/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "sdkconfig.h" #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "freertos/FreeRTOS.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_check.h" #include "esp_pm.h" #include "driver/gptimer.h" #include "hal/timer_types.h" #include "hal/timer_hal.h" #include "hal/timer_ll.h" #include "soc/timer_periph.h" #include "esp_memory_utils.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_clk.h" #include "clk_ctrl_os.h" #include "esp_clk_tree.h" #include "gptimer_priv.h" static const char *TAG = "gptimer"; #if SOC_PERIPH_CLK_CTRL_SHARED #define GPTIMER_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC() #else #define GPTIMER_CLOCK_SRC_ATOMIC() #endif typedef struct gptimer_platform_t { _lock_t mutex; // platform level mutex lock gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall } gptimer_platform_t; // gptimer driver platform, it's always a singleton static gptimer_platform_t s_platform; static gptimer_group_t *gptimer_acquire_group_handle(int group_id); static void gptimer_release_group_handle(gptimer_group_t *group); static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz); static void gptimer_default_isr(void *args); static esp_err_t gptimer_register_to_group(gptimer_t *timer) { gptimer_group_t *group = NULL; int timer_id = -1; for (int i = 0; i < SOC_TIMER_GROUPS; i++) { group = gptimer_acquire_group_handle(i); ESP_RETURN_ON_FALSE(group, ESP_ERR_NO_MEM, TAG, "no mem for group (%d)", i); // loop to search free timer in the group portENTER_CRITICAL(&group->spinlock); for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) { if (!group->timers[j]) { timer_id = j; group->timers[j] = timer; break; } } portEXIT_CRITICAL(&group->spinlock); if (timer_id < 0) { gptimer_release_group_handle(group); } else { timer->timer_id = timer_id; timer->group = group; break; } } ESP_RETURN_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, TAG, "no free timer"); return ESP_OK; } static void gptimer_unregister_from_group(gptimer_t *timer) { gptimer_group_t *group = timer->group; int timer_id = timer->timer_id; portENTER_CRITICAL(&group->spinlock); group->timers[timer_id] = NULL; portEXIT_CRITICAL(&group->spinlock); // timer has a reference on group, release it now gptimer_release_group_handle(group); } static esp_err_t gptimer_destroy(gptimer_t *timer) { if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_delete(timer->pm_lock), TAG, "delete pm_lock failed"); } if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_free(timer->intr), TAG, "delete interrupt service failed"); } if (timer->group) { gptimer_unregister_from_group(timer); } free(timer); return ESP_OK; } esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer) { #if CONFIG_GPTIMER_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; gptimer_t *timer = NULL; ESP_RETURN_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, TAG, "invalid timer resolution:%"PRIu32, config->resolution_hz); if (config->intr_priority) { ESP_RETURN_ON_FALSE(1 << (config->intr_priority) & GPTIMER_ALLOW_INTR_PRIORITY_MASK, ESP_ERR_INVALID_ARG, TAG, "invalid interrupt priority:%d", config->intr_priority); } timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer"); // register timer to the group (because one group can have several timers) ESP_GOTO_ON_ERROR(gptimer_register_to_group(timer), err, TAG, "register timer failed"); gptimer_group_t *group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; // initialize HAL layer timer_hal_init(&timer->hal, group_id, timer_id); // select clock source, set clock resolution ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed"); // initialize counter value to zero timer_hal_set_counter_value(&timer->hal, 0); // set counting direction timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction); // interrupt register is shared by all timers in the same group portENTER_CRITICAL(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event portEXIT_CRITICAL(&group->spinlock); // initialize other members of timer timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; // put the timer driver to the init state atomic_init(&timer->fsm, GPTIMER_FSM_INIT); timer->direction = config->direction; timer->intr_priority = config->intr_priority; timer->flags.intr_shared = config->flags.intr_shared; ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%"PRIu32"Hz", group_id, timer_id, timer, timer->resolution_hz); *ret_timer = timer; return ESP_OK; err: if (timer) { gptimer_destroy(timer); } return ret; } esp_err_t gptimer_del_timer(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); gptimer_group_t *group = timer->group; gptimer_clock_source_t clk_src = timer->clk_src; int group_id = group->group_id; int timer_id = timer->timer_id; timer_hal_context_t *hal = &timer->hal; ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id); // disable the source clock GPTIMER_CLOCK_SRC_ATOMIC() { timer_ll_enable_clock(hal->dev, hal->timer_id, false); } timer_hal_deinit(hal); // recycle memory resource ESP_RETURN_ON_ERROR(gptimer_destroy(timer), TAG, "destroy gptimer failed"); switch (clk_src) { #if SOC_TIMER_GROUP_SUPPORT_RC_FAST case GPTIMER_CLK_SRC_RC_FAST: periph_rtc_dig_clk8m_disable(); break; #endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST default: break; } return ESP_OK; } esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value) { ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL_SAFE(&timer->spinlock); timer_hal_set_counter_value(&timer->hal, value); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value) { ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL_SAFE(&timer->spinlock); *value = timer_hal_capture_and_get_counter_value(&timer->hal); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_get_resolution(gptimer_handle_t timer, uint32_t *out_resolution) { ESP_RETURN_ON_FALSE(timer && out_resolution, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); *out_resolution = timer->resolution_hz; return ESP_OK; } esp_err_t gptimer_get_captured_count(gptimer_handle_t timer, uint64_t *value) { ESP_RETURN_ON_FALSE_ISR(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL_SAFE(&timer->spinlock); *value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data) { gptimer_group_t *group = NULL; ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; #if CONFIG_GPTIMER_ISR_IRAM_SAFE if (cbs->on_alarm) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM"); } if (user_data) { ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM"); } #endif // lazy install interrupt service if (!timer->intr) { ESP_RETURN_ON_FALSE(atomic_load(&timer->fsm) == GPTIMER_FSM_INIT, ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); // if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t` int isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED | GPTIMER_INTR_ALLOC_FLAGS : GPTIMER_INTR_ALLOC_FLAGS; if (timer->intr_priority) { isr_flags |= 1 << (timer->intr_priority); } ESP_RETURN_ON_ERROR(esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], isr_flags, (uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id), gptimer_default_isr, timer, &timer->intr), TAG, "install interrupt service failed"); } // enable/disable GPTimer interrupt events portENTER_CRITICAL(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm != NULL); // enable timer interrupt portEXIT_CRITICAL(&group->spinlock); timer->on_alarm = cbs->on_alarm; timer->user_ctx = user_data; return ESP_OK; } esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config) { ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); if (config) { #if CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM ESP_RETURN_ON_FALSE_ISR(esp_ptr_internal(config), ESP_ERR_INVALID_ARG, TAG, "alarm config struct not in internal RAM"); #endif // When auto_reload is enabled, alarm_count should not be equal to reload_count bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count; ESP_RETURN_ON_FALSE_ISR(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count"); portENTER_CRITICAL_SAFE(&timer->spinlock); timer->reload_count = config->reload_count; timer->alarm_count = config->alarm_count; timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm; timer->flags.alarm_en = true; timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count); timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { portENTER_CRITICAL_SAFE(&timer->spinlock); timer->flags.auto_reload_on_alarm = false; timer->flags.alarm_en = false; portEXIT_CRITICAL_SAFE(&timer->spinlock); } portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_enable(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); gptimer_fsm_t expected_fsm = GPTIMER_FSM_INIT; ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE), ESP_ERR_INVALID_STATE, TAG, "timer not in init state"); // acquire power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire pm_lock failed"); } // enable interrupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed"); } return ESP_OK; } esp_err_t gptimer_disable(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE; ESP_RETURN_ON_FALSE(atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_INIT), ESP_ERR_INVALID_STATE, TAG, "timer not in enable state"); // disable interrupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed"); } // release power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release pm_lock failed"); } return ESP_OK; } esp_err_t gptimer_start(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); gptimer_fsm_t expected_fsm = GPTIMER_FSM_ENABLE; if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_RUN_WAIT)) { // the register used by the following LL functions are shared with other API, // which is possible to run along with this function, so we need to protect portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_STATE, TAG, "timer is not enabled yet"); } atomic_store(&timer->fsm, GPTIMER_FSM_RUN); return ESP_OK; } esp_err_t gptimer_stop(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE_ISR(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); gptimer_fsm_t expected_fsm = GPTIMER_FSM_RUN; if (atomic_compare_exchange_strong(&timer->fsm, &expected_fsm, GPTIMER_FSM_ENABLE_WAIT)) { // disable counter, alarm, auto-reload portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { ESP_RETURN_ON_FALSE_ISR(false, ESP_ERR_INVALID_STATE, TAG, "timer is not running"); } atomic_store(&timer->fsm, GPTIMER_FSM_ENABLE); return ESP_OK; } static gptimer_group_t *gptimer_acquire_group_handle(int group_id) { bool new_group = false; gptimer_group_t *group = NULL; // prevent install timer group concurrently _lock_acquire(&s_platform.mutex); if (!s_platform.groups[group_id]) { group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS); if (group) { new_group = true; s_platform.groups[group_id] = group; // initialize timer group members group->group_id = group_id; group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; } } else { group = s_platform.groups[group_id]; } if (group) { // someone acquired the group handle means we have a new object that refer to this group s_platform.group_ref_counts[group_id]++; } _lock_release(&s_platform.mutex); if (new_group) { // !!! HARDWARE SHARED RESOURCE !!! // the gptimer and watchdog reside in the same the timer group // we need to increase/decrease the reference count before enable/disable/reset the peripheral PERIPH_RCC_ACQUIRE_ATOMIC(timer_group_periph_signals.groups[group_id].module, ref_count) { if (ref_count == 0) { timer_ll_enable_bus_clock(group_id, true); timer_ll_reset_register(group_id); } } ESP_LOGD(TAG, "new group (%d) @%p", group_id, group); } return group; } static void gptimer_release_group_handle(gptimer_group_t *group) { int group_id = group->group_id; bool do_deinitialize = false; _lock_acquire(&s_platform.mutex); s_platform.group_ref_counts[group_id]--; if (s_platform.group_ref_counts[group_id] == 0) { assert(s_platform.groups[group_id]); do_deinitialize = true; s_platform.groups[group_id] = NULL; } _lock_release(&s_platform.mutex); if (do_deinitialize) { // disable bus clock for the timer group PERIPH_RCC_RELEASE_ATOMIC(timer_group_periph_signals.groups[group_id].module, ref_count) { if (ref_count == 0) { timer_ll_enable_bus_clock(group_id, false); } } free(group); ESP_LOGD(TAG, "del group (%d)", group_id); } } static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz) { uint32_t counter_src_hz = 0; int timer_id = timer->timer_id; // TODO: [clk_tree] to use a generic clock enable/disable or acquire/release function for all clock source #if SOC_TIMER_GROUP_SUPPORT_RC_FAST if (src_clk == GPTIMER_CLK_SRC_RC_FAST) { // RC_FAST clock is not enabled automatically on start up, we enable it here manually. // Note there's a ref count in the enable/disable function, we must call them in pair in the driver. periph_rtc_dig_clk8m_enable(); } #endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST // get clock source frequency ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)src_clk, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &counter_src_hz), TAG, "get clock source frequency failed"); #if CONFIG_PM_ENABLE bool need_pm_lock = true; // to make the gptimer work reliable, the source clock must stay alive and unchanged // driver will create different pm lock for that purpose, according to different clock source esp_pm_lock_type_t pm_lock_type = ESP_PM_NO_LIGHT_SLEEP; #if SOC_TIMER_GROUP_SUPPORT_RC_FAST if (src_clk == GPTIMER_CLK_SRC_RC_FAST) { // RC_FAST won't be turn off in sleep and won't change its frequency during DFS need_pm_lock = false; } #endif // SOC_TIMER_GROUP_SUPPORT_RC_FAST #if SOC_TIMER_GROUP_SUPPORT_APB if (src_clk == GPTIMER_CLK_SRC_APB) { // APB clock frequency can be changed during DFS pm_lock_type = ESP_PM_APB_FREQ_MAX; } #endif // SOC_TIMER_GROUP_SUPPORT_APB #if CONFIG_IDF_TARGET_ESP32C2 if (src_clk == GPTIMER_CLK_SRC_PLL_F40M) { // although PLL_F40M clock is a fixed PLL clock, which is unchangeable // on ESP32C2, PLL_F40M can be turned off even during DFS (unlike other PLL clocks) // so we're acquiring a fake "APB" lock here to prevent the system from doing DFS pm_lock_type = ESP_PM_APB_FREQ_MAX; } #endif // CONFIG_IDF_TARGET_ESP32C2 if (need_pm_lock) { sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0 ESP_RETURN_ON_ERROR(esp_pm_lock_create(pm_lock_type, 0, timer->pm_lock_name, &timer->pm_lock), TAG, "create pm lock failed"); } #endif // CONFIG_PM_ENABLE // !!! HARDWARE SHARED RESOURCE !!! // on some ESP chip, different peripheral's clock source setting are mixed in the same register // so we need to make this done in an atomic way GPTIMER_CLOCK_SRC_ATOMIC() { timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk); timer_ll_enable_clock(timer->hal.dev, timer_id, true); } timer->clk_src = src_clk; uint32_t prescale = counter_src_hz / resolution_hz; // potential resolution loss here timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale); timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution if (timer->resolution_hz != resolution_hz) { ESP_LOGW(TAG, "resolution lost, expect %"PRIu32", real %"PRIu32, resolution_hz, timer->resolution_hz); } return ESP_OK; } static void gptimer_default_isr(void *args) { bool need_yield = false; gptimer_t *timer = (gptimer_t *)args; gptimer_group_t *group = timer->group; gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm; uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev); if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) { // Note: when alarm event happens, the alarm will be disabled automatically by hardware gptimer_alarm_event_data_t edata = { .count_value = timer_hal_capture_and_get_counter_value(&timer->hal), .alarm_value = timer->alarm_count, }; portENTER_CRITICAL_ISR(&group->spinlock); timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id)); // for auto-reload, we need to re-enable the alarm manually if (timer->flags.auto_reload_on_alarm) { timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true); } portEXIT_CRITICAL_ISR(&group->spinlock); if (on_alarm_cb) { if (on_alarm_cb(timer, &edata, timer->user_ctx)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } }