so two descriptors are used. usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, 0); usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 1, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC); } else { // Zero length packet not required. One descriptor is enough usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, 0, transfer->data_buffer, transfer->num_bytes, USB_DWC_HAL_XFER_DESC_FLAG_HOC); } } // Update buffer flags buffer->flags.bulk.zero_len_packet = zero_len_packet; } static inline void _buffer_fill_intr(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps) { int num_qtds; int mod_mps = transfer->num_bytes % mps; // Only add a zero length packet if OUT, flag is set, and transfer length is multiple of EP's MPS bool zero_len_packet = !is_in && (transfer->flags & USB_TRANSFER_FLAG_ZERO_PACK) && (mod_mps == 0); if (is_in) { assert(mod_mps == 0); // IN transfers MUST be integer multiple of MPS num_qtds = transfer->num_bytes / mps; // Can just floor divide as it's already multiple of MPS } else { num_qtds = transfer->num_bytes / mps; // Floor division to get the number of MPS sized packets if (mod_mps > 0) { num_qtds++; // Add a short packet for the remainder } } assert((zero_len_packet) ? num_qtds + 1 : num_qtds <= XFER_LIST_LEN_INTR); // Check that the number of QTDs doesn't exceed the QTD list's length uint32_t xfer_desc_flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0; int bytes_filled = 0; // Fill all but last QTD for (int i = 0; i < num_qtds - 1; i++) { usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, i, &transfer->data_buffer[bytes_filled], mps, xfer_desc_flags); bytes_filled += mps; } // Fill last QTD and zero length packet if (zero_len_packet) { // Fill in last data packet without HOC flag usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled, xfer_desc_flags); // HOC flag goes to zero length packet instead usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds, NULL, 0, USB_DWC_HAL_XFER_DESC_FLAG_HOC); } else { // Zero length packet not required. Fill in last QTD with HOC flag usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, num_qtds - 1, &transfer->data_buffer[bytes_filled], transfer->num_bytes - bytes_filled, xfer_desc_flags | USB_DWC_HAL_XFER_DESC_FLAG_HOC); } // Update buffer members and flags buffer->flags.intr.num_qtds = num_qtds; buffer->flags.intr.zero_len_packet = zero_len_packet; } static inline void IRAM_ATTR _buffer_fill_isoc(dma_buffer_block_t *buffer, usb_transfer_t *transfer, bool is_in, int mps, int interval, int start_idx) { assert(interval > 0); assert(__builtin_popcount(interval) == 1); // Isochronous interval must be power of 2 according to USB2.0 specification int total_num_desc = transfer->num_isoc_packets * interval; assert(total_num_desc <= XFER_LIST_LEN_ISOC - XFER_LIST_ISOC_MARGIN); // Some space in the qTD list is reserved for timing margin int desc_idx = start_idx; int bytes_filled = 0; // Zeroize the whole QTD, so we can focus only on the active descriptors memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_ISOC * sizeof(usb_dwc_ll_dma_qtd_t)); for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) { int xfer_len = transfer->isoc_packet_desc[pkt_idx].num_bytes; uint32_t flags = (is_in) ? USB_DWC_HAL_XFER_DESC_FLAG_IN : 0; if (pkt_idx == transfer->num_isoc_packets - 1) { // Last packet, set the the HOC flag flags |= USB_DWC_HAL_XFER_DESC_FLAG_HOC; } usb_dwc_hal_xfer_desc_fill(buffer->xfer_desc_list, desc_idx, &transfer->data_buffer[bytes_filled], xfer_len, flags); bytes_filled += xfer_len; desc_idx += interval; desc_idx %= XFER_LIST_LEN_ISOC; } // Update buffer members and flags buffer->flags.isoc.num_qtds = total_num_desc; buffer->flags.isoc.interval = interval; buffer->flags.isoc.start_idx = start_idx; buffer->flags.isoc.next_start_idx = desc_idx; } static void IRAM_ATTR _buffer_fill(pipe_t *pipe) { // Get an URB from the pending tailq urb_t *urb = TAILQ_FIRST(&pipe->pending_urb_tailq); assert(pipe->num_urb_pending > 0 && urb != NULL); TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry); pipe->num_urb_pending--; // Select the inactive buffer assert(pipe->multi_buffer_control.buffer_num_to_exec <= NUM_BUFFERS); dma_buffer_block_t *buffer_to_fill = pipe->buffers[pipe->multi_buffer_control.wr_idx]; buffer_to_fill->status_flags.val = 0; // Clear the buffer's status flags assert(buffer_to_fill->urb == NULL); bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK; int mps = pipe->ep_char.mps; usb_transfer_t *transfer = &urb->transfer; switch (pipe->ep_char.type) { case USB_DWC_XFER_TYPE_CTRL: { _buffer_fill_ctrl(buffer_to_fill, transfer); break; } case USB_DWC_XFER_TYPE_ISOCHRONOUS: { uint16_t start_idx; // Interval in frames (FS) or microframes (HS). But it does not matter here, as each QTD represents one transaction in a frame or microframe unsigned int interval = pipe->ep_char.periodic.interval; if (interval > XFER_LIST_LEN_ISOC) { // Each QTD in the list corresponds to one frame/microframe. Interval > Descriptor_list does not make sense here. interval = XFER_LIST_LEN_ISOC; } if (pipe->multi_buffer_control.buffer_num_to_exec == 0) { // There are no more previously filled buffers to execute. We need to calculate a new start index based on HFNUM and the pipe's schedule uint16_t cur_frame_num = usb_dwc_hal_port_get_cur_frame_num(pipe->port->hal); start_idx = cur_frame_num + 1; // This is the next frame that the periodic scheduler will fetch start_idx += XFER_LIST_ISOC_MARGIN; // Start scheduling with a little delay. This will get us enough timing margin so no transfer is skipped // Only every (interval + offset) transfer belongs to this channel // Following calculation effectively rounds up to nearest (interval + offset) if (interval > 1) { uint32_t interval_offset = (start_idx - pipe->ep_char.periodic.offset) % interval; // Can be <0, interval) if (interval_offset > 0) { start_idx += interval - interval_offset; } } start_idx %= XFER_LIST_LEN_ISOC; } else { // Start index is based on previously filled buffer uint32_t prev_buffer_idx = (pipe->multi_buffer_control.wr_idx - 1) & (NUM_BUFFERS - 1); dma_buffer_block_t *prev_filled_buffer = pipe->buffers[prev_buffer_idx]; start_idx = prev_filled_buffer->flags.isoc.next_start_idx; } _buffer_fill_isoc(buffer_to_fill, transfer, is_in, mps, (int)interval, start_idx); break; } case USB_DWC_XFER_TYPE_BULK: { _buffer_fill_bulk(buffer_to_fill, transfer, is_in, mps); break; } case USB_DWC_XFER_TYPE_INTR: { _buffer_fill_intr(buffer_to_fill, transfer, is_in, mps); break; } default: { abort(); break; } } // Sync transfer descriptor list to memory CACHE_SYNC_XFER_DESCRIPTOR_LIST_C2M(buffer_to_fill); buffer_to_fill->urb = urb; urb->hcd_var = URB_HCD_STATE_INFLIGHT; // Update multi buffer flags pipe->multi_buffer_control.wr_idx++; pipe->multi_buffer_control.buffer_num_to_fill--; pipe->multi_buffer_control.buffer_num_to_exec++; } static void IRAM_ATTR _buffer_exec(pipe_t *pipe) { assert(pipe->multi_buffer_control.rd_idx != pipe->multi_buffer_control.wr_idx || pipe->multi_buffer_control.buffer_num_to_exec > 0); dma_buffer_block_t *buffer_to_exec = pipe->buffers[pipe->multi_buffer_control.rd_idx]; assert(buffer_to_exec->urb != NULL); uint32_t start_idx; int desc_list_len; switch (pipe->ep_char.type) { case USB_DWC_XFER_TYPE_CTRL: { start_idx = 0; desc_list_len = XFER_LIST_LEN_CTRL; // Set the channel's direction to OUT and PID to 0 respectively for the the setup stage usb_dwc_hal_chan_set_dir(pipe->chan_obj, false); // Setup stage is always OUT usb_dwc_hal_chan_set_pid(pipe->chan_obj, 0); // Setup stage always has a PID of DATA0 break; } case USB_DWC_XFER_TYPE_ISOCHRONOUS: { start_idx = buffer_to_exec->flags.isoc.start_idx; desc_list_len = XFER_LIST_LEN_ISOC; break; } case USB_DWC_XFER_TYPE_BULK: { start_idx = 0; desc_list_len = (buffer_to_exec->flags.bulk.zero_len_packet) ? XFER_LIST_LEN_BULK : 1; break; } case USB_DWC_XFER_TYPE_INTR: { start_idx = 0; desc_list_len = (buffer_to_exec->flags.intr.zero_len_packet) ? buffer_to_exec->flags.intr.num_qtds + 1 : buffer_to_exec->flags.intr.num_qtds; break; } default: { start_idx = 0; desc_list_len = 0; abort(); break; } } // Update buffer and multi buffer flags buffer_to_exec->status_flags.executing = 1; pipe->multi_buffer_control.buffer_is_executing = 1; usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_to_exec->xfer_desc_list, desc_list_len, start_idx); } static void _buffer_exec_cont(pipe_t *pipe) { // This should only ever be called on control transfers assert(pipe->ep_char.type == USB_DWC_XFER_TYPE_CTRL); dma_buffer_block_t *buffer_inflight = pipe->buffers[pipe->multi_buffer_control.rd_idx]; bool next_dir_is_in; int next_pid; assert(buffer_inflight->flags.ctrl.cur_stg != 2); if (buffer_inflight->flags.ctrl.cur_stg == 0) { // Just finished control stage if (buffer_inflight->flags.ctrl.data_stg_skip) { // Skipping data stage. Go straight to status stage next_dir_is_in = true; // With no data stage, status stage must be IN next_pid = 1; // Status stage always has a PID of DATA1 buffer_inflight->flags.ctrl.cur_stg = 2; // Skip over the null descriptor representing the skipped data stage } else { // Go to data stage next_dir_is_in = buffer_inflight->flags.ctrl.data_stg_in; next_pid = 1; // Data stage always starts with a PID of DATA1 buffer_inflight->flags.ctrl.cur_stg = 1; } } else { // cur_stg == 1. // Just finished data stage. Go to status stage next_dir_is_in = !buffer_inflight->flags.ctrl.data_stg_in; // Status stage is always the opposite direction of data stage next_pid = 1; // Status stage always has a PID of DATA1 buffer_inflight->flags.ctrl.cur_stg = 2; } // Continue the control transfer usb_dwc_hal_chan_set_dir(pipe->chan_obj, next_dir_is_in); usb_dwc_hal_chan_set_pid(pipe->chan_obj, next_pid); usb_dwc_hal_chan_activate(pipe->chan_obj, buffer_inflight->xfer_desc_list, XFER_LIST_LEN_CTRL, buffer_inflight->flags.ctrl.cur_stg); } static inline void _buffer_parse_ctrl(dma_buffer_block_t *buffer) { usb_transfer_t *transfer = &buffer->urb->transfer; // Update URB's actual number of bytes if (buffer->flags.ctrl.data_stg_skip) { // There was no data stage. Just set the actual length to the size of the setup packet transfer->actual_num_bytes = sizeof(usb_setup_packet_t); } else { // Parse the data stage for the remaining length int rem_len; int desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 1, &rem_len, &desc_status); assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); assert(rem_len <= (transfer->num_bytes - sizeof(usb_setup_packet_t))); transfer->actual_num_bytes = transfer->num_bytes - rem_len; } // Update URB status transfer->status = USB_TRANSFER_STATUS_COMPLETED; // Clear the descriptor list memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_CTRL * sizeof(usb_dwc_ll_dma_qtd_t)); } static inline void _buffer_parse_bulk(dma_buffer_block_t *buffer) { usb_transfer_t *transfer = &buffer->urb->transfer; // Update URB's actual number of bytes int rem_len; int desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, 0, &rem_len, &desc_status); assert(desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); assert(rem_len <= transfer->num_bytes); transfer->actual_num_bytes = transfer->num_bytes - rem_len; // Update URB's status transfer->status = USB_TRANSFER_STATUS_COMPLETED; // Clear the descriptor list memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_BULK * sizeof(usb_dwc_ll_dma_qtd_t)); } static inline void _buffer_parse_intr(dma_buffer_block_t *buffer, bool is_in, int mps) { usb_transfer_t *transfer = &buffer->urb->transfer; int intr_stop_idx = buffer->status_flags.stop_idx; if (is_in) { if (intr_stop_idx > 0) { // This is an early stop (short packet) assert(intr_stop_idx <= buffer->flags.intr.num_qtds); int rem_len; int desc_status; for (int i = 0; i < intr_stop_idx - 1; i++) { // Check all packets before the short usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status); assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); } // Check the short packet usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, intr_stop_idx - 1, &rem_len, &desc_status); assert(rem_len > 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); // Update actual bytes transfer->actual_num_bytes = (mps * intr_stop_idx - 2) + (mps - rem_len); } else { // Check that all but the last packet transmitted MPS for (int i = 0; i < buffer->flags.intr.num_qtds - 1; i++) { int rem_len; int desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status); assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); } // Check the last packet int last_packet_rem_len; int last_packet_desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, buffer->flags.intr.num_qtds - 1, &last_packet_rem_len, &last_packet_desc_status); assert(last_packet_desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); // All packets except last MUST be MPS. So just deduct the remaining length of the last packet to get actual number of bytes transfer->actual_num_bytes = transfer->num_bytes - last_packet_rem_len; } } else { // OUT INTR transfers can only complete successfully if all packets have been transmitted. Double check for (int i = 0 ; i < buffer->flags.intr.num_qtds; i++) { int rem_len; int desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, i, &rem_len, &desc_status); assert(rem_len == 0 && desc_status == USB_DWC_HAL_XFER_DESC_STS_SUCCESS); } transfer->actual_num_bytes = transfer->num_bytes; } // Update URB's status transfer->status = USB_TRANSFER_STATUS_COMPLETED; // Clear the descriptor list memset(buffer->xfer_desc_list, 0, XFER_LIST_LEN_INTR * sizeof(usb_dwc_ll_dma_qtd_t)); } static inline void _buffer_parse_isoc(dma_buffer_block_t *buffer, bool is_in) { usb_transfer_t *transfer = &buffer->urb->transfer; int desc_idx = buffer->flags.isoc.start_idx; // Descriptor index tracks which descriptor in the QTD list int total_actual_num_bytes = 0; for (int pkt_idx = 0; pkt_idx < transfer->num_isoc_packets; pkt_idx++) { // Clear the filled descriptor int rem_len; int desc_status; usb_dwc_hal_xfer_desc_parse(buffer->xfer_desc_list, desc_idx, &rem_len, &desc_status); usb_dwc_hal_xfer_desc_clear(buffer->xfer_desc_list, desc_idx); switch (desc_status) { case USB_DWC_HAL_XFER_DESC_STS_SUCCESS: transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_COMPLETED; break; case USB_DWC_HAL_XFER_DESC_STS_NOT_EXECUTED: transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_SKIPPED; break; case USB_DWC_HAL_XFER_DESC_STS_PKTERR: transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_ERROR; break; case USB_DWC_HAL_XFER_DESC_STS_BUFFER_ERR: transfer->isoc_packet_desc[pkt_idx].status = USB_TRANSFER_STATUS_ERROR; break; default: assert(false); break; } assert(rem_len <= transfer->isoc_packet_desc[pkt_idx].num_bytes); // Check for DMA errata // Update ISO packet actual length and status transfer->isoc_packet_desc[pkt_idx].actual_num_bytes = transfer->isoc_packet_desc[pkt_idx].num_bytes - rem_len; total_actual_num_bytes += transfer->isoc_packet_desc[pkt_idx].actual_num_bytes; // A descriptor is also allocated for unscheduled frames. We need to skip over them desc_idx += buffer->flags.isoc.interval; desc_idx %= XFER_LIST_LEN_ISOC; } // Write back the actual_num_bytes and statue of entire transfer assert(total_actual_num_bytes <= transfer->num_bytes); transfer->actual_num_bytes = total_actual_num_bytes; transfer->status = USB_TRANSFER_STATUS_COMPLETED; } static inline void _buffer_parse_error(dma_buffer_block_t *buffer) { // The URB had an error in one of its packet, or a port error), so we the entire URB an error. usb_transfer_t *transfer = &buffer->urb->transfer; transfer->actual_num_bytes = 0; // Update the overall status of URB. Status will depend on the pipe_event switch (buffer->status_flags.pipe_event) { case HCD_PIPE_EVENT_NONE: transfer->status = (buffer->status_flags.was_canceled) ? USB_TRANSFER_STATUS_CANCELED : USB_TRANSFER_STATUS_NO_DEVICE; break; case HCD_PIPE_EVENT_ERROR_XFER: transfer->status = USB_TRANSFER_STATUS_ERROR; break; case HCD_PIPE_EVENT_ERROR_OVERFLOW: transfer->status = USB_TRANSFER_STATUS_OVERFLOW; break; case HCD_PIPE_EVENT_ERROR_STALL: transfer->status = USB_TRANSFER_STATUS_STALL; break; default: // HCD_PIPE_EVENT_URB_DONE and HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL should not occur here abort(); break; } } static void _buffer_parse(pipe_t *pipe) { assert(pipe->multi_buffer_control.buffer_num_to_parse > 0); dma_buffer_block_t *buffer_to_parse = pipe->buffers[pipe->multi_buffer_control.fr_idx]; assert(buffer_to_parse->urb != NULL); bool is_in = pipe->ep_char.bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK; int mps = pipe->ep_char.mps; // Sync transfer descriptor list to cache CACHE_SYNC_XFER_DESCRIPTOR_LIST_M2C(buffer_to_parse); // Parsing the buffer will update the buffer's corresponding URB if (buffer_to_parse->status_flags.pipe_event == HCD_PIPE_EVENT_URB_DONE) { // URB was successful switch (pipe->ep_char.type) { case USB_DWC_XFER_TYPE_CTRL: { _buffer_parse_ctrl(buffer_to_parse); break; } case USB_DWC_XFER_TYPE_ISOCHRONOUS: { _buffer_parse_isoc(buffer_to_parse, is_in); break; } case USB_DWC_XFER_TYPE_BULK: { _buffer_parse_bulk(buffer_to_parse); break; } case USB_DWC_XFER_TYPE_INTR: { _buffer_parse_intr(buffer_to_parse, is_in, mps); break; } default: { abort(); break; } } } else { // URB failed _buffer_parse_error(buffer_to_parse); } urb_t *urb = buffer_to_parse->urb; urb->hcd_var = URB_HCD_STATE_DONE; buffer_to_parse->urb = NULL; buffer_to_parse->flags.val = 0; // Clear flags // Move the URB to the done tailq TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry); pipe->num_urb_done++; // Update multi buffer flags pipe->multi_buffer_control.fr_idx++; pipe->multi_buffer_control.buffer_num_to_parse--; pipe->multi_buffer_control.buffer_num_to_fill++; } static bool _buffer_flush_all(pipe_t *pipe, bool canceled) { int cur_num_to_mark_done = pipe->multi_buffer_control.buffer_num_to_exec; for (int i = 0; i < cur_num_to_mark_done; i++) { // Mark any filled buffers as done _buffer_done(pipe, 0, HCD_PIPE_EVENT_NONE, canceled); } int cur_num_to_parse = pipe->multi_buffer_control.buffer_num_to_parse; for (int i = 0; i < cur_num_to_parse; i++) { _buffer_parse(pipe); } // At this point, there should be no more filled buffers. Only URBs in the pending or done tailq return (cur_num_to_parse > 0); } // ---------------------------------------------- HCD Transfer Descriptors --------------------------------------------- // ----------------------- Public -------------------------- esp_err_t hcd_urb_enqueue(hcd_pipe_handle_t pipe_hdl, urb_t *urb) { // Check that URB has not already been enqueued HCD_CHECK(urb->hcd_ptr == NULL && urb->hcd_var == URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE); pipe_t *pipe = (pipe_t *)pipe_hdl; // Check if the ISOC pipe can handle all packets: // In case the pipe's interval is too long and there are too many ISOC packets, they might not fit into the transfer descriptor list HCD_CHECK( !((pipe->ep_char.type == USB_DWC_XFER_TYPE_ISOCHRONOUS) && (urb->transfer.num_isoc_packets * pipe->ep_char.periodic.interval > XFER_LIST_LEN_ISOC)), ESP_ERR_INVALID_SIZE ); // Sync user's data from cache to memory. For OUT and CTRL transfers CACHE_SYNC_DATA_BUFFER_C2M(pipe, urb); HCD_ENTER_CRITICAL(); // Check that pipe and port are in the correct state to receive URBs HCD_CHECK_FROM_CRIT(pipe->port->state == HCD_PORT_STATE_ENABLED // The pipe's port must be in the correct state && pipe->state == HCD_PIPE_STATE_ACTIVE // The pipe must be in the correct state && !pipe->cs_flags.pipe_cmd_processing, // Pipe cannot currently be processing a pipe command ESP_ERR_INVALID_STATE); // Use the URB's reserved_ptr to store the pipe's urb->hcd_ptr = (void *)pipe; // Add the URB to the pipe's pending tailq urb->hcd_var = URB_HCD_STATE_PENDING; TAILQ_INSERT_TAIL(&pipe->pending_urb_tailq, urb, tailq_entry); pipe->num_urb_pending++; // use the URB's reserved_flags to store the URB's current state if (_buffer_can_fill(pipe)) { _buffer_fill(pipe); } if (_buffer_can_exec(pipe)) { _buffer_exec(pipe); } if (!pipe->cs_flags.has_urb) { // This is the first URB to be enqueued into the pipe. Move the pipe to the list of active pipes TAILQ_REMOVE(&pipe->port->pipes_idle_tailq, pipe, tailq_entry); TAILQ_INSERT_TAIL(&pipe->port->pipes_active_tailq, pipe, tailq_entry); pipe->port->num_pipes_idle--; pipe->port->num_pipes_queued++; pipe->cs_flags.has_urb = 1; } HCD_EXIT_CRITICAL(); return ESP_OK; } urb_t *hcd_urb_dequeue(hcd_pipe_handle_t pipe_hdl) { pipe_t *pipe = (pipe_t *)pipe_hdl; urb_t *urb; HCD_ENTER_CRITICAL(); if (pipe->num_urb_done > 0) { urb = TAILQ_FIRST(&pipe->done_urb_tailq); TAILQ_REMOVE(&pipe->done_urb_tailq, urb, tailq_entry); pipe->num_urb_done--; // Check the URB's reserved fields then reset them assert(urb->hcd_ptr == (void *)pipe && urb->hcd_var == URB_HCD_STATE_DONE); // The URB's reserved field should have been set to this pipe urb->hcd_ptr = NULL; urb->hcd_var = URB_HCD_STATE_IDLE; if (pipe->cs_flags.has_urb && pipe->num_urb_pending == 0 && pipe->num_urb_done == 0 && pipe->multi_buffer_control.buffer_num_to_exec == 0 && pipe->multi_buffer_control.buffer_num_to_parse == 0) { // This pipe has no more enqueued URBs. Move the pipe to the list of idle pipes TAILQ_REMOVE(&pipe->port->pipes_active_tailq, pipe, tailq_entry); TAILQ_INSERT_TAIL(&pipe->port->pipes_idle_tailq, pipe, tailq_entry); pipe->port->num_pipes_idle++; pipe->port->num_pipes_queued--; pipe->cs_flags.has_urb = 0; } // Sync user's data in memory to cache. For IN and CTRL transfers CACHE_SYNC_DATA_BUFFER_M2C(pipe, urb); } else { // No more URBs to dequeue from this pipe urb = NULL; } HCD_EXIT_CRITICAL(); return urb; } esp_err_t hcd_urb_abort(urb_t *urb) { HCD_ENTER_CRITICAL(); // Check that the URB was enqueued to begin with HCD_CHECK_FROM_CRIT(urb->hcd_ptr != NULL && urb->hcd_var != URB_HCD_STATE_IDLE, ESP_ERR_INVALID_STATE); if (urb->hcd_var == URB_HCD_STATE_PENDING) { // URB has not been executed so it can be aborted pipe_t *pipe = (pipe_t *)urb->hcd_ptr; // Remove it form the pending queue TAILQ_REMOVE(&pipe->pending_urb_tailq, urb, tailq_entry); pipe->num_urb_pending--; // Add it to the done queue TAILQ_INSERT_TAIL(&pipe->done_urb_tailq, urb, tailq_entry); pipe->num_urb_done++; // Update the URB's current state, status, and actual length urb->hcd_var = URB_HCD_STATE_DONE; if (urb->transfer.num_isoc_packets == 0) { urb->transfer.actual_num_bytes = 0; urb->transfer.status = USB_TRANSFER_STATUS_CANCELED; } else { // If this is an ISOC URB, update the ISO packet descriptors instead for (int i = 0; i < urb->transfer.num_isoc_packets; i++) { urb->transfer.isoc_packet_desc[i].actual_num_bytes = 0; urb->transfer.isoc_packet_desc[i].status = USB_TRANSFER_STATUS_CANCELED; } } } // Otherwise, the URB is in-flight or already done thus cannot be aborted HCD_EXIT_CRITICAL(); return ESP_OK; }