/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "esp_types.h" #include "esp_attr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "esp_check.h" #include "malloc.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/ringbuf.h" #include "hal/uart_hal.h" #include "hal/gpio_hal.h" #include "soc/uart_periph.h" #include "soc/rtc_cntl_reg.h" #include "driver/uart.h" #include "driver/gpio.h" #include "driver/uart_select.h" #include "driver/periph_ctrl.h" #include "sdkconfig.h" #include "esp_rom_gpio.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/clk.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/clk.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/clk.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/clk.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/clk.h" #endif #ifdef CONFIG_UART_ISR_IN_IRAM #define UART_ISR_ATTR IRAM_ATTR #define UART_MALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define UART_ISR_ATTR #define UART_MALLOC_CAPS MALLOC_CAP_DEFAULT #endif #define XOFF (0x13) #define XON (0x11) static const char *UART_TAG = "uart"; #define UART_EMPTY_THRESH_DEFAULT (10) #define UART_FULL_THRESH_DEFAULT (120) #define UART_TOUT_THRESH_DEFAULT (10) #define UART_CLKDIV_FRAG_BIT_WIDTH (3) #define UART_TX_IDLE_NUM_DEFAULT (0) #define UART_PATTERN_DET_QLEN_DEFAULT (10) #define UART_MIN_WAKEUP_THRESH (UART_LL_MIN_WAKEUP_THRESH) #if SOC_UART_SUPPORT_WAKEUP_INT #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \ | (UART_INTR_RXFIFO_TOUT) \ | (UART_INTR_RXFIFO_OVF) \ | (UART_INTR_BRK_DET) \ | (UART_INTR_PARITY_ERR)) \ | (UART_INTR_WAKEUP) #else #define UART_INTR_CONFIG_FLAG ((UART_INTR_RXFIFO_FULL) \ | (UART_INTR_RXFIFO_TOUT) \ | (UART_INTR_RXFIFO_OVF) \ | (UART_INTR_BRK_DET) \ | (UART_INTR_PARITY_ERR)) #endif #define UART_ENTER_CRITICAL_SAFE(mux) portENTER_CRITICAL_SAFE(mux) #define UART_EXIT_CRITICAL_SAFE(mux) portEXIT_CRITICAL_SAFE(mux) #define UART_ENTER_CRITICAL_ISR(mux) portENTER_CRITICAL_ISR(mux) #define UART_EXIT_CRITICAL_ISR(mux) portEXIT_CRITICAL_ISR(mux) #define UART_ENTER_CRITICAL(mux) portENTER_CRITICAL(mux) #define UART_EXIT_CRITICAL(mux) portEXIT_CRITICAL(mux) // Check actual UART mode set #define UART_IS_MODE_SET(uart_number, mode) ((p_uart_obj[uart_number]->uart_mode == mode)) #define UART_CONTEX_INIT_DEF(uart_num) {\ .hal.dev = UART_LL_GET_HW(uart_num),\ .spinlock = portMUX_INITIALIZER_UNLOCKED,\ .hw_enabled = false,\ } #if SOC_UART_SUPPORT_RTC_CLK #define RTC_ENABLED(uart_num) (BIT(uart_num)) #endif typedef struct { uart_event_type_t type; /*!< UART TX data type */ struct { int brk_len; size_t size; uint8_t data[0]; } tx_data; } uart_tx_data_t; typedef struct { int wr; int rd; int len; int *data; } uart_pat_rb_t; typedef struct { uart_port_t uart_num; /*!< UART port number*/ int event_queue_size; /*!< UART event queue size*/ intr_handle_t intr_handle; /*!< UART interrupt handle*/ uart_mode_t uart_mode; /*!< UART controller actual mode set by uart_set_mode() */ bool coll_det_flg; /*!< UART collision detection flag */ bool rx_always_timeout_flg; /*!< UART always detect rx timeout flag */ int rx_buffered_len; /*!< UART cached data length */ int rx_buf_size; /*!< RX ring buffer size */ bool rx_buffer_full_flg; /*!< RX ring buffer full flag. */ uint8_t rx_data_buf[SOC_UART_FIFO_LEN]; /*!< Data buffer to stash FIFO data*/ uint8_t rx_stash_len; /*!< stashed data length.(When using flow control, after reading out FIFO data, if we fail to push to buffer, we can just stash them.) */ uint32_t rx_int_usr_mask; /*!< RX interrupt status. Valid at any time, regardless of RX buffer status. */ uart_pat_rb_t rx_pattern_pos; int tx_buf_size; /*!< TX ring buffer size */ bool tx_waiting_fifo; /*!< this flag indicates that some task is waiting for FIFO empty interrupt, used to send all data without any data buffer*/ uint8_t *tx_ptr; /*!< TX data pointer to push to FIFO in TX buffer mode*/ uart_tx_data_t *tx_head; /*!< TX data pointer to head of the current buffer in TX ring buffer*/ uint32_t tx_len_tot; /*!< Total length of current item in ring buffer*/ uint32_t tx_len_cur; uint8_t tx_brk_flg; /*!< Flag to indicate to send a break signal in the end of the item sending procedure */ uint8_t tx_brk_len; /*!< TX break signal cycle length/number */ uint8_t tx_waiting_brk; /*!< Flag to indicate that TX FIFO is ready to send break signal after FIFO is empty, do not push data into TX FIFO right now.*/ uart_select_notif_callback_t uart_select_notif_callback; /*!< Notification about select() events */ QueueHandle_t event_queue; /*!< UART event queue handler*/ RingbufHandle_t rx_ring_buf; /*!< RX ring buffer handler*/ RingbufHandle_t tx_ring_buf; /*!< TX ring buffer handler*/ SemaphoreHandle_t rx_mux; /*!< UART RX data mutex*/ SemaphoreHandle_t tx_mux; /*!< UART TX mutex*/ SemaphoreHandle_t tx_fifo_sem; /*!< UART TX FIFO semaphore*/ SemaphoreHandle_t tx_done_sem; /*!< UART TX done semaphore*/ SemaphoreHandle_t tx_brk_sem; /*!< UART TX send break done semaphore*/ #if CONFIG_UART_ISR_IN_IRAM void *event_queue_storage; void *event_queue_struct; void *rx_ring_buf_storage; void *rx_ring_buf_struct; void *tx_ring_buf_storage; void *tx_ring_buf_struct; void *rx_mux_struct; void *tx_mux_struct; void *tx_fifo_sem_struct; void *tx_done_sem_struct; void *tx_brk_sem_struct; #endif } uart_obj_t; typedef struct { uart_hal_context_t hal; /*!< UART hal context*/ portMUX_TYPE spinlock; bool hw_enabled; } uart_context_t; static uart_obj_t *p_uart_obj[UART_NUM_MAX] = {0}; static uart_context_t uart_context[UART_NUM_MAX] = { UART_CONTEX_INIT_DEF(UART_NUM_0), UART_CONTEX_INIT_DEF(UART_NUM_1), #if UART_NUM_MAX > 2 UART_CONTEX_INIT_DEF(UART_NUM_2), #endif }; static portMUX_TYPE uart_selectlock = portMUX_INITIALIZER_UNLOCKED; #if SOC_UART_SUPPORT_RTC_CLK static uint8_t rtc_enabled = 0; static portMUX_TYPE rtc_num_spinlock = portMUX_INITIALIZER_UNLOCKED; static void rtc_clk_enable(uart_port_t uart_num) { portENTER_CRITICAL(&rtc_num_spinlock); if (!(rtc_enabled & RTC_ENABLED(uart_num))) { rtc_enabled |= RTC_ENABLED(uart_num); } SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M); portEXIT_CRITICAL(&rtc_num_spinlock); } static void rtc_clk_disable(uart_port_t uart_num) { assert(rtc_enabled & RTC_ENABLED(uart_num)); portENTER_CRITICAL(&rtc_num_spinlock); rtc_enabled &= ~RTC_ENABLED(uart_num); if (rtc_enabled == 0) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_EN_M); } portEXIT_CRITICAL(&rtc_num_spinlock); } #endif static void uart_module_enable(uart_port_t uart_num) { UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (uart_context[uart_num].hw_enabled != true) { periph_module_enable(uart_periph_signal[uart_num].module); if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM) { // Workaround for ESP32C3: enable core reset // before enabling uart module clock // to prevent uart output garbage value. #if SOC_UART_REQUIRE_CORE_RESET uart_hal_set_reset_core(&(uart_context[uart_num].hal), true); periph_module_reset(uart_periph_signal[uart_num].module); uart_hal_set_reset_core(&(uart_context[uart_num].hal), false); #else periph_module_reset(uart_periph_signal[uart_num].module); #endif } uart_context[uart_num].hw_enabled = true; } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); } static void uart_module_disable(uart_port_t uart_num) { UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (uart_context[uart_num].hw_enabled != false) { if (uart_num != CONFIG_ESP_CONSOLE_UART_NUM ) { periph_module_disable(uart_periph_signal[uart_num].module); } uart_context[uart_num].hw_enabled = false; } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); } esp_err_t uart_set_word_length(uart_port_t uart_num, uart_word_length_t data_bit) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((data_bit < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), data_bit); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_word_length(uart_port_t uart_num, uart_word_length_t *data_bit) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); uart_hal_get_data_bit_num(&(uart_context[uart_num].hal), data_bit); return ESP_OK; } esp_err_t uart_set_stop_bits(uart_port_t uart_num, uart_stop_bits_t stop_bit) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((stop_bit < UART_STOP_BITS_MAX), ESP_FAIL, UART_TAG, "stop bit error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_stop_bits(&(uart_context[uart_num].hal), stop_bit); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_stop_bits(uart_port_t uart_num, uart_stop_bits_t *stop_bit) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_get_stop_bits(&(uart_context[uart_num].hal), stop_bit); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_parity(uart_port_t uart_num, uart_parity_t parity_mode) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_parity(&(uart_context[uart_num].hal), parity_mode); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_parity(uart_port_t uart_num, uart_parity_t *parity_mode) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_get_parity(&(uart_context[uart_num].hal), parity_mode); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_baudrate(uart_port_t uart_num, uint32_t baud_rate) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_baudrate(&(uart_context[uart_num].hal), baud_rate); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_baudrate(uart_port_t uart_num, uint32_t *baudrate) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_get_baudrate(&(uart_context[uart_num].hal), baudrate); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_line_inverse(uart_port_t uart_num, uint32_t inverse_mask) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_inverse_signal(&(uart_context[uart_num].hal), inverse_mask); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_sw_flow_ctrl(uart_port_t uart_num, bool enable, uint8_t rx_thresh_xon, uint8_t rx_thresh_xoff) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((rx_thresh_xon < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xon thresh error"); ESP_RETURN_ON_FALSE((rx_thresh_xoff < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow xoff thresh error"); uart_sw_flowctrl_t sw_flow_ctl = { .xon_char = XON, .xoff_char = XOFF, .xon_thrd = rx_thresh_xon, .xoff_thrd = rx_thresh_xoff, }; UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_sw_flow_ctrl(&(uart_context[uart_num].hal), &sw_flow_ctl, enable); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t flow_ctrl, uint8_t rx_thresh) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((rx_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error"); ESP_RETURN_ON_FALSE((flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl, rx_thresh); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_hw_flow_ctrl(uart_port_t uart_num, uart_hw_flowcontrol_t *flow_ctrl) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_get_hw_flow_ctrl(&(uart_context[uart_num].hal), flow_ctrl); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t UART_ISR_ATTR uart_clear_intr_status(uart_port_t uart_num, uint32_t clr_mask) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), clr_mask); return ESP_OK; } esp_err_t uart_enable_intr_mask(uart_port_t uart_num, uint32_t enable_mask) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); /* Keep track of the interrupt toggling. In fact, without such variable, * once the RX buffer is full and the RX interrupts disabled, it is * impossible what was the previous state (enabled/disabled) of these * interrupt masks. Thus, this will be very particularly handy when * emptying a filled RX buffer. */ p_uart_obj[uart_num]->rx_int_usr_mask |= enable_mask; uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), enable_mask); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), enable_mask); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } /** * @brief Function re-enabling the given interrupts (mask) if and only if * they have not been disabled by the user. * * @param uart_num UART number to perform the operation on * @param enable_mask Interrupts (flags) to be re-enabled * * @return ESP_OK in success, ESP_FAIL if uart_num is incorrect */ static esp_err_t uart_reenable_intr_mask(uart_port_t uart_num, uint32_t enable_mask) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); /* Mask will only contain the interrupt flags that needs to be re-enabled * AND which have NOT been explicitly disabled by the user. */ uint32_t mask = p_uart_obj[uart_num]->rx_int_usr_mask & enable_mask; uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), mask); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), mask); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_disable_intr_mask(uart_port_t uart_num, uint32_t disable_mask) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); p_uart_obj[uart_num]->rx_int_usr_mask &= ~disable_mask; uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), disable_mask); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } static esp_err_t uart_pattern_link_free(uart_port_t uart_num) { int *pdata = NULL; UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (p_uart_obj[uart_num]->rx_pattern_pos.data != NULL) { pdata = p_uart_obj[uart_num]->rx_pattern_pos.data; p_uart_obj[uart_num]->rx_pattern_pos.data = NULL; p_uart_obj[uart_num]->rx_pattern_pos.wr = 0; p_uart_obj[uart_num]->rx_pattern_pos.rd = 0; } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); free(pdata); return ESP_OK; } static esp_err_t UART_ISR_ATTR uart_pattern_enqueue(uart_port_t uart_num, int pos) { esp_err_t ret = ESP_OK; uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int next = p_pos->wr + 1; if (next >= p_pos->len) { next = 0; } if (next == p_pos->rd) { #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM ESP_EARLY_LOGW(UART_TAG, "Fail to enqueue pattern position, pattern queue is full."); #endif ret = ESP_FAIL; } else { p_pos->data[p_pos->wr] = pos; p_pos->wr = next; ret = ESP_OK; } return ret; } static esp_err_t uart_pattern_dequeue(uart_port_t uart_num) { if (p_uart_obj[uart_num]->rx_pattern_pos.data == NULL) { return ESP_ERR_INVALID_STATE; } else { esp_err_t ret = ESP_OK; uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; if (p_pos->rd == p_pos->wr) { ret = ESP_FAIL; } else { p_pos->rd++; } if (p_pos->rd >= p_pos->len) { p_pos->rd = 0; } return ret; } } static esp_err_t uart_pattern_queue_update(uart_port_t uart_num, int diff_len) { uart_pat_rb_t *p_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int rd = p_pos->rd; while (rd != p_pos->wr) { p_pos->data[rd] -= diff_len; int rd_rec = rd; rd ++; if (rd >= p_pos->len) { rd = 0; } if (p_pos->data[rd_rec] < 0) { p_pos->rd = rd; } } return ESP_OK; } int uart_pattern_pop_pos(uart_port_t uart_num) { ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int pos = -1; if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { pos = pat_pos->data[pat_pos->rd]; uart_pattern_dequeue(uart_num); } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return pos; } int uart_pattern_get_pos(uart_port_t uart_num) { ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_pat_rb_t *pat_pos = &p_uart_obj[uart_num]->rx_pattern_pos; int pos = -1; if (pat_pos != NULL && pat_pos->rd != pat_pos->wr) { pos = pat_pos->data[pat_pos->rd]; } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return pos; } esp_err_t uart_pattern_queue_reset(uart_port_t uart_num, int queue_length) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error"); int *pdata = (int *) malloc(queue_length * sizeof(int)); if (pdata == NULL) { return ESP_ERR_NO_MEM; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); int *ptmp = p_uart_obj[uart_num]->rx_pattern_pos.data; p_uart_obj[uart_num]->rx_pattern_pos.data = pdata; p_uart_obj[uart_num]->rx_pattern_pos.len = queue_length; p_uart_obj[uart_num]->rx_pattern_pos.rd = 0; p_uart_obj[uart_num]->rx_pattern_pos.wr = 0; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); free(ptmp); return ESP_OK; } #if CONFIG_IDF_TARGET_ESP32 esp_err_t uart_enable_pattern_det_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); uart_at_cmd_t at_cmd = {0}; at_cmd.cmd_char = pattern_chr; at_cmd.char_num = chr_num; at_cmd.gap_tout = chr_tout; at_cmd.pre_idle = pre_idle; at_cmd.post_idle = post_idle; uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } #endif esp_err_t uart_enable_pattern_det_baud_intr(uart_port_t uart_num, char pattern_chr, uint8_t chr_num, int chr_tout, int post_idle, int pre_idle) { ESP_RETURN_ON_FALSE(uart_num < UART_NUM_MAX, ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE(chr_tout >= 0 && chr_tout <= UART_RX_GAP_TOUT_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); ESP_RETURN_ON_FALSE(post_idle >= 0 && post_idle <= UART_POST_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); ESP_RETURN_ON_FALSE(pre_idle >= 0 && pre_idle <= UART_PRE_IDLE_NUM_V, ESP_FAIL, UART_TAG, "uart pattern set error\n"); uart_at_cmd_t at_cmd = {0}; at_cmd.cmd_char = pattern_chr; at_cmd.char_num = chr_num; #if CONFIG_IDF_TARGET_ESP32 int apb_clk_freq = 0; uint32_t uart_baud = 0; uint32_t uart_div = 0; uart_get_baudrate(uart_num, &uart_baud); apb_clk_freq = esp_clk_apb_freq(); uart_div = apb_clk_freq / uart_baud; at_cmd.gap_tout = chr_tout * uart_div; at_cmd.pre_idle = pre_idle * uart_div; at_cmd.post_idle = post_idle * uart_div; #else at_cmd.gap_tout = chr_tout; at_cmd.pre_idle = pre_idle; at_cmd.post_idle = post_idle; #endif uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_at_cmd_char(&(uart_context[uart_num].hal), &at_cmd); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_disable_pattern_det_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_INTR_CMD_CHAR_DET); } esp_err_t uart_enable_rx_intr(uart_port_t uart_num) { return uart_enable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); } esp_err_t uart_disable_rx_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); } esp_err_t uart_disable_tx_intr(uart_port_t uart_num) { return uart_disable_intr_mask(uart_num, UART_INTR_TXFIFO_EMPTY); } esp_err_t uart_enable_tx_intr(uart_port_t uart_num, int enable, int thresh) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "empty intr threshold error"); if (enable == 0) { UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); } else { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), thresh); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); } return ESP_OK; } esp_err_t uart_isr_register(uart_port_t uart_num, void (*fn)(void *), void *arg, int intr_alloc_flags, uart_isr_handle_t *handle) { int ret; uart_isr_handle_t rethandle; ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ret = esp_intr_alloc(uart_periph_signal[uart_num].irq, intr_alloc_flags, fn, arg, &rethandle); if (ret == ESP_OK) { p_uart_obj[uart_num]->intr_handle = rethandle; if (handle != NULL) { *handle = rethandle; } } return ret; } esp_err_t uart_isr_free(uart_port_t uart_num) { esp_err_t ret; ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]->intr_handle != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); ret = esp_intr_free(p_uart_obj[uart_num]->intr_handle); p_uart_obj[uart_num]->intr_handle = NULL; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ret; } static bool uart_try_set_iomux_pin(uart_port_t uart_num, int io_num, uint32_t idx) { /* Store a pointer to the default pin, to optimize access to its fields. */ const uart_periph_sig_t *upin = &uart_periph_signal[uart_num].pins[idx]; /* In theory, if default_gpio is -1, iomux_func should also be -1, but * let's be safe and test both. */ if (upin->iomux_func == -1 || upin->default_gpio == -1 || upin->default_gpio != io_num) { return false; } /* Assign the correct funct to the GPIO. */ assert (upin->iomux_func != -1); gpio_iomux_out(io_num, upin->iomux_func, false); /* If the pin is input, we also have to redirect the signal, * in order to bypasse the GPIO matrix. */ if (upin->input) { gpio_iomux_in(io_num, upin->signal); } return true; } //internal signal can be output to multiple GPIO pads //only one GPIO pad can connect with input signal esp_err_t uart_set_pin(uart_port_t uart_num, int tx_io_num, int rx_io_num, int rts_io_num, int cts_io_num) { ESP_RETURN_ON_FALSE((uart_num >= 0), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((tx_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(tx_io_num))), ESP_FAIL, UART_TAG, "tx_io_num error"); ESP_RETURN_ON_FALSE((rx_io_num < 0 || (GPIO_IS_VALID_GPIO(rx_io_num))), ESP_FAIL, UART_TAG, "rx_io_num error"); ESP_RETURN_ON_FALSE((rts_io_num < 0 || (GPIO_IS_VALID_OUTPUT_GPIO(rts_io_num))), ESP_FAIL, UART_TAG, "rts_io_num error"); ESP_RETURN_ON_FALSE((cts_io_num < 0 || (GPIO_IS_VALID_GPIO(cts_io_num))), ESP_FAIL, UART_TAG, "cts_io_num error"); /* In the following statements, if the io_num is negative, no need to configure anything. */ if (tx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, tx_io_num, SOC_UART_TX_PIN_IDX)) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[tx_io_num], PIN_FUNC_GPIO); gpio_set_level(tx_io_num, 1); esp_rom_gpio_connect_out_signal(tx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_TX_PIN_IDX), 0, 0); } if (rx_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rx_io_num, SOC_UART_RX_PIN_IDX)) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rx_io_num], PIN_FUNC_GPIO); gpio_set_pull_mode(rx_io_num, GPIO_PULLUP_ONLY); gpio_set_direction(rx_io_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(rx_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RX_PIN_IDX), 0); } if (rts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, rts_io_num, SOC_UART_RTS_PIN_IDX)) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[rts_io_num], PIN_FUNC_GPIO); gpio_set_direction(rts_io_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(rts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_RTS_PIN_IDX), 0, 0); } if (cts_io_num >= 0 && !uart_try_set_iomux_pin(uart_num, cts_io_num, SOC_UART_CTS_PIN_IDX)) { gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[cts_io_num], PIN_FUNC_GPIO); gpio_set_pull_mode(cts_io_num, GPIO_PULLUP_ONLY); gpio_set_direction(cts_io_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(cts_io_num, UART_PERIPH_SIGNAL(uart_num, SOC_UART_CTS_PIN_IDX), 0); } return ESP_OK; } esp_err_t uart_set_rts(uart_port_t uart_num, int level) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_FAIL, UART_TAG, "disable hw flowctrl before using sw control"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_rts(&(uart_context[uart_num].hal), level); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_dtr(uart_port_t uart_num, int level) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_dtr(&(uart_context[uart_num].hal), level); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_tx_idle_num(uart_port_t uart_num, uint16_t idle_num) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((idle_num <= UART_TX_IDLE_NUM_V), ESP_FAIL, UART_TAG, "uart idle num error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), idle_num); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_param_config(uart_port_t uart_num, const uart_config_t *uart_config) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((uart_config), ESP_FAIL, UART_TAG, "param null"); ESP_RETURN_ON_FALSE((uart_config->rx_flow_ctrl_thresh < SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "rx flow thresh error"); ESP_RETURN_ON_FALSE((uart_config->flow_ctrl < UART_HW_FLOWCTRL_MAX), ESP_FAIL, UART_TAG, "hw_flowctrl mode error"); ESP_RETURN_ON_FALSE((uart_config->data_bits < UART_DATA_BITS_MAX), ESP_FAIL, UART_TAG, "data bit error"); uart_module_enable(uart_num); #if SOC_UART_SUPPORT_RTC_CLK if (uart_config->source_clk == UART_SCLK_RTC) { rtc_clk_enable(uart_num); } #endif UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_init(&(uart_context[uart_num].hal), uart_num); uart_hal_set_sclk(&(uart_context[uart_num].hal), uart_config->source_clk); uart_hal_set_baudrate(&(uart_context[uart_num].hal), uart_config->baud_rate); uart_hal_set_parity(&(uart_context[uart_num].hal), uart_config->parity); uart_hal_set_data_bit_num(&(uart_context[uart_num].hal), uart_config->data_bits); uart_hal_set_stop_bits(&(uart_context[uart_num].hal), uart_config->stop_bits); uart_hal_set_tx_idle_num(&(uart_context[uart_num].hal), UART_TX_IDLE_NUM_DEFAULT); uart_hal_set_hw_flow_ctrl(&(uart_context[uart_num].hal), uart_config->flow_ctrl, uart_config->rx_flow_ctrl_thresh); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); uart_hal_txfifo_rst(&(uart_context[uart_num].hal)); return ESP_OK; } esp_err_t uart_intr_config(uart_port_t uart_num, const uart_intr_config_t *intr_conf) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((intr_conf), ESP_FAIL, UART_TAG, "param null"); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_TOUT) { uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), intr_conf->rx_timeout_thresh); } else { //Disable rx_tout intr uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), 0); } if (intr_conf->intr_enable_mask & UART_INTR_RXFIFO_FULL) { uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), intr_conf->rxfifo_full_thresh); } if (intr_conf->intr_enable_mask & UART_INTR_TXFIFO_EMPTY) { uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), intr_conf->txfifo_empty_intr_thresh); } uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), intr_conf->intr_enable_mask); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } static int UART_ISR_ATTR uart_find_pattern_from_last(uint8_t *buf, int length, uint8_t pat_chr, uint8_t pat_num) { int cnt = 0; int len = length; while (len >= 0) { if (buf[len] == pat_chr) { cnt++; } else { cnt = 0; } if (cnt >= pat_num) { break; } len --; } return len; } static uint32_t UART_ISR_ATTR uart_enable_tx_write_fifo(uart_port_t uart_num, const uint8_t *pbuf, uint32_t len) { uint32_t sent_len = 0; UART_ENTER_CRITICAL_SAFE(&(uart_context[uart_num].spinlock)); if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { uart_hal_set_rts(&(uart_context[uart_num].hal), 0); // If any new things are written to fifo, then we can always clear the previous TX_DONE interrupt bit (if it was set) // Old TX_DONE bit might reset the RTS, leading new tx transmission failure for rs485 mode uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); } uart_hal_write_txfifo(&(uart_context[uart_num].hal), pbuf, len, &sent_len); UART_EXIT_CRITICAL_SAFE(&(uart_context[uart_num].spinlock)); return sent_len; } //internal isr handler for default driver code. static void UART_ISR_ATTR uart_rx_intr_handler_default(void *param) { uart_obj_t *p_uart = (uart_obj_t *) param; uint8_t uart_num = p_uart->uart_num; int rx_fifo_len = 0; uint32_t uart_intr_status = 0; uart_event_t uart_event; portBASE_TYPE HPTaskAwoken = 0; static uint8_t pat_flg = 0; while (1) { // The `continue statement` may cause the interrupt to loop infinitely // we exit the interrupt here uart_intr_status = uart_hal_get_intsts_mask(&(uart_context[uart_num].hal)); //Exit form while loop if (uart_intr_status == 0) { break; } uart_event.type = UART_EVENT_MAX; if (uart_intr_status & UART_INTR_TXFIFO_EMPTY) { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); if (p_uart->tx_waiting_brk) { continue; } //TX semaphore will only be used when tx_buf_size is zero. if (p_uart->tx_waiting_fifo == true && p_uart->tx_buf_size == 0) { p_uart->tx_waiting_fifo = false; xSemaphoreGiveFromISR(p_uart->tx_fifo_sem, &HPTaskAwoken); } else { //We don't use TX ring buffer, because the size is zero. if (p_uart->tx_buf_size == 0) { continue; } bool en_tx_flg = false; uint32_t tx_fifo_rem = uart_hal_get_txfifo_len(&(uart_context[uart_num].hal)); //We need to put a loop here, in case all the buffer items are very short. //That would cause a watch_dog reset because empty interrupt happens so often. //Although this is a loop in ISR, this loop will execute at most 128 turns. while (tx_fifo_rem) { if (p_uart->tx_len_tot == 0 || p_uart->tx_ptr == NULL || p_uart->tx_len_cur == 0) { size_t size; p_uart->tx_head = (uart_tx_data_t *) xRingbufferReceiveFromISR(p_uart->tx_ring_buf, &size); if (p_uart->tx_head) { //The first item is the data description //Get the first item to get the data information if (p_uart->tx_len_tot == 0) { p_uart->tx_ptr = NULL; p_uart->tx_len_tot = p_uart->tx_head->tx_data.size; if (p_uart->tx_head->type == UART_DATA_BREAK) { p_uart->tx_brk_flg = 1; p_uart->tx_brk_len = p_uart->tx_head->tx_data.brk_len; } //We have saved the data description from the 1st item, return buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); } else if (p_uart->tx_ptr == NULL) { //Update the TX item pointer, we will need this to return item to buffer. p_uart->tx_ptr = (uint8_t *)p_uart->tx_head; en_tx_flg = true; p_uart->tx_len_cur = size; } } else { //Can not get data from ring buffer, return; break; } } if (p_uart->tx_len_tot > 0 && p_uart->tx_ptr && p_uart->tx_len_cur > 0) { // To fill the TX FIFO. uint32_t send_len = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) p_uart->tx_ptr, MIN(p_uart->tx_len_cur, tx_fifo_rem)); p_uart->tx_ptr += send_len; p_uart->tx_len_tot -= send_len; p_uart->tx_len_cur -= send_len; tx_fifo_rem -= send_len; if (p_uart->tx_len_cur == 0) { //Return item to ring buffer. vRingbufferReturnItemFromISR(p_uart->tx_ring_buf, p_uart->tx_head, &HPTaskAwoken); p_uart->tx_head = NULL; p_uart->tx_ptr = NULL; //Sending item done, now we need to send break if there is a record. //Set TX break signal after FIFO is empty if (p_uart->tx_len_tot == 0 && p_uart->tx_brk_flg == 1) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_tx_break(&(uart_context[uart_num].hal), p_uart->tx_brk_len); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); p_uart->tx_waiting_brk = 1; //do not enable TX empty interrupt en_tx_flg = false; } else { //enable TX empty interrupt en_tx_flg = true; } } else { //enable TX empty interrupt en_tx_flg = true; } } } if (en_tx_flg) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); } } } else if ((uart_intr_status & UART_INTR_RXFIFO_TOUT) || (uart_intr_status & UART_INTR_RXFIFO_FULL) || (uart_intr_status & UART_INTR_CMD_CHAR_DET) ) { if (pat_flg == 1) { uart_intr_status |= UART_INTR_CMD_CHAR_DET; pat_flg = 0; } if (p_uart->rx_buffer_full_flg == false) { rx_fifo_len = uart_hal_get_rxfifo_len(&(uart_context[uart_num].hal)); if ((p_uart_obj[uart_num]->rx_always_timeout_flg) && !(uart_intr_status & UART_INTR_RXFIFO_TOUT)) { rx_fifo_len--; // leave one byte in the fifo in order to trigger uart_intr_rxfifo_tout } uart_hal_read_rxfifo(&(uart_context[uart_num].hal), p_uart->rx_data_buf, &rx_fifo_len); uint8_t pat_chr = 0; uint8_t pat_num = 0; int pat_idx = -1; uart_hal_get_at_cmd_char(&(uart_context[uart_num].hal), &pat_chr, &pat_num); //Get the buffer from the FIFO if (uart_intr_status & UART_INTR_CMD_CHAR_DET) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); uart_event.type = UART_PATTERN_DET; uart_event.size = rx_fifo_len; pat_idx = uart_find_pattern_from_last(p_uart->rx_data_buf, rx_fifo_len - 1, pat_chr, pat_num); } else { //After Copying the Data From FIFO ,Clear intr_status uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL); uart_event.type = UART_DATA; uart_event.size = rx_fifo_len; uart_event.timeout_flag = (uart_intr_status & UART_INTR_RXFIFO_TOUT) ? true : false; UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_READ_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); } p_uart->rx_stash_len = rx_fifo_len; //If we fail to push data to ring buffer, we will have to stash the data, and send next time. //Mainly for applications that uses flow control or small ring buffer. if (pdFALSE == xRingbufferSendFromISR(p_uart->rx_ring_buf, p_uart->rx_data_buf, p_uart->rx_stash_len, &HPTaskAwoken)) { p_uart->rx_buffer_full_flg = true; UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); if (uart_event.type == UART_PATTERN_DET) { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); if (rx_fifo_len < pat_num) { //some of the characters are read out in last interrupt uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len)); } else { uart_pattern_enqueue(uart_num, pat_idx <= -1 ? //can not find the pattern in buffer, p_uart->rx_buffered_len + p_uart->rx_stash_len : // find the pattern in buffer p_uart->rx_buffered_len + pat_idx); } UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); if ((p_uart->event_queue != NULL) && (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken))) { #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); #endif } } uart_event.type = UART_BUFFER_FULL; } else { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); if (uart_intr_status & UART_INTR_CMD_CHAR_DET) { if (rx_fifo_len < pat_num) { //some of the characters are read out in last interrupt uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len - (pat_num - rx_fifo_len)); } else if (pat_idx >= 0) { // find the pattern in stash buffer. uart_pattern_enqueue(uart_num, p_uart->rx_buffered_len + pat_idx); } } p_uart->rx_buffered_len += p_uart->rx_stash_len; UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); } } else { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); if (uart_intr_status & UART_INTR_CMD_CHAR_DET) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); uart_event.type = UART_PATTERN_DET; uart_event.size = rx_fifo_len; pat_flg = 1; } } } else if (uart_intr_status & UART_INTR_RXFIFO_OVF) { // When fifo overflows, we reset the fifo. UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_OVF); uart_event.type = UART_FIFO_OVF; } else if (uart_intr_status & UART_INTR_BRK_DET) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_BRK_DET); uart_event.type = UART_BREAK; } else if (uart_intr_status & UART_INTR_FRAM_ERR) { UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_FRAM_ERR); uart_event.type = UART_FRAME_ERR; } else if (uart_intr_status & UART_INTR_PARITY_ERR) { UART_ENTER_CRITICAL_ISR(&uart_selectlock); if (p_uart->uart_select_notif_callback) { p_uart->uart_select_notif_callback(uart_num, UART_SELECT_ERROR_NOTIF, &HPTaskAwoken); } UART_EXIT_CRITICAL_ISR(&uart_selectlock); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_PARITY_ERR); uart_event.type = UART_PARITY_ERR; } else if (uart_intr_status & UART_INTR_TX_BRK_DONE) { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_tx_break(&(uart_context[uart_num].hal), 0); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); if (p_uart->tx_brk_flg == 1) { uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TXFIFO_EMPTY); } UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); if (p_uart->tx_brk_flg == 1) { p_uart->tx_brk_flg = 0; p_uart->tx_waiting_brk = 0; } else { xSemaphoreGiveFromISR(p_uart->tx_brk_sem, &HPTaskAwoken); } } else if (uart_intr_status & UART_INTR_TX_BRK_IDLE) { UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE); UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_IDLE); } else if (uart_intr_status & UART_INTR_CMD_CHAR_DET) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_CMD_CHAR_DET); uart_event.type = UART_PATTERN_DET; } else if ((uart_intr_status & UART_INTR_RS485_PARITY_ERR) || (uart_intr_status & UART_INTR_RS485_FRM_ERR) || (uart_intr_status & UART_INTR_RS485_CLASH)) { // RS485 collision or frame error interrupt triggered UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); // Set collision detection flag p_uart_obj[uart_num]->coll_det_flg = true; UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR); uart_event.type = UART_EVENT_MAX; } else if (uart_intr_status & UART_INTR_TX_DONE) { if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) && uart_hal_is_tx_idle(&(uart_context[uart_num].hal)) != true) { // The TX_DONE interrupt is triggered but transmit is active // then postpone interrupt processing for next interrupt uart_event.type = UART_EVENT_MAX; } else { // Workaround for RS485: If the RS485 half duplex mode is active // and transmitter is in idle state then reset received buffer and reset RTS pin // skip this behavior for other UART modes uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); UART_ENTER_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); if (UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX)) { uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); uart_hal_set_rts(&(uart_context[uart_num].hal), 1); } UART_EXIT_CRITICAL_ISR(&(uart_context[uart_num].spinlock)); xSemaphoreGiveFromISR(p_uart_obj[uart_num]->tx_done_sem, &HPTaskAwoken); } } #if SOC_UART_SUPPORT_WAKEUP_INT else if (uart_intr_status & UART_INTR_WAKEUP) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_WAKEUP); uart_event.type = UART_WAKEUP; } #endif else { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), uart_intr_status); /*simply clear all other intr status*/ uart_event.type = UART_EVENT_MAX; } if (uart_event.type != UART_EVENT_MAX && p_uart->event_queue) { if (pdFALSE == xQueueSendFromISR(p_uart->event_queue, (void * )&uart_event, &HPTaskAwoken)) { #ifndef CONFIG_UART_ISR_IN_IRAM //Only log if ISR is not in IRAM ESP_EARLY_LOGV(UART_TAG, "UART event queue full"); #endif } } } if (HPTaskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } /**************************************************************/ esp_err_t uart_wait_tx_done(uart_port_t uart_num, TickType_t ticks_to_wait) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error"); BaseType_t res; portTickType ticks_start = xTaskGetTickCount(); //Take tx_mux res = xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)ticks_to_wait); if (res == pdFALSE) { return ESP_ERR_TIMEOUT; } // Check the enable status of TX_DONE: If already enabled, then let the isr handle the status bit; // If not enabled, then make sure to clear the status bit before enabling the TX_DONE interrupt bit UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); bool is_rs485_mode = UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX); bool disabled = !(uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE); // For RS485 mode, TX_DONE interrupt is enabled for every tx transmission, so there shouldn't be a case of // interrupt not enabled but raw bit is set. assert(!(is_rs485_mode && disabled && uart_hal_get_intraw_mask(&(uart_context[uart_num].hal)) & UART_INTR_TX_DONE)); // If decided to register for the TX_DONE event, then we should clear any possible old tx transmission status. // The clear operation of RS485 mode should only be handled in isr or when writing to tx fifo. if (disabled && !is_rs485_mode) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, 0); // FSM status register update comes later than TX_DONE interrupt raw bit raise // The maximum time takes for FSM status register to update is (6 APB clock cycles + 3 UART core clock cycles) // Therefore, to avoid the situation of TX_DONE bit being cleared but FSM didn't be recognized as IDLE (which // would lead to timeout), a delay of 2us is added in between. esp_rom_delay_us(2); if (uart_hal_is_tx_idle(&(uart_context[uart_num].hal))) { xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_DONE); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); TickType_t ticks_end = xTaskGetTickCount(); if (ticks_end - ticks_start > ticks_to_wait) { ticks_to_wait = 0; } else { ticks_to_wait = ticks_to_wait - (ticks_end - ticks_start); } //take 2nd tx_done_sem, wait given from ISR res = xSemaphoreTake(p_uart_obj[uart_num]->tx_done_sem, (portTickType)ticks_to_wait); if (res == pdFALSE) { // The TX_DONE interrupt will be disabled in ISR xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_ERR_TIMEOUT; } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return ESP_OK; } int uart_tx_chars(uart_port_t uart_num, const char *buffer, uint32_t len) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE(buffer, (-1), UART_TAG, "buffer null"); if (len == 0) { return 0; } int tx_len = 0; xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); tx_len = (int)uart_enable_tx_write_fifo(uart_num, (const uint8_t *) buffer, len); xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return tx_len; } static int uart_tx_all(uart_port_t uart_num, const char *src, size_t size, bool brk_en, int brk_len) { if (size == 0) { return 0; } size_t original_size = size; //lock for uart_tx xSemaphoreTake(p_uart_obj[uart_num]->tx_mux, (portTickType)portMAX_DELAY); p_uart_obj[uart_num]->coll_det_flg = false; if (p_uart_obj[uart_num]->tx_buf_size > 0) { size_t max_size = xRingbufferGetMaxItemSize(p_uart_obj[uart_num]->tx_ring_buf); int offset = 0; uart_tx_data_t evt; evt.tx_data.size = size; evt.tx_data.brk_len = brk_len; if (brk_en) { evt.type = UART_DATA_BREAK; } else { evt.type = UART_DATA; } xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) &evt, sizeof(uart_tx_data_t), portMAX_DELAY); while (size > 0) { size_t send_size = size > max_size / 2 ? max_size / 2 : size; xRingbufferSend(p_uart_obj[uart_num]->tx_ring_buf, (void *) (src + offset), send_size, portMAX_DELAY); size -= send_size; offset += send_size; uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } } else { while (size) { //semaphore for tx_fifo available if (pdTRUE == xSemaphoreTake(p_uart_obj[uart_num]->tx_fifo_sem, (portTickType)portMAX_DELAY)) { uint32_t sent = uart_enable_tx_write_fifo(uart_num, (const uint8_t *) src, size); if (sent < size) { p_uart_obj[uart_num]->tx_waiting_fifo = true; uart_enable_tx_intr(uart_num, 1, UART_EMPTY_THRESH_DEFAULT); } size -= sent; src += sent; } } if (brk_en) { uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_tx_break(&(uart_context[uart_num].hal), brk_len); uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_TX_BRK_DONE); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); xSemaphoreTake(p_uart_obj[uart_num]->tx_brk_sem, (portTickType)portMAX_DELAY); } xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); } xSemaphoreGive(p_uart_obj[uart_num]->tx_mux); return original_size; } int uart_write_bytes(uart_port_t uart_num, const void *src, size_t size) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num] != NULL), (-1), UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE(src, (-1), UART_TAG, "buffer null"); return uart_tx_all(uart_num, src, size, 0, 0); } int uart_write_bytes_with_break(uart_port_t uart_num, const void *src, size_t size, int brk_len) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE((size > 0), (-1), UART_TAG, "uart size error"); ESP_RETURN_ON_FALSE((src), (-1), UART_TAG, "uart data null"); ESP_RETURN_ON_FALSE((brk_len > 0 && brk_len < 256), (-1), UART_TAG, "break_num error"); return uart_tx_all(uart_num, src, size, 1, brk_len); } static bool uart_check_buf_full(uart_port_t uart_num) { if (p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if (res == pdTRUE) { UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); /* Only re-activate UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL * interrupts if they were NOT explicitly disabled by the user. */ uart_reenable_intr_mask(p_uart_obj[uart_num]->uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL); return true; } } return false; } int uart_read_bytes(uart_port_t uart_num, void *buf, uint32_t length, TickType_t ticks_to_wait) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), (-1), UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((buf), (-1), UART_TAG, "uart data null"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), (-1), UART_TAG, "uart driver error"); uint8_t *data = NULL; size_t size = 0; size_t copy_len = 0; if (xSemaphoreTake(p_uart_obj[uart_num]->rx_mux, (portTickType)ticks_to_wait) != pdTRUE) { return -1; } while (length) { data = (uint8_t *) xRingbufferReceiveUpTo(p_uart_obj[uart_num]->rx_ring_buf, &size, (portTickType) ticks_to_wait, length); if (!data) { // When using dual cores, `rx_buffer_full_flg` may read and write on different cores at same time, // which may lose synchronization. So we also need to call `uart_check_buf_full` once when ringbuffer is empty // to solve the possible asynchronous issues. if (uart_check_buf_full(uart_num)) { // This condition will never be true if `uart_read_bytes` // and `uart_rx_intr_handler_default` are scheduled on the same core. continue; } else { // Timeout while not fetched all requested length break; } } memcpy((uint8_t *)buf + copy_len, data, size); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); p_uart_obj[uart_num]->rx_buffered_len -= size; uart_pattern_queue_update(uart_num, size); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); copy_len += size; length -= size; vRingbufferReturnItem(p_uart_obj[uart_num]->rx_ring_buf, data); uart_check_buf_full(uart_num); } xSemaphoreGive(p_uart_obj[uart_num]->rx_mux); return copy_len; } esp_err_t uart_get_buffered_data_len(uart_port_t uart_num, size_t *size) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); *size = p_uart_obj[uart_num]->rx_buffered_len; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_tx_buffer_free_size(uart_port_t uart_num, size_t *size) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_ARG, UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE((size != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "arg pointer is NULL"); *size = p_uart_obj[uart_num]->tx_buf_size - p_uart_obj[uart_num]->tx_len_tot; return ESP_OK; } esp_err_t uart_flush(uart_port_t uart_num) __attribute__((alias("uart_flush_input"))); esp_err_t uart_flush_input(uart_port_t uart_num) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error"); uart_obj_t *p_uart = p_uart_obj[uart_num]; uint8_t *data; size_t size; //rx sem protect the ring buffer read related functions xSemaphoreTake(p_uart->rx_mux, (portTickType)portMAX_DELAY); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); while (true) { data = (uint8_t*) xRingbufferReceive(p_uart->rx_ring_buf, &size, (portTickType) 0); if (data == NULL) { bool error = false; UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (p_uart_obj[uart_num]->rx_buffered_len != 0) { p_uart_obj[uart_num]->rx_buffered_len = 0; error = true; } // We also need to clear the `rx_buffer_full_flg` here. p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); if (error) { // this must be called outside the critical section ESP_LOGE(UART_TAG, "rx_buffered_len error"); } break; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); p_uart_obj[uart_num]->rx_buffered_len -= size; uart_pattern_queue_update(uart_num, size); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); vRingbufferReturnItem(p_uart->rx_ring_buf, data); if (p_uart_obj[uart_num]->rx_buffer_full_flg) { BaseType_t res = xRingbufferSend(p_uart_obj[uart_num]->rx_ring_buf, p_uart_obj[uart_num]->rx_data_buf, p_uart_obj[uart_num]->rx_stash_len, 1); if (res == pdTRUE) { UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); p_uart_obj[uart_num]->rx_buffered_len += p_uart_obj[uart_num]->rx_stash_len; p_uart_obj[uart_num]->rx_buffer_full_flg = false; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); } } } uart_hal_rxfifo_rst(&(uart_context[uart_num].hal)); /* Only re-enable UART_INTR_RXFIFO_TOUT or UART_INTR_RXFIFO_FULL if they * were explicitly enabled by the user. */ uart_reenable_intr_mask(uart_num, UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL); xSemaphoreGive(p_uart->rx_mux); return ESP_OK; } static void uart_free_driver_obj(uart_obj_t *uart_obj) { if (uart_obj->tx_fifo_sem) { vSemaphoreDelete(uart_obj->tx_fifo_sem); } if (uart_obj->tx_done_sem) { vSemaphoreDelete(uart_obj->tx_done_sem); } if (uart_obj->tx_brk_sem) { vSemaphoreDelete(uart_obj->tx_brk_sem); } if (uart_obj->tx_mux) { vSemaphoreDelete(uart_obj->tx_mux); } if (uart_obj->rx_mux) { vSemaphoreDelete(uart_obj->rx_mux); } if (uart_obj->event_queue) { vQueueDelete(uart_obj->event_queue); } if (uart_obj->rx_ring_buf) { vRingbufferDelete(uart_obj->rx_ring_buf); } if (uart_obj->tx_ring_buf) { vRingbufferDelete(uart_obj->tx_ring_buf); } #if CONFIG_UART_ISR_IN_IRAM free(uart_obj->event_queue_storage); free(uart_obj->event_queue_struct); free(uart_obj->tx_ring_buf_storage); free(uart_obj->tx_ring_buf_struct); free(uart_obj->rx_ring_buf_storage); free(uart_obj->rx_ring_buf_struct); free(uart_obj->rx_mux_struct); free(uart_obj->tx_mux_struct); free(uart_obj->tx_brk_sem_struct); free(uart_obj->tx_done_sem_struct); free(uart_obj->tx_fifo_sem_struct); #endif free(uart_obj); } static uart_obj_t *uart_alloc_driver_obj(int event_queue_size, int tx_buffer_size, int rx_buffer_size) { uart_obj_t *uart_obj = heap_caps_calloc(1, sizeof(uart_obj_t), UART_MALLOC_CAPS); if (!uart_obj) { return NULL; } #if CONFIG_UART_ISR_IN_IRAM if (event_queue_size > 0) { uart_obj->event_queue_storage = heap_caps_calloc(event_queue_size, sizeof(uart_event_t), UART_MALLOC_CAPS); uart_obj->event_queue_struct = heap_caps_calloc(1, sizeof(StaticQueue_t), UART_MALLOC_CAPS); if (!uart_obj->event_queue_storage || !uart_obj->event_queue_struct) { goto err; } } if (tx_buffer_size > 0) { uart_obj->tx_ring_buf_storage = heap_caps_calloc(1, tx_buffer_size, UART_MALLOC_CAPS); uart_obj->tx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS); if (!uart_obj->tx_ring_buf_storage || !uart_obj->tx_ring_buf_struct) { goto err; } } uart_obj->rx_ring_buf_storage = heap_caps_calloc(1, rx_buffer_size, UART_MALLOC_CAPS); uart_obj->rx_ring_buf_struct = heap_caps_calloc(1, sizeof(StaticRingbuffer_t), UART_MALLOC_CAPS); uart_obj->rx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS); uart_obj->tx_mux_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS); uart_obj->tx_brk_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS); uart_obj->tx_done_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS); uart_obj->tx_fifo_sem_struct = heap_caps_calloc(1, sizeof(StaticSemaphore_t), UART_MALLOC_CAPS); if (!uart_obj->rx_ring_buf_storage || !uart_obj->rx_ring_buf_struct || !uart_obj->rx_mux_struct || !uart_obj->tx_mux_struct || !uart_obj->tx_brk_sem_struct || !uart_obj->tx_done_sem_struct || !uart_obj->tx_fifo_sem_struct) { goto err; } if (event_queue_size > 0) { uart_obj->event_queue = xQueueCreateStatic(event_queue_size, sizeof(uart_event_t), uart_obj->event_queue_storage, uart_obj->event_queue_struct); if (!uart_obj->event_queue) { goto err; } } if (tx_buffer_size > 0) { uart_obj->tx_ring_buf = xRingbufferCreateStatic(tx_buffer_size, RINGBUF_TYPE_NOSPLIT, uart_obj->tx_ring_buf_storage, uart_obj->tx_ring_buf_struct); if (!uart_obj->tx_ring_buf) { goto err; } } uart_obj->rx_ring_buf = xRingbufferCreateStatic(rx_buffer_size, RINGBUF_TYPE_BYTEBUF, uart_obj->rx_ring_buf_storage, uart_obj->rx_ring_buf_struct); uart_obj->rx_mux = xSemaphoreCreateMutexStatic(uart_obj->rx_mux_struct); uart_obj->tx_mux = xSemaphoreCreateMutexStatic(uart_obj->tx_mux_struct); uart_obj->tx_brk_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_brk_sem_struct); uart_obj->tx_done_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_done_sem_struct); uart_obj->tx_fifo_sem = xSemaphoreCreateBinaryStatic(uart_obj->tx_fifo_sem_struct); if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem || !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) { goto err; } #else if (event_queue_size > 0) { uart_obj->event_queue = xQueueCreate(event_queue_size, sizeof(uart_event_t)); if (!uart_obj->event_queue) { goto err; } } if (tx_buffer_size > 0) { uart_obj->tx_ring_buf = xRingbufferCreate(tx_buffer_size, RINGBUF_TYPE_NOSPLIT); if (!uart_obj->tx_ring_buf) { goto err; } } uart_obj->rx_ring_buf = xRingbufferCreate(rx_buffer_size, RINGBUF_TYPE_BYTEBUF); uart_obj->tx_mux = xSemaphoreCreateMutex(); uart_obj->rx_mux = xSemaphoreCreateMutex(); uart_obj->tx_brk_sem = xSemaphoreCreateBinary(); uart_obj->tx_done_sem = xSemaphoreCreateBinary(); uart_obj->tx_fifo_sem = xSemaphoreCreateBinary(); if (!uart_obj->rx_ring_buf || !uart_obj->rx_mux || !uart_obj->tx_mux || !uart_obj->tx_brk_sem || !uart_obj->tx_done_sem || !uart_obj->tx_fifo_sem) { goto err; } #endif return uart_obj; err: uart_free_driver_obj(uart_obj); return NULL; } esp_err_t uart_driver_install(uart_port_t uart_num, int rx_buffer_size, int tx_buffer_size, int event_queue_size, QueueHandle_t *uart_queue, int intr_alloc_flags) { esp_err_t r; #ifdef CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME ESP_RETURN_ON_FALSE((uart_num != CONFIG_ESP_CONSOLE_UART_NUM), ESP_FAIL, UART_TAG, "UART used by GDB-stubs! Please disable GDB in menuconfig."); #endif // CONFIG_ESP_SYSTEM_GDBSTUB_RUNTIME ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((rx_buffer_size > SOC_UART_FIFO_LEN), ESP_FAIL, UART_TAG, "uart rx buffer length error"); ESP_RETURN_ON_FALSE((tx_buffer_size > SOC_UART_FIFO_LEN) || (tx_buffer_size == 0), ESP_FAIL, UART_TAG, "uart tx buffer length error"); #if CONFIG_UART_ISR_IN_IRAM if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) == 0) { ESP_LOGI(UART_TAG, "ESP_INTR_FLAG_IRAM flag not set while CONFIG_UART_ISR_IN_IRAM is enabled, flag updated"); intr_alloc_flags |= ESP_INTR_FLAG_IRAM; } #else if ((intr_alloc_flags & ESP_INTR_FLAG_IRAM) != 0) { ESP_LOGW(UART_TAG, "ESP_INTR_FLAG_IRAM flag is set while CONFIG_UART_ISR_IN_IRAM is not enabled, flag updated"); intr_alloc_flags &= ~ESP_INTR_FLAG_IRAM; } #endif if (p_uart_obj[uart_num] == NULL) { p_uart_obj[uart_num] = uart_alloc_driver_obj(event_queue_size, tx_buffer_size, rx_buffer_size); if (p_uart_obj[uart_num] == NULL) { ESP_LOGE(UART_TAG, "UART driver malloc error"); return ESP_FAIL; } p_uart_obj[uart_num]->uart_num = uart_num; p_uart_obj[uart_num]->uart_mode = UART_MODE_UART; p_uart_obj[uart_num]->coll_det_flg = false; p_uart_obj[uart_num]->rx_always_timeout_flg = false; p_uart_obj[uart_num]->event_queue_size = event_queue_size; p_uart_obj[uart_num]->tx_ptr = NULL; p_uart_obj[uart_num]->tx_head = NULL; p_uart_obj[uart_num]->tx_len_tot = 0; p_uart_obj[uart_num]->tx_brk_flg = 0; p_uart_obj[uart_num]->tx_brk_len = 0; p_uart_obj[uart_num]->tx_waiting_brk = 0; p_uart_obj[uart_num]->rx_buffered_len = 0; p_uart_obj[uart_num]->rx_buffer_full_flg = false; p_uart_obj[uart_num]->tx_waiting_fifo = false; p_uart_obj[uart_num]->rx_int_usr_mask = UART_INTR_RXFIFO_FULL | UART_INTR_RXFIFO_TOUT; p_uart_obj[uart_num]->tx_buf_size = tx_buffer_size; p_uart_obj[uart_num]->uart_select_notif_callback = NULL; xSemaphoreGive(p_uart_obj[uart_num]->tx_fifo_sem); uart_pattern_queue_reset(uart_num, UART_PATTERN_DET_QLEN_DEFAULT); if (uart_queue) { *uart_queue = p_uart_obj[uart_num]->event_queue; ESP_LOGI(UART_TAG, "queue free spaces: %d", uxQueueSpacesAvailable(p_uart_obj[uart_num]->event_queue)); } } else { ESP_LOGE(UART_TAG, "UART driver already installed"); return ESP_FAIL; } uart_intr_config_t uart_intr = { .intr_enable_mask = UART_INTR_CONFIG_FLAG, .rxfifo_full_thresh = UART_FULL_THRESH_DEFAULT, .rx_timeout_thresh = UART_TOUT_THRESH_DEFAULT, .txfifo_empty_intr_thresh = UART_EMPTY_THRESH_DEFAULT, }; uart_module_enable(uart_num); uart_hal_disable_intr_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); uart_hal_clr_intsts_mask(&(uart_context[uart_num].hal), UART_LL_INTR_MASK); r = uart_isr_register(uart_num, uart_rx_intr_handler_default, p_uart_obj[uart_num], intr_alloc_flags, &p_uart_obj[uart_num]->intr_handle); if (r != ESP_OK) { goto err; } r = uart_intr_config(uart_num, &uart_intr); if (r != ESP_OK) { goto err; } return r; err: uart_driver_delete(uart_num); return r; } //Make sure no other tasks are still using UART before you call this function esp_err_t uart_driver_delete(uart_port_t uart_num) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_FAIL, UART_TAG, "uart_num error"); if (p_uart_obj[uart_num] == NULL) { ESP_LOGI(UART_TAG, "ALREADY NULL"); return ESP_OK; } esp_intr_free(p_uart_obj[uart_num]->intr_handle); uart_disable_rx_intr(uart_num); uart_disable_tx_intr(uart_num); uart_pattern_link_free(uart_num); uart_free_driver_obj(p_uart_obj[uart_num]); p_uart_obj[uart_num] = NULL; #if SOC_UART_SUPPORT_RTC_CLK uart_sclk_t sclk = 0; uart_hal_get_sclk(&(uart_context[uart_num].hal), &sclk); if (sclk == UART_SCLK_RTC) { rtc_clk_disable(uart_num); } #endif uart_module_disable(uart_num); return ESP_OK; } bool uart_is_driver_installed(uart_port_t uart_num) { return uart_num < UART_NUM_MAX && (p_uart_obj[uart_num] != NULL); } void uart_set_select_notif_callback(uart_port_t uart_num, uart_select_notif_callback_t uart_select_notif_callback) { if (uart_num < UART_NUM_MAX && p_uart_obj[uart_num]) { p_uart_obj[uart_num]->uart_select_notif_callback = (uart_select_notif_callback_t) uart_select_notif_callback; } } portMUX_TYPE *uart_get_selectlock(void) { return &uart_selectlock; } // Set UART mode esp_err_t uart_set_mode(uart_port_t uart_num, uart_mode_t mode) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_ERR_INVALID_STATE, UART_TAG, "uart driver error"); if ((mode == UART_MODE_RS485_COLLISION_DETECT) || (mode == UART_MODE_RS485_APP_CTRL) || (mode == UART_MODE_RS485_HALF_DUPLEX)) { ESP_RETURN_ON_FALSE((!uart_hal_is_hw_rts_en(&(uart_context[uart_num].hal))), ESP_ERR_INVALID_ARG, UART_TAG, "disable hw flowctrl before using RS485 mode"); } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_mode(&(uart_context[uart_num].hal), mode); if (mode == UART_MODE_RS485_COLLISION_DETECT) { // This mode allows read while transmitting that allows collision detection p_uart_obj[uart_num]->coll_det_flg = false; // Enable collision detection interrupts uart_hal_ena_intr_mask(&(uart_context[uart_num].hal), UART_INTR_RXFIFO_TOUT | UART_INTR_RXFIFO_FULL | UART_INTR_RS485_CLASH | UART_INTR_RS485_FRM_ERR | UART_INTR_RS485_PARITY_ERR); } p_uart_obj[uart_num]->uart_mode = mode; UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_rx_full_threshold(uart_port_t uart_num, int threshold) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((threshold < UART_RXFIFO_FULL_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG, "rx fifo full threshold value error"); if (p_uart_obj[uart_num] == NULL) { ESP_LOGE(UART_TAG, "call uart_driver_install API first"); return ESP_ERR_INVALID_STATE; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_RXFIFO_FULL) { uart_hal_set_rxfifo_full_thr(&(uart_context[uart_num].hal), threshold); } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_tx_empty_threshold(uart_port_t uart_num, int threshold) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((threshold < UART_TXFIFO_EMPTY_THRHD_V) && (threshold > 0), ESP_ERR_INVALID_ARG, UART_TAG, "tx fifo empty threshold value error"); if (p_uart_obj[uart_num] == NULL) { ESP_LOGE(UART_TAG, "call uart_driver_install API first"); return ESP_ERR_INVALID_STATE; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); if (uart_hal_get_intr_ena_status(&(uart_context[uart_num].hal)) & UART_INTR_TXFIFO_EMPTY) { uart_hal_set_txfifo_empty_thr(&(uart_context[uart_num].hal), threshold); } UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_set_rx_timeout(uart_port_t uart_num, const uint8_t tout_thresh) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); // get maximum timeout threshold uint16_t tout_max_thresh = uart_hal_get_max_rx_timeout_thrd(&(uart_context[uart_num].hal)); if (tout_thresh > tout_max_thresh) { ESP_LOGE(UART_TAG, "tout_thresh = %d > maximum value = %d", tout_thresh, tout_max_thresh); return ESP_ERR_INVALID_ARG; } UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_rx_timeout(&(uart_context[uart_num].hal), tout_thresh); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_collision_flag(uart_port_t uart_num, bool *collision_flag) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((p_uart_obj[uart_num]), ESP_FAIL, UART_TAG, "uart driver error"); ESP_RETURN_ON_FALSE((collision_flag != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "wrong parameter pointer"); ESP_RETURN_ON_FALSE((UART_IS_MODE_SET(uart_num, UART_MODE_RS485_HALF_DUPLEX) || UART_IS_MODE_SET(uart_num, UART_MODE_RS485_COLLISION_DETECT)), ESP_ERR_INVALID_ARG, UART_TAG, "wrong mode"); *collision_flag = p_uart_obj[uart_num]->coll_det_flg; return ESP_OK; } esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((wakeup_threshold <= UART_ACTIVE_THRESHOLD_V && wakeup_threshold > UART_MIN_WAKEUP_THRESH), ESP_ERR_INVALID_ARG, UART_TAG, "wakeup_threshold out of bounds"); UART_ENTER_CRITICAL(&(uart_context[uart_num].spinlock)); uart_hal_set_wakeup_thrd(&(uart_context[uart_num].hal), wakeup_threshold); UART_EXIT_CRITICAL(&(uart_context[uart_num].spinlock)); return ESP_OK; } esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int *out_wakeup_threshold) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); ESP_RETURN_ON_FALSE((out_wakeup_threshold != NULL), ESP_ERR_INVALID_ARG, UART_TAG, "argument is NULL"); uart_hal_get_wakeup_thrd(&(uart_context[uart_num].hal), (uint32_t *)out_wakeup_threshold); return ESP_OK; } esp_err_t uart_wait_tx_idle_polling(uart_port_t uart_num) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); while (!uart_hal_is_tx_idle(&(uart_context[uart_num].hal))); return ESP_OK; } esp_err_t uart_set_loop_back(uart_port_t uart_num, bool loop_back_en) { ESP_RETURN_ON_FALSE((uart_num < UART_NUM_MAX), ESP_ERR_INVALID_ARG, UART_TAG, "uart_num error"); uart_hal_set_loop_back(&(uart_context[uart_num].hal), loop_back_en); return ESP_OK; } void uart_set_always_rx_timeout(uart_port_t uart_num, bool always_rx_timeout) { uint16_t rx_tout = uart_hal_get_rx_tout_thr(&(uart_context[uart_num].hal)); if (rx_tout) { p_uart_obj[uart_num]->rx_always_timeout_flg = always_rx_timeout; } else { p_uart_obj[uart_num]->rx_always_timeout_flg = false; } }