// Copyright 2010-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /* * DPORT access is used for do protection when dual core access DPORT internal register and APB register via DPORT simultaneously * This function will be initialize after FreeRTOS startup. * When cpu0 want to access DPORT register, it should notify cpu1 enter in high-priority interrupt for be mute. When cpu1 already in high-priority interrupt, * cpu0 can access DPORT register. Currently, cpu1 will wait for cpu0 finish access and exit high-priority interrupt. */ #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_intr_alloc.h" #include "esp32/rom/ets_sys.h" #include "esp32/rom/uart.h" #include "soc/cpu.h" #include "soc/dport_reg.h" #include "soc/spi_periph.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/portmacro.h" #include "xtensa/core-macros.h" #ifndef CONFIG_FREERTOS_UNICORE static portMUX_TYPE g_dport_mux = portMUX_INITIALIZER_UNLOCKED; #define DPORT_CORE_STATE_IDLE 0 #define DPORT_CORE_STATE_RUNNING 1 static uint32_t volatile dport_core_state[portNUM_PROCESSORS]; //cpu is already run /* these global variables are accessed from interrupt vector, hence not declared as static */ uint32_t volatile dport_access_start[portNUM_PROCESSORS]; //dport register could be accessed uint32_t volatile dport_access_end[portNUM_PROCESSORS]; //dport register is accessed over static uint32_t volatile dport_access_ref[portNUM_PROCESSORS]; //dport access reference #ifdef DPORT_ACCESS_BENCHMARK #define DPORT_ACCESS_BENCHMARK_STORE_NUM static uint32_t ccount_start[portNUM_PROCESSORS]; static uint32_t ccount_end[portNUM_PROCESSORS]; static uint32_t ccount_margin[portNUM_PROCESSORS][DPORT_ACCESS_BENCHMARK_STORE_NUM]; static uint32_t ccount_margin_cnt; #endif static BaseType_t oldInterruptLevel[2]; #endif // CONFIG_FREERTOS_UNICORE /* stall other cpu that this cpu is pending to access dport register start */ void IRAM_ATTR esp_dport_access_stall_other_cpu_start(void) { #ifndef CONFIG_FREERTOS_UNICORE if (dport_core_state[0] == DPORT_CORE_STATE_IDLE || dport_core_state[1] == DPORT_CORE_STATE_IDLE) { return; } BaseType_t intLvl = portENTER_CRITICAL_NESTED(); int cpu_id = xPortGetCoreID(); #ifdef DPORT_ACCESS_BENCHMARK ccount_start[cpu_id] = XTHAL_GET_CCOUNT(); #endif if (dport_access_ref[cpu_id] == 0) { portENTER_CRITICAL_ISR(&g_dport_mux); oldInterruptLevel[cpu_id]=intLvl; dport_access_start[cpu_id] = 0; dport_access_end[cpu_id] = 0; if (cpu_id == 0) { _DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_3_REG, DPORT_CPU_INTR_FROM_CPU_3); //interrupt on cpu1 } else { _DPORT_REG_WRITE(DPORT_CPU_INTR_FROM_CPU_2_REG, DPORT_CPU_INTR_FROM_CPU_2); //interrupt on cpu0 } while (!dport_access_start[cpu_id]) {}; REG_READ(SPI_DATE_REG(3)); //just read a APB register sure that the APB-bus is idle } dport_access_ref[cpu_id]++; if (dport_access_ref[cpu_id] > 1) { /* Interrupts are already disabled by the parent, we're nested here. */ portEXIT_CRITICAL_NESTED(intLvl); } #endif /* CONFIG_FREERTOS_UNICORE */ } /* stall other cpu that this cpu is pending to access dport register end */ void IRAM_ATTR esp_dport_access_stall_other_cpu_end(void) { #ifndef CONFIG_FREERTOS_UNICORE int cpu_id = xPortGetCoreID(); if (dport_core_state[0] == DPORT_CORE_STATE_IDLE || dport_core_state[1] == DPORT_CORE_STATE_IDLE) { return; } if (dport_access_ref[cpu_id] == 0) { assert(0); } dport_access_ref[cpu_id]--; if (dport_access_ref[cpu_id] == 0) { dport_access_end[cpu_id] = 1; portEXIT_CRITICAL_ISR(&g_dport_mux); portEXIT_CRITICAL_NESTED(oldInterruptLevel[cpu_id]); } #ifdef DPORT_ACCESS_BENCHMARK ccount_end[cpu_id] = XTHAL_GET_CCOUNT(); ccount_margin[cpu_id][ccount_margin_cnt] = ccount_end[cpu_id] - ccount_start[cpu_id]; ccount_margin_cnt = (ccount_margin_cnt + 1)&(DPORT_ACCESS_BENCHMARK_STORE_NUM - 1); #endif #endif /* CONFIG_FREERTOS_UNICORE */ } void IRAM_ATTR esp_dport_access_stall_other_cpu_start_wrap(void) { DPORT_STALL_OTHER_CPU_START(); } void IRAM_ATTR esp_dport_access_stall_other_cpu_end_wrap(void) { DPORT_STALL_OTHER_CPU_END(); } #ifndef CONFIG_FREERTOS_UNICORE static void dport_access_init_core(void *arg) { int core_id = 0; uint32_t intr_source = ETS_FROM_CPU_INTR2_SOURCE; core_id = xPortGetCoreID(); if (core_id == 1) { intr_source = ETS_FROM_CPU_INTR3_SOURCE; } ESP_INTR_DISABLE(ETS_DPORT_INUM); intr_matrix_set(core_id, intr_source, ETS_DPORT_INUM); ESP_INTR_ENABLE(ETS_DPORT_INUM); dport_access_ref[core_id] = 0; dport_access_start[core_id] = 0; dport_access_end[core_id] = 0; dport_core_state[core_id] = DPORT_CORE_STATE_RUNNING; /* If this fails then the minimum stack size for this config is too close to running out */ assert(uxTaskGetStackHighWaterMark(NULL) > 128); vTaskDelete(NULL); } #endif /* Defer initialisation until after scheduler is running */ void esp_dport_access_int_init(void) { #ifndef CONFIG_FREERTOS_UNICORE portBASE_TYPE res = xTaskCreatePinnedToCore(&dport_access_init_core, "dport", configMINIMAL_STACK_SIZE, NULL, 5, NULL, xPortGetCoreID()); assert(res == pdTRUE); #endif } void IRAM_ATTR esp_dport_access_int_pause(void) { #ifndef CONFIG_FREERTOS_UNICORE portENTER_CRITICAL_ISR(&g_dport_mux); dport_core_state[0] = DPORT_CORE_STATE_IDLE; dport_core_state[1] = DPORT_CORE_STATE_IDLE; portEXIT_CRITICAL_ISR(&g_dport_mux); #endif } //Used in panic code: the enter_critical stuff may be messed up so we just stop everything without checking the mux. void IRAM_ATTR esp_dport_access_int_abort(void) { #ifndef CONFIG_FREERTOS_UNICORE dport_core_state[0] = DPORT_CORE_STATE_IDLE; dport_core_state[1] = DPORT_CORE_STATE_IDLE; #endif } void IRAM_ATTR esp_dport_access_int_resume(void) { #ifndef CONFIG_FREERTOS_UNICORE portENTER_CRITICAL_ISR(&g_dport_mux); dport_core_state[0] = DPORT_CORE_STATE_RUNNING; dport_core_state[1] = DPORT_CORE_STATE_RUNNING; portEXIT_CRITICAL_ISR(&g_dport_mux); #endif } /** * @brief Read a sequence of DPORT registers to the buffer, SMP-safe version. * * This implementation uses a method of the pre-reading of the APB register * before reading the register of the DPORT, without stall other CPU. * There is disable/enable interrupt. * * @param[out] buff_out Contains the read data. * @param[in] address Initial address for reading registers. * @param[in] num_words The number of words. */ void IRAM_ATTR esp_dport_access_read_buffer(uint32_t *buff_out, uint32_t address, uint32_t num_words) { DPORT_INTERRUPT_DISABLE(); for (uint32_t i = 0; i < num_words; ++i) { buff_out[i] = DPORT_SEQUENCE_REG_READ(address + i * 4); } DPORT_INTERRUPT_RESTORE(); } /** * @brief Read value from register, SMP-safe version. * * This method uses the pre-reading of the APB register before reading the register of the DPORT. * This implementation is useful for reading DORT registers for single reading without stall other CPU. * There is disable/enable interrupt. * * @param reg Register address * @return Value */ uint32_t IRAM_ATTR esp_dport_access_reg_read(uint32_t reg) { #if defined(BOOTLOADER_BUILD) || !defined(CONFIG_ESP32_DPORT_WORKAROUND) || !defined(ESP_PLATFORM) return _DPORT_REG_READ(reg); #else uint32_t apb; unsigned int intLvl; __asm__ __volatile__ (\ "rsil %[LVL], "XTSTR(CONFIG_ESP32_DPORT_DIS_INTERRUPT_LVL)"\n"\ "movi %[APB], "XTSTR(0x3ff40078)"\n"\ "l32i %[APB], %[APB], 0\n"\ "l32i %[REG], %[REG], 0\n"\ "wsr %[LVL], "XTSTR(PS)"\n"\ "rsync\n"\ : [APB]"=a"(apb), [REG]"+a"(reg), [LVL]"=a"(intLvl)\ : \ : "memory" \ ); return reg; #endif } /** * @brief Read value from register, NOT SMP-safe version. * * This method uses the pre-reading of the APB register before reading the register of the DPORT. * There is not disable/enable interrupt. * The difference from DPORT_REG_READ() is that the user himself must disable interrupts while DPORT reading. * This implementation is useful for reading DORT registers in loop without stall other CPU. Note the usage example. * The recommended way to read registers sequentially without stall other CPU * is to use the method esp_dport_read_buffer(buff_out, address, num_words). It allows you to read registers in the buffer. * * \code{c} * // This example shows how to use it. * { // Use curly brackets to limit the visibility of variables in macros DPORT_INTERRUPT_DISABLE/RESTORE. * DPORT_INTERRUPT_DISABLE(); // Disable interrupt only on current CPU. * for (i = 0; i < max; ++i) { * array[i] = esp_dport_access_sequence_reg_read(Address + i * 4); // reading DPORT registers * } * DPORT_INTERRUPT_RESTORE(); // restore the previous interrupt level * } * \endcode * * @param reg Register address * @return Value */ uint32_t IRAM_ATTR esp_dport_access_sequence_reg_read(uint32_t reg) { #if defined(BOOTLOADER_BUILD) || !defined(CONFIG_ESP32_DPORT_WORKAROUND) || !defined(ESP_PLATFORM) return _DPORT_REG_READ(reg); #else uint32_t apb; __asm__ __volatile__ (\ "movi %[APB], "XTSTR(0x3ff40078)"\n"\ "l32i %[APB], %[APB], 0\n"\ "l32i %[REG], %[REG], 0\n"\ : [APB]"=a"(apb), [REG]"+a"(reg)\ : \ : "memory" \ ); return reg; #endif }