/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /*---------------------------------------------------------------------------------------------------- * Abstraction layer for PSRAM. PSRAM device related registers and MMU/Cache related code shouls be * abstracted to lower layers. * * When we add more types of external RAM memory, this can be made into a more intelligent dispatcher. *----------------------------------------------------------------------------------------------------*/ #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "esp_heap_caps_init.h" #include "esp_private/spiram_private.h" #include "esp32s2/spiram.h" #include "esp_private/mmu_psram.h" #include "spiram_psram.h" #define PSRAM_MODE PSRAM_VADDR_MODE_NORMAL #if CONFIG_SPIRAM #if CONFIG_SPIRAM_SPEED_40M #define PSRAM_SPEED PSRAM_CACHE_S40M #elif CONFIG_SPIRAM_SPEED_80M #define PSRAM_SPEED PSRAM_CACHE_S80M #else #define PSRAM_SPEED PSRAM_CACHE_S20M #endif #define MMU_PAGE_TO_BYTES(page_id) ((page_id) << 16) #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY extern uint8_t _ext_ram_bss_start; extern uint8_t _ext_ram_bss_end; #endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY //These variables are in bytes static intptr_t s_allocable_vaddr_start; static intptr_t s_allocable_vaddr_end; static intptr_t s_mapped_vaddr_start; static intptr_t s_mapped_vaddr_end; static bool s_spiram_inited; static const char* TAG = "spiram"; static bool esp_spiram_test(uint32_t v_start, uint32_t size); esp_err_t esp_spiram_init(void) { assert(!s_spiram_inited); esp_err_t ret; ret = psram_enable(PSRAM_SPEED, PSRAM_MODE); if (ret != ESP_OK) { #if CONFIG_SPIRAM_IGNORE_NOTFOUND ESP_EARLY_LOGE(TAG, "SPI RAM enabled but initialization failed. Bailing out."); #endif return ret; } s_spiram_inited = true; uint32_t psram_physical_size = 0; ret = psram_get_physical_size(&psram_physical_size); assert(ret == ESP_OK); #if (CONFIG_SPIRAM_SIZE != -1) if (psram_physical_size != CONFIG_SPIRAM_SIZE) { ESP_EARLY_LOGE(TAG, "Expected %dMB chip but found %dMB chip. Bailing out..", CONFIG_SPIRAM_SIZE / 1024 / 1024, psram_physical_size / 1024 / 1024); return ESP_ERR_INVALID_SIZE; } #endif ESP_EARLY_LOGI(TAG, "Found %dMBit SPI RAM device", psram_physical_size / (1024 * 1024)); ESP_EARLY_LOGI(TAG, "Speed: %dMHz", CONFIG_SPIRAM_SPEED); uint32_t psram_available_size = 0; ret = psram_get_available_size(&psram_available_size); assert(ret == ESP_OK); __attribute__((unused)) uint32_t total_available_size = psram_available_size; /** * `start_page` is the psram physical address in MMU page size. * MMU page size on ESP32S2 is 64KB * e.g.: psram physical address 16 is in page 0 * * Here we plan to copy FLASH instructions to psram physical address 0, which is the No.0 page. */ uint32_t start_page = 0; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS || CONFIG_SPIRAM_RODATA uint32_t used_page = 0; #endif //------------------------------------Copy Flash .text to PSRAM-------------------------------------// #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS ret = mmu_config_psram_text_segment(start_page, total_available_size, &used_page); if (ret != ESP_OK) { ESP_EARLY_LOGE(TAG, "No enough psram memory for instructon!"); abort(); } start_page += used_page; psram_available_size -= MMU_PAGE_TO_BYTES(used_page); ESP_EARLY_LOGV(TAG, "after copy .text, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size); #endif //#if CONFIG_SPIRAM_FETCH_INSTRUCTIONS //------------------------------------Copy Flash .rodata to PSRAM-------------------------------------// #if CONFIG_SPIRAM_RODATA ret = mmu_config_psram_rodata_segment(start_page, total_available_size, &used_page); if (ret != ESP_OK) { ESP_EARLY_LOGE(TAG, "No enough psram memory for rodata!"); abort(); } start_page += used_page; psram_available_size -= MMU_PAGE_TO_BYTES(used_page); ESP_EARLY_LOGV(TAG, "after copy .rodata, used page is %d, start_page is %d, psram_available_size is %d B", used_page, start_page, psram_available_size); #endif //#if CONFIG_SPIRAM_RODATA //----------------------------------Map the PSRAM physical range to MMU-----------------------------// static DRAM_ATTR uint32_t vaddr_start = 0; mmu_map_psram(MMU_PAGE_TO_BYTES(start_page), MMU_PAGE_TO_BYTES(start_page) + psram_available_size, &vaddr_start); if (ret != ESP_OK) { ESP_EARLY_LOGE(TAG, "MMU PSRAM mapping wrong!"); abort(); } #if CONFIG_SPIRAM_MEMTEST //After mapping, simple test SPIRAM first bool ext_ram_ok = esp_spiram_test(vaddr_start, psram_available_size); if (!ext_ram_ok) { ESP_EARLY_LOGE(TAG, "External RAM failed memory test!"); abort(); } #endif //#if CONFIG_SPIRAM_MEMTEST /*------------------------------------------------------------------------------ * After mapping, we DON'T care about the PSRAM PHYSICAL ADDRESSS ANYMORE! *----------------------------------------------------------------------------*/ s_mapped_vaddr_start = vaddr_start; s_mapped_vaddr_end = vaddr_start + psram_available_size; s_allocable_vaddr_start = vaddr_start; s_allocable_vaddr_end = vaddr_start + psram_available_size; //------------------------------------Configure .bss in PSRAM-------------------------------------// #if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY //should never be negative number uint32_t ext_bss_size = ((intptr_t)&_ext_ram_bss_end - (intptr_t)&_ext_ram_bss_start); ESP_EARLY_LOGV(TAG, "ext_bss_size is %d", ext_bss_size); s_allocable_vaddr_start += ext_bss_size; #endif //#if CONFIG_SPIRAM_ALLOW_BSS_SEG_EXTERNAL_MEMORY ESP_EARLY_LOGV(TAG, "s_allocable_vaddr_start is 0x%x, s_allocable_vaddr_end is 0x%x", s_allocable_vaddr_start, s_allocable_vaddr_end); return ESP_OK; } /** * Add the PSRAM available region to heap allocator. Heap allocator knows the capabilities of this type of memory, * so there's no need to explicitly specify them. */ esp_err_t esp_spiram_add_to_heapalloc(void) { ESP_EARLY_LOGI(TAG, "Adding pool of %dK of external SPI memory to heap allocator", (s_allocable_vaddr_end - s_allocable_vaddr_start) / 1024); return heap_caps_add_region(s_allocable_vaddr_start, s_allocable_vaddr_end); } esp_err_t IRAM_ATTR esp_spiram_get_mapped_range(intptr_t *out_vstart, intptr_t *out_vend) { if (!out_vstart || !out_vend) { return ESP_ERR_INVALID_ARG; } if (!s_spiram_inited) { return ESP_ERR_INVALID_STATE; } *out_vstart = s_mapped_vaddr_start; *out_vend = s_mapped_vaddr_end; return ESP_OK; } esp_err_t esp_spiram_get_alloced_range(intptr_t *out_vstart, intptr_t *out_vend) { if (!out_vstart || !out_vend) { return ESP_ERR_INVALID_ARG; } if (!s_spiram_inited) { return ESP_ERR_INVALID_STATE; } *out_vstart = s_allocable_vaddr_start; *out_vend = s_allocable_vaddr_end; return ESP_OK; } esp_err_t esp_spiram_reserve_dma_pool(size_t size) { if (size == 0) { return ESP_OK; //no-op } ESP_EARLY_LOGI(TAG, "Reserving pool of %dK of internal memory for DMA/internal allocations", size/1024); uint8_t *dma_heap = heap_caps_malloc(size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL); if (!dma_heap) { return ESP_ERR_NO_MEM; } uint32_t caps[] = {MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_8BIT | MALLOC_CAP_32BIT}; return heap_caps_add_region_with_caps(caps, (intptr_t) dma_heap, (intptr_t) dma_heap + size); } /* Before flushing the cache, if psram is enabled as a memory-mapped thing, we need to write back the data in the cache to the psram first, otherwise it will get lost. For now, we just read 64/128K of random PSRAM memory to do this. */ void IRAM_ATTR esp_spiram_writeback_cache(void) { extern void Cache_WriteBack_All(void); Cache_WriteBack_All(); } /** * @brief If SPI RAM(PSRAM) has been initialized * * @return true SPI RAM has been initialized successfully * @return false SPI RAM hasn't been initialized or initialized failed */ bool esp_spiram_is_initialized(void) { return s_spiram_inited; } uint8_t esp_spiram_get_cs_io(void) { return psram_get_cs_io(); } /* Simple RAM test. Writes a word every 32 bytes. Takes about a second to complete for 4MiB. Returns true when RAM seems OK, false when test fails. WARNING: Do not run this before the 2nd cpu has been initialized (in a two-core system) or after the heap allocator has taken ownership of the memory. */ static bool esp_spiram_test(uint32_t v_start, uint32_t size) { volatile int *spiram = (volatile int *)v_start; size_t s = size; size_t p; int errct = 0; int initial_err = -1; for (p = 0; p < (s / sizeof(int)); p += 8) { spiram[p] = p ^ 0xAAAAAAAA; } for (p = 0; p < (s / sizeof(int)); p += 8) { if (spiram[p] != (p ^ 0xAAAAAAAA)) { errct++; if (errct == 1) { initial_err = p * 4; } if (errct < 4) { ESP_EARLY_LOGE(TAG, "SPI SRAM error@%08x:%08x/%08x \n", &spiram[p], spiram[p], p ^ 0xAAAAAAAA); } } } if (errct) { ESP_EARLY_LOGE(TAG, "SPI SRAM memory test fail. %d/%d writes failed, first @ %X\n", errct, s / 32, initial_err + SOC_EXTRAM_DATA_LOW); return false; } else { return true; } } #endif //#if CONFIG_SPIRAM