/* * Copyright (c) 2006 Uwe Stuehler * Adaptations to ESP-IDF Copyright (c) 2016-2018 Espressif Systems (Shanghai) PTE LTD * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "esp_timer.h" #include "sdmmc_common.h" static const char* TAG = "sdmmc_sd"; esp_err_t sdmmc_init_sd_if_cond(sdmmc_card_t* card) { /* SEND_IF_COND (CMD8) command is used to identify SDHC/SDXC cards. * SD v1 and non-SD cards will not respond to this command. */ uint32_t host_ocr = get_host_ocr(card->host.io_voltage); esp_err_t err = sdmmc_send_cmd_send_if_cond(card, host_ocr); if (err == ESP_OK) { ESP_LOGD(TAG, "SDHC/SDXC card"); host_ocr |= SD_OCR_SDHC_CAP; } else if (err == ESP_ERR_TIMEOUT) { ESP_LOGD(TAG, "CMD8 timeout; not an SD v2.00 card"); } else if (host_is_spi(card) && err == ESP_ERR_NOT_SUPPORTED) { ESP_LOGD(TAG, "CMD8 rejected; not an SD v2.00 card"); } else { ESP_LOGE(TAG, "%s: send_if_cond (1) returned 0x%x", __func__, err); return err; } card->ocr = host_ocr; return ESP_OK; } esp_err_t sdmmc_init_sd_blocklen(sdmmc_card_t* card) { /* SDSC cards support configurable data block lengths. * We don't use this feature and set the block length to 512 bytes, * same as the block length for SDHC cards. */ if ((card->ocr & SD_OCR_SDHC_CAP) == 0) { esp_err_t err = sdmmc_send_cmd_set_blocklen(card, &card->csd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: set_blocklen returned 0x%x", __func__, err); return err; } } return ESP_OK; } esp_err_t sdmmc_init_sd_scr(sdmmc_card_t* card) { esp_err_t err; /* Get the contents of SCR register: bus width and the version of SD spec * supported by the card. * In SD mode, this is the first command which uses D0 line. Errors at * this step usually indicate connection issue or lack of pull-up resistor. */ err = sdmmc_send_cmd_send_scr(card, &card->scr); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_scr (1) returned 0x%x", __func__, err); return err; } if ((card->scr.bus_width & SCR_SD_BUS_WIDTHS_4BIT) && (card->host.flags & SDMMC_HOST_FLAG_4BIT)) { card->log_bus_width = 2; } else { card->log_bus_width = 0; } return ESP_OK; } esp_err_t sdmmc_init_sd_ssr(sdmmc_card_t* card) { esp_err_t err = ESP_OK; /* Get the contents of SSR register: SD additional information * ACMD13 to read 512byte SD status information */ uint32_t* sd_ssr = NULL; size_t actual_size = 0; err = esp_dma_calloc(1, SD_SSR_SIZE, 0, (void *)&sd_ssr, &actual_size); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: could not allocate sd_ssr", __func__); return err; } sdmmc_command_t cmd = { .data = sd_ssr, .datalen = SD_SSR_SIZE, .buflen = actual_size, .blklen = SD_SSR_SIZE, .opcode = SD_APP_SD_STATUS, .arg = 0, .flags = SCF_CMD_ADTC | SCF_RSP_R1 | SCF_CMD_READ }; // read SD status register err = sdmmc_send_app_cmd(card, &cmd); if (err != ESP_OK) { free(sd_ssr); ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err); return err; } err = sdmmc_decode_ssr(sd_ssr, &card->ssr); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: error sdmmc_decode_scr returned 0x%x", __func__, err); } free(sd_ssr); return err; } esp_err_t sdmmc_init_sd_bus_width(sdmmc_card_t* card) { int width = 1; if (card->log_bus_width == 2) { width = 4; } else if (card->log_bus_width == 3) { width = 8; } esp_err_t err = sdmmc_send_cmd_set_bus_width(card, width); if (err != ESP_OK) { ESP_LOGE(TAG, "set_bus_width failed (0x%x)", err); return err; } return ESP_OK; } esp_err_t sdmmc_init_sd_wait_data_ready(sdmmc_card_t* card) { /* Wait for the card to be ready for data transfers */ uint32_t status = 0; uint32_t count = 0; int64_t yield_delay_us = 100 * 1000; // initially 100ms int64_t t0 = esp_timer_get_time(); int64_t t1 = 0; while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) { t1 = esp_timer_get_time(); if (t1 - t0 > SDMMC_INIT_WAIT_DATA_READY_TIMEOUT_US) { ESP_LOGE(TAG, "init wait data ready - timeout"); return ESP_ERR_TIMEOUT; } if (t1 - t0 > yield_delay_us) { yield_delay_us *= 2; vTaskDelay(1); } esp_err_t err = sdmmc_send_cmd_send_status(card, &status); if (err != ESP_OK) { return err; } if (++count % 16 == 0) { ESP_LOGV(TAG, "waiting for card to become ready (%d)", count); } } return ESP_OK; } esp_err_t sdmmc_send_cmd_switch_func(sdmmc_card_t* card, uint32_t mode, uint32_t group, uint32_t function, sdmmc_switch_func_rsp_t* resp) { if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 || ((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) { return ESP_ERR_NOT_SUPPORTED; } if (group == 0 || group > SD_SFUNC_GROUP_MAX || function > SD_SFUNC_FUNC_MAX) { return ESP_ERR_INVALID_ARG; } if (mode > 1) { return ESP_ERR_INVALID_ARG; } uint32_t group_shift = (group - 1) << 2; /* all functions which should not be affected are set to 0xf (no change) */ uint32_t other_func_mask = (0x00ffffff & ~(0xf << group_shift)); uint32_t func_val = (function << group_shift) | other_func_mask; sdmmc_command_t cmd = { .opcode = MMC_SWITCH, .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1, .blklen = sizeof(sdmmc_switch_func_rsp_t), .data = resp->data, .datalen = sizeof(sdmmc_switch_func_rsp_t), .arg = (!!mode << 31) | func_val }; esp_err_t err = sdmmc_send_cmd(card, &cmd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err); return err; } sdmmc_flip_byte_order(resp->data, sizeof(sdmmc_switch_func_rsp_t)); uint32_t resp_ver = SD_SFUNC_VER(resp->data); if (resp_ver == 0) { /* busy response is never sent */ } else if (resp_ver == 1) { if (SD_SFUNC_BUSY(resp->data, group) & (1 << function)) { ESP_LOGD(TAG, "%s: response indicates function %d:%d is busy", __func__, group, function); return ESP_ERR_INVALID_STATE; } } else { ESP_LOGD(TAG, "%s: got an invalid version of SWITCH_FUNC response: 0x%02x", __func__, resp_ver); return ESP_ERR_INVALID_RESPONSE; } return ESP_OK; } esp_err_t sdmmc_enable_hs_mode(sdmmc_card_t* card) { /* This will determine if the card supports SWITCH_FUNC command, * and high speed mode. If the cards supports both, this will enable * high speed mode at the card side. */ if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 || ((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) { return ESP_ERR_NOT_SUPPORTED; } sdmmc_switch_func_rsp_t* response = (sdmmc_switch_func_rsp_t*) heap_caps_malloc(sizeof(*response), MALLOC_CAP_DMA); if (response == NULL) { return ESP_ERR_NO_MEM; } esp_err_t err = sdmmc_send_cmd_switch_func(card, 0, SD_ACCESS_MODE, 0, response); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, err); goto out; } uint32_t supported_mask = SD_SFUNC_SUPPORTED(response->data, 1); if ((supported_mask & BIT(SD_ACCESS_MODE_SDR25)) == 0) { err = ESP_ERR_NOT_SUPPORTED; goto out; } err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR25, response); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err); goto out; } out: free(response); return err; } esp_err_t sdmmc_enable_hs_mode_and_check(sdmmc_card_t* card) { /* All cards should support at least default speed */ card->max_freq_khz = SDMMC_FREQ_DEFAULT; if (card->host.max_freq_khz <= card->max_freq_khz) { /* Host is configured to use low frequency, don't attempt to switch */ card->max_freq_khz = card->host.max_freq_khz; return ESP_OK; } /* Try to enabled HS mode */ esp_err_t err = sdmmc_enable_hs_mode(card); if (err != ESP_OK) { return err; } /* HS mode has been enabled on the card. * Read CSD again, it should now indicate that the card supports * 50MHz clock. * Since SEND_CSD is allowed only in standby mode, and the card is currently in data transfer * mode, deselect the card first, then get the CSD, then select the card again. This step is * not required in SPI mode, since CMD7 (select_card) is not supported. */ const bool is_spi = host_is_spi(card); if (!is_spi) { err = sdmmc_send_cmd_select_card(card, 0); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: select_card (1) returned 0x%x", __func__, err); return err; } } err = sdmmc_send_cmd_send_csd(card, &card->csd); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err); return err; } if (!is_spi) { err = sdmmc_send_cmd_select_card(card, card->rca); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: select_card (2) returned 0x%x", __func__, err); return err; } } if (card->csd.tr_speed != 50000000) { ESP_LOGW(TAG, "unexpected: after enabling HS mode, tr_speed=%d", card->csd.tr_speed); return ESP_ERR_NOT_SUPPORTED; } card->max_freq_khz = MIN(card->host.max_freq_khz, SDMMC_FREQ_HIGHSPEED); return ESP_OK; } esp_err_t sdmmc_check_scr(sdmmc_card_t* card) { /* If frequency switch has been performed, read SCR register one more time * and compare the result with the previous one. Use this simple check as * an indicator of potential signal integrity issues. */ sdmmc_scr_t scr_tmp = { 0 }; esp_err_t err = sdmmc_send_cmd_send_scr(card, &scr_tmp); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: send_scr returned 0x%x", __func__, err); return err; } if (memcmp(&card->scr, &scr_tmp, sizeof(scr_tmp)) != 0) { ESP_LOGE(TAG, "got corrupted data after increasing clock frequency"); return ESP_ERR_INVALID_RESPONSE; } return ESP_OK; } esp_err_t sdmmc_init_spi_crc(sdmmc_card_t* card) { /* In SD mode, CRC checks of data transfers are mandatory and performed * by the hardware. In SPI mode, CRC16 of data transfers is optional and * needs to be enabled. */ assert(host_is_spi(card)); esp_err_t err = sdmmc_send_cmd_crc_on_off(card, true); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: sdmmc_send_cmd_crc_on_off returned 0x%x", __func__, err); return err; } return ESP_OK; } esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid) { out_cid->mfg_id = SD_CID_MID(resp); out_cid->oem_id = SD_CID_OID(resp); SD_CID_PNM_CPY(resp, out_cid->name); out_cid->revision = SD_CID_REV(resp); out_cid->serial = SD_CID_PSN(resp); out_cid->date = SD_CID_MDT(resp); return ESP_OK; } esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd) { out_csd->csd_ver = SD_CSD_CSDVER(response); switch (out_csd->csd_ver) { case SD_CSD_CSDVER_2_0: out_csd->capacity = SD_CSD_V2_CAPACITY(response); out_csd->read_block_len = SD_CSD_V2_BL_LEN; break; case SD_CSD_CSDVER_1_0: out_csd->capacity = SD_CSD_CAPACITY(response); out_csd->read_block_len = SD_CSD_READ_BL_LEN(response); break; default: ESP_LOGE(TAG, "unknown SD CSD structure version 0x%x", out_csd->csd_ver); return ESP_ERR_NOT_SUPPORTED; } out_csd->card_command_class = SD_CSD_CCC(response); int read_bl_size = 1 << out_csd->read_block_len; out_csd->sector_size = MIN(read_bl_size, 512); if (out_csd->sector_size < read_bl_size) { out_csd->capacity *= read_bl_size / out_csd->sector_size; } int speed = SD_CSD_SPEED(response); if (speed == SD_CSD_SPEED_50_MHZ) { out_csd->tr_speed = 50000000; } else { out_csd->tr_speed = 25000000; } return ESP_OK; } esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr) { sdmmc_response_t resp = { 0 }; resp[1] = __builtin_bswap32(raw_scr[0]); resp[0] = __builtin_bswap32(raw_scr[1]); int ver = SCR_STRUCTURE(resp); if (ver != 0) { return ESP_ERR_NOT_SUPPORTED; } out_scr->sd_spec = SCR_SD_SPEC(resp); out_scr->erase_mem_state = SCR_DATA_STAT_AFTER_ERASE(resp); out_scr->bus_width = SCR_SD_BUS_WIDTHS(resp); return ESP_OK; } static const uint32_t s_au_to_size_kb[] = { 0, 16, 32, 64, 128, 256, 512, 1024, 2 * 1024, 4 * 1024, 8 * 1024, 12 * 1024, 16 * 1024, 24 * 1024, 32 * 1024, 64 * 1024 }; _Static_assert(sizeof(s_au_to_size_kb)/sizeof(s_au_to_size_kb[0]) == 16, "invalid number of elements in s_au_to_size_kb"); esp_err_t sdmmc_decode_ssr(uint32_t *raw_ssr, sdmmc_ssr_t* out_ssr) { uint32_t ssr[(SD_SSR_SIZE/sizeof(uint32_t))] = { 0 }; size_t j = (SD_SSR_SIZE/sizeof(uint32_t) - 1); for(size_t i = 0; i < (SD_SSR_SIZE/sizeof(uint32_t)); i++) { ssr[j - i] = __builtin_bswap32(raw_ssr[i]); } out_ssr->cur_bus_width = SSR_DAT_BUS_WIDTH(ssr); out_ssr->discard_support = SSR_DISCARD_SUPPORT(ssr); out_ssr->fule_support = SSR_FULE_SUPPORT(ssr); uint32_t au = SSR_AU_SIZE(ssr); out_ssr->alloc_unit_kb = s_au_to_size_kb[au]; out_ssr->erase_timeout = SSR_ERASE_TIMEOUT(ssr); out_ssr->erase_size_au = SSR_ERASE_SIZE(ssr); out_ssr->erase_offset = SSR_ERASE_OFFSET(ssr); return ESP_OK; } uint32_t sdmmc_sd_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb) { if (arg == SDMMC_SD_DISCARD_ARG) { return SDMMC_SD_DISCARD_TIMEOUT; } else if (arg == SDMMC_SD_ERASE_ARG) { if (card->ssr.alloc_unit_kb != 0 && card->ssr.erase_size_au != 0 && card->ssr.erase_timeout != 0 && card->ssr.erase_offset != 0) { /* Card supports erase timeout estimation. See the erase timeout equation in SD spec. */ uint32_t timeout_sec = card->ssr.erase_offset + card->ssr.erase_timeout * (erase_size_kb + card->ssr.alloc_unit_kb - 1) / (card->ssr.erase_size_au * card->ssr.alloc_unit_kb); ESP_LOGD(TAG, "%s: erase timeout %u s (erasing %u kB, ES=%u, ET=%u, EO=%u, AU=%u kB)", __func__, timeout_sec, erase_size_kb, card->ssr.erase_size_au, card->ssr.erase_timeout, card->ssr.erase_offset, card->ssr.alloc_unit_kb); return timeout_sec * 1000; } else { uint32_t timeout_ms = SDMMC_SD_DISCARD_TIMEOUT * erase_size_kb / card->csd.sector_size; timeout_ms = MAX(1000, timeout_ms); ESP_LOGD(TAG, "%s: erase timeout %u s (erasing %u kB, %ums per sector)", __func__, timeout_ms / 1000, erase_size_kb, SDMMC_SD_DISCARD_TIMEOUT); return timeout_ms; } } else { assert(false && "unexpected SD erase argument"); return 0; } }