// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "esp_attr.h" #include "esp_log.h" #include "esp32/rom/cache.h" #include "esp32/rom/efuse.h" #include "esp32/rom/ets_sys.h" #include "esp32/rom/spi_flash.h" #include "esp32/rom/crc.h" #include "esp32/rom/rtc.h" #include "esp32/rom/uart.h" #include "esp32/rom/gpio.h" #include "esp32/rom/secure_boot.h" #include "soc/soc.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/dport_reg.h" #include "soc/gpio_periph.h" #include "soc/efuse_periph.h" #include "soc/rtc_periph.h" #include "soc/timer_periph.h" #include "soc/rtc_wdt.h" #include "soc/spi_periph.h" #include "sdkconfig.h" #include "esp_image_format.h" #include "esp_secure_boot.h" #include "esp_flash_encrypt.h" #include "esp_flash_partitions.h" #include "bootloader_flash.h" #include "bootloader_random.h" #include "bootloader_config.h" #include "bootloader_clock.h" #include "bootloader_common.h" #include "flash_qio_mode.h" extern int _bss_start; extern int _bss_end; extern int _data_start; extern int _data_end; static const char* TAG = "boot"; static esp_err_t bootloader_main(); static void print_flash_info(const esp_image_header_t* pfhdr); static void update_flash_config(const esp_image_header_t* pfhdr); static void flash_gpio_configure(const esp_image_header_t* pfhdr); static void uart_console_configure(void); static void wdt_reset_check(void); esp_err_t bootloader_init() { cpu_configure_region_protection(); cpu_init_memctl(); /* Sanity check that static RAM is after the stack */ #ifndef NDEBUG { int *sp = get_sp(); assert(&_bss_start <= &_bss_end); assert(&_data_start <= &_data_end); assert(sp < &_bss_start); assert(sp < &_data_start); } #endif //Clear bss memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start)); /* completely reset MMU for both CPUs (in case serial bootloader was running) */ Cache_Read_Disable(0); Cache_Read_Disable(1); Cache_Flush(0); Cache_Flush(1); mmu_init(0); DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); mmu_init(1); DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR); /* (above steps probably unnecessary for most serial bootloader usage, all that's absolutely needed is that we unmask DROM0 cache on the following two lines - normal ROM boot exits with DROM0 cache unmasked, but serial bootloader exits with it masked. However can't hurt to be thorough and reset everything.) The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are necessary to work around a hardware bug. */ DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0); DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0); if(bootloader_main() != ESP_OK){ return ESP_FAIL; } return ESP_OK; } static esp_err_t bootloader_main() { bootloader_common_vddsdio_configure(); /* Read and keep flash ID, for further use. */ g_rom_flashchip.device_id = bootloader_read_flash_id(); esp_image_header_t fhdr; if (bootloader_flash_read(ESP_BOOTLOADER_OFFSET, &fhdr, sizeof(esp_image_header_t), true) != ESP_OK) { ESP_LOGE(TAG, "failed to load bootloader header!"); return ESP_FAIL; } flash_gpio_configure(&fhdr); #if (CONFIG_ESP32_DEFAULT_CPU_FREQ_MHZ == 240) //Check if ESP32 is rated for a CPU frequency of 160MHz only if (REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_RATED) && REG_GET_BIT(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_CPU_FREQ_LOW)) { ESP_LOGE(TAG, "Chip CPU frequency rated for 160MHz. Modify CPU frequency in menuconfig"); return ESP_FAIL; } #endif bootloader_clock_configure(); uart_console_configure(); wdt_reset_check(); ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER); ESP_LOGI(TAG, "compile time " __TIME__ ); ets_set_appcpu_boot_addr(0); #ifdef CONFIG_BOOTLOADER_WDT_ENABLE ESP_LOGD(TAG, "Enabling RTCWDT(%d ms)", CONFIG_BOOTLOADER_WDT_TIME_MS); rtc_wdt_protect_off(); rtc_wdt_disable(); rtc_wdt_set_length_of_reset_signal(RTC_WDT_SYS_RESET_SIG, RTC_WDT_LENGTH_3_2us); rtc_wdt_set_length_of_reset_signal(RTC_WDT_CPU_RESET_SIG, RTC_WDT_LENGTH_3_2us); rtc_wdt_set_stage(RTC_WDT_STAGE0, RTC_WDT_STAGE_ACTION_RESET_RTC); rtc_wdt_set_time(RTC_WDT_STAGE0, CONFIG_BOOTLOADER_WDT_TIME_MS); rtc_wdt_enable(); rtc_wdt_protect_on(); #else /* disable watch dog here */ rtc_wdt_disable(); #endif REG_SET_FIELD(TIMG_WDTWPROTECT_REG(0), TIMG_WDT_WKEY, TIMG_WDT_WKEY_VALUE); REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN ); #ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH const uint32_t spiconfig = ets_efuse_get_spiconfig(); if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) { ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig"); return ESP_FAIL; } #endif esp_rom_spiflash_unlock(); ESP_LOGI(TAG, "Enabling RNG early entropy source..."); bootloader_random_enable(); #if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT bootloader_enable_qio_mode(); #endif print_flash_info(&fhdr); update_flash_config(&fhdr); return ESP_OK; } static void update_flash_config(const esp_image_header_t* pfhdr) { uint32_t size; switch(pfhdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: size = 1; break; case ESP_IMAGE_FLASH_SIZE_2MB: size = 2; break; case ESP_IMAGE_FLASH_SIZE_4MB: size = 4; break; case ESP_IMAGE_FLASH_SIZE_8MB: size = 8; break; case ESP_IMAGE_FLASH_SIZE_16MB: size = 16; break; default: size = 2; } Cache_Read_Disable( 0 ); // Set flash chip size esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode // TODO: set frequency Cache_Flush(0); Cache_Read_Enable( 0 ); } static void print_flash_info(const esp_image_header_t* phdr) { #if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE) ESP_LOGD(TAG, "magic %02x", phdr->magic ); ESP_LOGD(TAG, "segments %02x", phdr->segment_count ); ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode ); ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed ); ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size ); const char* str; switch ( phdr->spi_speed ) { case ESP_IMAGE_SPI_SPEED_40M: str = "40MHz"; break; case ESP_IMAGE_SPI_SPEED_26M: str = "26.7MHz"; break; case ESP_IMAGE_SPI_SPEED_20M: str = "20MHz"; break; case ESP_IMAGE_SPI_SPEED_80M: str = "80MHz"; break; default: str = "20MHz"; break; } ESP_LOGI(TAG, "SPI Speed : %s", str ); /* SPI mode could have been set to QIO during boot already, so test the SPI registers not the flash header */ uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0)); if (spi_ctrl & SPI_FREAD_QIO) { str = "QIO"; } else if (spi_ctrl & SPI_FREAD_QUAD) { str = "QOUT"; } else if (spi_ctrl & SPI_FREAD_DIO) { str = "DIO"; } else if (spi_ctrl & SPI_FREAD_DUAL) { str = "DOUT"; } else if (spi_ctrl & SPI_FASTRD_MODE) { str = "FAST READ"; } else { str = "SLOW READ"; } ESP_LOGI(TAG, "SPI Mode : %s", str ); switch ( phdr->spi_size ) { case ESP_IMAGE_FLASH_SIZE_1MB: str = "1MB"; break; case ESP_IMAGE_FLASH_SIZE_2MB: str = "2MB"; break; case ESP_IMAGE_FLASH_SIZE_4MB: str = "4MB"; break; case ESP_IMAGE_FLASH_SIZE_8MB: str = "8MB"; break; case ESP_IMAGE_FLASH_SIZE_16MB: str = "16MB"; break; default: str = "2MB"; break; } ESP_LOGI(TAG, "SPI Flash Size : %s", str ); #endif } #define FLASH_CLK_IO 6 #define FLASH_CS_IO 11 #define FLASH_SPIQ_IO 7 #define FLASH_SPID_IO 8 #define FLASH_SPIWP_IO 10 #define FLASH_SPIHD_IO 9 #define FLASH_IO_MATRIX_DUMMY_40M 1 #define FLASH_IO_MATRIX_DUMMY_80M 2 #define FLASH_IO_DRIVE_GD_WITH_1V8PSRAM 3 /* * Bootloader reads SPI configuration from bin header, so that * the burning configuration can be different with compiling configuration. */ static void IRAM_ATTR flash_gpio_configure(const esp_image_header_t* pfhdr) { int spi_cache_dummy = 0; int drv = 2; switch (pfhdr->spi_mode) { case ESP_IMAGE_SPI_MODE_QIO: spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN; break; case ESP_IMAGE_SPI_MODE_DIO: spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN; //qio 3 break; case ESP_IMAGE_SPI_MODE_QOUT: case ESP_IMAGE_SPI_MODE_DOUT: default: spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; break; } /* dummy_len_plus values defined in ROM for SPI flash configuration */ extern uint8_t g_rom_spiflash_dummy_len_plus[]; switch (pfhdr->spi_speed) { case ESP_IMAGE_SPI_SPEED_80M: g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_80M; g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_80M; SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY drv = 3; break; case ESP_IMAGE_SPI_SPEED_40M: g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_40M; g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_40M; SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY break; default: break; } uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_ver = chip_ver & 0x7; if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) { // For ESP32D2WD the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) { // For ESP32PICOD2 the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) { // For ESP32PICOD4 the SPI pins are already configured // flash clock signal should come from IO MUX. PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); } else { const uint32_t spiconfig = ets_efuse_get_spiconfig(); if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) { gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0); gpio_matrix_out(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0); gpio_matrix_out(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPID_IO, SPID_IN_IDX, 0); gpio_matrix_out(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0); gpio_matrix_out(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0); gpio_matrix_in(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0); //select pin function gpio PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO); PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO); // flash clock signal should come from IO MUX. // set drive ability for clock PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S); #if CONFIG_SPIRAM_TYPE_ESPPSRAM32 uint32_t flash_id = g_rom_flashchip.device_id; if (flash_id == FLASH_ID_GD25LQ32C) { // Set drive ability for 1.8v flash in 80Mhz. SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA0_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA1_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA2_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_DATA3_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CMD_U, FUN_DRV, 3, FUN_DRV_S); SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, 3, FUN_DRV_S); } #endif } } } static void uart_console_configure(void) { #if CONFIG_ESP_CONSOLE_UART_NONE ets_install_putc1(NULL); ets_install_putc2(NULL); #else // CONFIG_ESP_CONSOLE_UART_NONE const int uart_num = CONFIG_ESP_CONSOLE_UART_NUM; uartAttach(); ets_install_uart_printf(); // Wait for UART FIFO to be empty. uart_tx_wait_idle(0); #if CONFIG_ESP_CONSOLE_UART_CUSTOM // Some constants to make the following code less upper-case const int uart_tx_gpio = CONFIG_ESP_CONSOLE_UART_TX_GPIO; const int uart_rx_gpio = CONFIG_ESP_CONSOLE_UART_RX_GPIO; // Switch to the new UART (this just changes UART number used for // ets_printf in ROM code). uart_tx_switch(uart_num); // If console is attached to UART1 or if non-default pins are used, // need to reconfigure pins using GPIO matrix if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) { // Change pin mode for GPIO1/3 from UART to GPIO PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3); PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1); // Route GPIO signals to/from pins // (arrays should be optimized away by the compiler) const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX }; const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX }; const uint32_t uart_reset[3] = { DPORT_UART_RST, DPORT_UART1_RST, DPORT_UART2_RST }; const uint32_t tx_idx = tx_idx_list[uart_num]; const uint32_t rx_idx = rx_idx_list[uart_num]; PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[uart_rx_gpio]); gpio_pad_pullup(uart_rx_gpio); gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0); gpio_matrix_in(uart_rx_gpio, rx_idx, 0); DPORT_SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, uart_reset[uart_num]); DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, uart_reset[uart_num]); } #endif // CONFIG_ESP_CONSOLE_UART_CUSTOM // Set configured UART console baud rate const int uart_baud = CONFIG_ESP_CONSOLE_UART_BAUDRATE; uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud); #endif // CONFIG_ESP_CONSOLE_UART_NONE } static void wdt_reset_cpu0_info_enable(void) { //We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1. DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE); DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE); } static void wdt_reset_info_dump(int cpu) { uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0, lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0; const char *cpu_name = cpu ? "APP" : "PRO"; if (cpu == 0) { stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG); pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG); inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG); dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG); data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG); pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG); lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG); lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG); lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG); } else { stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG); pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG); inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG); dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG); data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG); pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG); lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG); lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG); lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG); } if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 && DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) { ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc); } else { ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc); } ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat); ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata); } static void wdt_reset_check(void) { int wdt_rst = 0; RESET_REASON rst_reas[2]; rst_reas[0] = rtc_get_reset_reason(0); rst_reas[1] = rtc_get_reset_reason(1); if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET || rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) { ESP_LOGW(TAG, "PRO CPU has been reset by WDT."); wdt_rst = 1; } if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET || rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) { ESP_LOGW(TAG, "APP CPU has been reset by WDT."); wdt_rst = 1; } if (wdt_rst) { // if reset by WDT dump info from trace port wdt_reset_info_dump(0); wdt_reset_info_dump(1); } wdt_reset_cpu0_info_enable(); } void __assert_func(const char *file, int line, const char *func, const char *expr) { ESP_LOGE(TAG, "Assert failed in %s, %s:%d (%s)", func, file, line, expr); while(1) {} } void abort() { #if !CONFIG_ESP32_PANIC_SILENT_REBOOT ets_printf("abort() was called at PC 0x%08x\r\n", (intptr_t)__builtin_return_address(0) - 3); #endif if (esp_cpu_in_ocd_debug_mode()) { __asm__ ("break 0,0"); } while(1) {} }