// Copyright 2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "esp_attr.h" #include "esp_log.h" #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/cache.h" #include "esp32/rom/efuse.h" #include "esp32/rom/ets_sys.h" #include "esp32/rom/spi_flash.h" #include "esp32/rom/crc.h" #include "esp32/rom/rtc.h" #include "esp32/rom/uart.h" #include "esp32/rom/gpio.h" #include "esp32/rom/secure_boot.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/cache.h" #include "esp32s2/rom/efuse.h" #include "esp32s2/rom/ets_sys.h" #include "esp32s2/rom/spi_flash.h" #include "esp32s2/rom/crc.h" #include "esp32s2/rom/rtc.h" #include "esp32s2/rom/uart.h" #include "esp32s2/rom/gpio.h" #include "esp32s2/rom/secure_boot.h" #include "soc/extmem_reg.h" #include "soc/cache_memory.h" #else #error "Unsupported IDF_TARGET" #endif #include "soc/soc.h" #include "soc/cpu.h" #include "soc/rtc.h" #include "soc/dport_reg.h" #include "soc/gpio_periph.h" #include "soc/efuse_periph.h" #include "soc/rtc_periph.h" #include "soc/timer_periph.h" #include "sdkconfig.h" #include "esp_image_format.h" #include "esp_secure_boot.h" #include "esp_flash_encrypt.h" #include "esp_flash_partitions.h" #include "bootloader_flash.h" #include "bootloader_random.h" #include "bootloader_config.h" #include "bootloader_common.h" #include "bootloader_utility.h" #include "bootloader_sha.h" #include "esp_efuse.h" static const char *TAG = "boot"; /* Reduce literal size for some generic string literals */ #define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped." static bool ota_has_initial_contents; static void load_image(const esp_image_metadata_t *image_data); static void unpack_load_app(const esp_image_metadata_t *data); static void set_cache_and_start_app(uint32_t drom_addr, uint32_t drom_load_addr, uint32_t drom_size, uint32_t irom_addr, uint32_t irom_load_addr, uint32_t irom_size, uint32_t entry_addr); // Read ota_info partition and fill array from two otadata structures. static esp_err_t read_otadata(const esp_partition_pos_t *ota_info, esp_ota_select_entry_t *two_otadata) { const esp_ota_select_entry_t *ota_select_map; if (ota_info->offset == 0) { return ESP_ERR_NOT_FOUND; } // partition table has OTA data partition if (ota_info->size < 2 * SPI_SEC_SIZE) { ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", ota_info->size, sizeof(esp_ota_select_entry_t)); return ESP_FAIL; // can't proceed } ESP_LOGD(TAG, "OTA data offset 0x%x", ota_info->offset); ota_select_map = bootloader_mmap(ota_info->offset, ota_info->size); if (!ota_select_map) { ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ota_info->offset, ota_info->size); return ESP_FAIL; // can't proceed } memcpy(&two_otadata[0], ota_select_map, sizeof(esp_ota_select_entry_t)); memcpy(&two_otadata[1], (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t)); bootloader_munmap(ota_select_map); return ESP_OK; } bool bootloader_utility_load_partition_table(bootloader_state_t *bs) { const esp_partition_info_t *partitions; const char *partition_usage; esp_err_t err; int num_partitions; partitions = bootloader_mmap(ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN); if (!partitions) { ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_OFFSET, ESP_PARTITION_TABLE_MAX_LEN); return false; } ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_OFFSET, (intptr_t)partitions); err = esp_partition_table_verify(partitions, true, &num_partitions); if (err != ESP_OK) { ESP_LOGE(TAG, "Failed to verify partition table"); return false; } ESP_LOGI(TAG, "Partition Table:"); ESP_LOGI(TAG, "## Label Usage Type ST Offset Length"); for (int i = 0; i < num_partitions; i++) { const esp_partition_info_t *partition = &partitions[i]; ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition); ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype); partition_usage = "unknown"; /* valid partition table */ switch (partition->type) { case PART_TYPE_APP: /* app partition */ switch (partition->subtype) { case PART_SUBTYPE_FACTORY: /* factory binary */ bs->factory = partition->pos; partition_usage = "factory app"; break; case PART_SUBTYPE_TEST: /* test binary */ bs->test = partition->pos; partition_usage = "test app"; break; default: /* OTA binary */ if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) { bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos; ++bs->app_count; partition_usage = "OTA app"; } else { partition_usage = "Unknown app"; } break; } break; /* PART_TYPE_APP */ case PART_TYPE_DATA: /* data partition */ switch (partition->subtype) { case PART_SUBTYPE_DATA_OTA: /* ota data */ bs->ota_info = partition->pos; partition_usage = "OTA data"; break; case PART_SUBTYPE_DATA_RF: partition_usage = "RF data"; break; case PART_SUBTYPE_DATA_WIFI: partition_usage = "WiFi data"; break; case PART_SUBTYPE_DATA_NVS_KEYS: partition_usage = "NVS keys"; break; case PART_SUBTYPE_DATA_EFUSE_EM: partition_usage = "efuse"; #ifdef CONFIG_BOOTLOADER_EFUSE_SECURE_VERSION_EMULATE esp_efuse_init(partition->pos.offset, partition->pos.size); #endif break; default: partition_usage = "Unknown data"; break; } break; /* PARTITION_USAGE_DATA */ default: /* other partition type */ break; } /* print partition type info */ ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage, partition->type, partition->subtype, partition->pos.offset, partition->pos.size); } bootloader_munmap(partitions); ESP_LOGI(TAG, "End of partition table"); return true; } /* Given a partition index, return the partition position data from the bootloader_state_t structure */ static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index) { if (index == FACTORY_INDEX) { return bs->factory; } if (index == TEST_APP_INDEX) { return bs->test; } if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) { return bs->ota[index]; } esp_partition_pos_t invalid = { 0 }; return invalid; } static void log_invalid_app_partition(int index) { const char *not_bootable = " is not bootable"; /* save a few string literal bytes */ switch (index) { case FACTORY_INDEX: ESP_LOGE(TAG, "Factory app partition%s", not_bootable); break; case TEST_APP_INDEX: ESP_LOGE(TAG, "Factory test app partition%s", not_bootable); break; default: ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable); break; } } static esp_err_t write_otadata(esp_ota_select_entry_t *otadata, uint32_t offset, bool write_encrypted) { esp_err_t err = bootloader_flash_erase_sector(offset / FLASH_SECTOR_SIZE); if (err == ESP_OK) { err = bootloader_flash_write(offset, otadata, sizeof(esp_ota_select_entry_t), write_encrypted); } if (err != ESP_OK) { ESP_LOGE(TAG, "Error in write_otadata operation. err = 0x%x", err); } return err; } static bool check_anti_rollback(const esp_partition_pos_t *partition) { #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK esp_app_desc_t app_desc; esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc); return err == ESP_OK && esp_efuse_check_secure_version(app_desc.secure_version) == true; #else return true; #endif } #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK static void update_anti_rollback(const esp_partition_pos_t *partition) { esp_app_desc_t app_desc; esp_err_t err = bootloader_common_get_partition_description(partition, &app_desc); if (err == ESP_OK) { esp_efuse_update_secure_version(app_desc.secure_version); } } static int get_active_otadata_with_check_anti_rollback(const bootloader_state_t *bs, esp_ota_select_entry_t *two_otadata) { uint32_t ota_seq; uint32_t ota_slot; bool valid_otadata[2]; valid_otadata[0] = bootloader_common_ota_select_valid(&two_otadata[0]); valid_otadata[1] = bootloader_common_ota_select_valid(&two_otadata[1]); bool sec_ver_valid_otadata[2] = { 0 }; for (int i = 0; i < 2; ++i) { if (valid_otadata[i] == true) { ota_seq = two_otadata[i].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection if (check_anti_rollback(&bs->ota[ota_slot]) == false) { // invalid. This otadata[i] will not be selected as active. ESP_LOGD(TAG, "OTA slot %d has an app with secure_version, this version is smaller than in the device. This OTA slot will not be selected.", ota_slot); } else { sec_ver_valid_otadata[i] = true; } } } return bootloader_common_select_otadata(two_otadata, sec_ver_valid_otadata, true); } #endif int bootloader_utility_get_selected_boot_partition(const bootloader_state_t *bs) { esp_ota_select_entry_t otadata[2]; int boot_index = FACTORY_INDEX; if (bs->ota_info.offset == 0) { return FACTORY_INDEX; } if (read_otadata(&bs->ota_info, otadata) != ESP_OK) { return INVALID_INDEX; } ota_has_initial_contents = false; ESP_LOGD(TAG, "otadata[0]: sequence values 0x%08x", otadata[0].ota_seq); ESP_LOGD(TAG, "otadata[1]: sequence values 0x%08x", otadata[1].ota_seq); #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE bool write_encrypted = esp_flash_encryption_enabled(); for (int i = 0; i < 2; ++i) { if (otadata[i].ota_state == ESP_OTA_IMG_PENDING_VERIFY) { ESP_LOGD(TAG, "otadata[%d] is marking as ABORTED", i); otadata[i].ota_state = ESP_OTA_IMG_ABORTED; write_otadata(&otadata[i], bs->ota_info.offset + FLASH_SECTOR_SIZE * i, write_encrypted); } } #endif #ifndef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK if ((bootloader_common_ota_select_invalid(&otadata[0]) && bootloader_common_ota_select_invalid(&otadata[1])) || bs->app_count == 0) { ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF) or partition table does not have bootable ota_apps (app_count=%d)", bs->app_count); if (bs->factory.offset != 0) { ESP_LOGI(TAG, "Defaulting to factory image"); boot_index = FACTORY_INDEX; } else { ESP_LOGI(TAG, "No factory image, trying OTA 0"); boot_index = 0; // Try to boot from ota_0. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) && (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) { // Factory is not found and both otadata are initial(0xFFFFFFFF) or incorrect crc. // will set correct ota_seq. ota_has_initial_contents = true; } } } else { int active_otadata = bootloader_common_get_active_otadata(otadata); #else ESP_LOGI(TAG, "Enabled a check secure version of app for anti rollback"); ESP_LOGI(TAG, "Secure version (from eFuse) = %d", esp_efuse_read_secure_version()); // When CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK is enabled factory partition should not be in partition table, only two ota_app are there. if ((otadata[0].ota_seq == UINT32_MAX || otadata[0].crc != bootloader_common_ota_select_crc(&otadata[0])) && (otadata[1].ota_seq == UINT32_MAX || otadata[1].crc != bootloader_common_ota_select_crc(&otadata[1]))) { ESP_LOGI(TAG, "otadata[0..1] in initial state"); // both otadata are initial(0xFFFFFFFF) or incorrect crc. // will set correct ota_seq. ota_has_initial_contents = true; } else { int active_otadata = get_active_otadata_with_check_anti_rollback(bs, otadata); #endif if (active_otadata != -1) { ESP_LOGD(TAG, "Active otadata[%d]", active_otadata); uint32_t ota_seq = otadata[active_otadata].ota_seq - 1; // Raw OTA sequence number. May be more than # of OTA slots boot_index = ota_seq % bs->app_count; // Actual OTA partition selection ESP_LOGD(TAG, "Mapping seq %d -> OTA slot %d", ota_seq, boot_index); #ifdef CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE if (otadata[active_otadata].ota_state == ESP_OTA_IMG_NEW) { ESP_LOGD(TAG, "otadata[%d] is selected as new and marked PENDING_VERIFY state", active_otadata); otadata[active_otadata].ota_state = ESP_OTA_IMG_PENDING_VERIFY; write_otadata(&otadata[active_otadata], bs->ota_info.offset + FLASH_SECTOR_SIZE * active_otadata, write_encrypted); } #endif // CONFIG_BOOTLOADER_APP_ROLLBACK_ENABLE #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK if (otadata[active_otadata].ota_state == ESP_OTA_IMG_VALID) { update_anti_rollback(&bs->ota[boot_index]); } #endif // CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK } else if (bs->factory.offset != 0) { ESP_LOGE(TAG, "ota data partition invalid, falling back to factory"); boot_index = FACTORY_INDEX; } else { ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions"); boot_index = FACTORY_INDEX; } } return boot_index; } /* Return true if a partition has a valid app image that was successfully loaded */ static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data) { if (partition->size == 0) { ESP_LOGD(TAG, "Can't boot from zero-length partition"); return false; } #ifdef BOOTLOADER_BUILD if (bootloader_load_image(partition, data) == ESP_OK) { ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x", partition->offset); return true; } #endif return false; } // ota_has_initial_contents flag is set if factory does not present in partition table and // otadata has initial content(0xFFFFFFFF), then set actual ota_seq. static void set_actual_ota_seq(const bootloader_state_t *bs, int index) { if (index > FACTORY_INDEX && ota_has_initial_contents == true) { esp_ota_select_entry_t otadata; memset(&otadata, 0xFF, sizeof(otadata)); otadata.ota_seq = index + 1; otadata.ota_state = ESP_OTA_IMG_VALID; otadata.crc = bootloader_common_ota_select_crc(&otadata); bool write_encrypted = esp_flash_encryption_enabled(); write_otadata(&otadata, bs->ota_info.offset + FLASH_SECTOR_SIZE * 0, write_encrypted); ESP_LOGI(TAG, "Set actual ota_seq=%d in otadata[0]", otadata.ota_seq); #ifdef CONFIG_BOOTLOADER_APP_ANTI_ROLLBACK update_anti_rollback(&bs->ota[index]); #endif } #if defined( CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP ) || defined( CONFIG_BOOTLOADER_CUSTOM_RESERVE_RTC ) esp_partition_pos_t partition = index_to_partition(bs, index); bootloader_common_update_rtc_retain_mem(&partition, true); #endif } #ifdef CONFIG_BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP void bootloader_utility_load_boot_image_from_deep_sleep(void) { if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) { esp_partition_pos_t *partition = bootloader_common_get_rtc_retain_mem_partition(); if (partition != NULL) { esp_image_metadata_t image_data; if (bootloader_load_image_no_verify(partition, &image_data) == ESP_OK) { ESP_LOGI(TAG, "Fast booting app from partition at offset 0x%x", partition->offset); bootloader_common_update_rtc_retain_mem(NULL, true); load_image(&image_data); } } ESP_LOGE(TAG, "Fast booting is not successful"); ESP_LOGI(TAG, "Try to load an app as usual with all validations"); } } #endif #define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x" void bootloader_utility_load_boot_image(const bootloader_state_t *bs, int start_index) { int index = start_index; esp_partition_pos_t part; esp_image_metadata_t image_data; if (start_index == TEST_APP_INDEX) { if (try_load_partition(&bs->test, &image_data)) { load_image(&image_data); } else { ESP_LOGE(TAG, "No bootable test partition in the partition table"); bootloader_reset(); } } /* work backwards from start_index, down to the factory app */ for (index = start_index; index >= FACTORY_INDEX; index--) { part = index_to_partition(bs, index); if (part.size == 0) { continue; } ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size); if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) { set_actual_ota_seq(bs, index); load_image(&image_data); } log_invalid_app_partition(index); } /* failing that work forwards from start_index, try valid OTA slots */ for (index = start_index + 1; index < bs->app_count; index++) { part = index_to_partition(bs, index); if (part.size == 0) { continue; } ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size); if (check_anti_rollback(&part) && try_load_partition(&part, &image_data)) { set_actual_ota_seq(bs, index); load_image(&image_data); } log_invalid_app_partition(index); } if (try_load_partition(&bs->test, &image_data)) { ESP_LOGW(TAG, "Falling back to test app as only bootable partition"); load_image(&image_data); } ESP_LOGE(TAG, "No bootable app partitions in the partition table"); bzero(&image_data, sizeof(esp_image_metadata_t)); bootloader_reset(); } // Copy loaded segments to RAM, set up caches for mapped segments, and start application. static void load_image(const esp_image_metadata_t *image_data) { /** * Rough steps for a first boot, when encryption and secure boot are both disabled: * 1) Generate secure boot key and write to EFUSE. * 2) Write plaintext digest based on plaintext bootloader * 3) Generate flash encryption key and write to EFUSE. * 4) Encrypt flash in-place including bootloader, then digest, * then app partitions and other encrypted partitions * 5) Burn EFUSE to enable flash encryption (FLASH_CRYPT_CNT) * 6) Burn EFUSE to enable secure boot (ABS_DONE_0) * * If power failure happens during Step 1, probably the next boot will continue from Step 2. * There is some small chance that EFUSEs will be part-way through being written so will be * somehow corrupted here. Thankfully this window of time is very small, but if that's the * case, one has to use the espefuse tool to manually set the remaining bits and enable R/W * protection. Once the relevant EFUSE bits are set and R/W protected, Step 1 will be skipped * successfully on further reboots. * * If power failure happens during Step 2, Step 1 will be skipped and Step 2 repeated: * the digest will get re-written on the next boot. * * If power failure happens during Step 3, it's possible that EFUSE was partially written * with the generated flash encryption key, though the time window for that would again * be very small. On reboot, Step 1 will be skipped and Step 2 repeated, though, Step 3 * may fail due to the above mentioned reason, in which case, one has to use the espefuse * tool to manually set the remaining bits and enable R/W protection. Once the relevant EFUSE * bits are set and R/W protected, Step 3 will be skipped successfully on further reboots. * * If power failure happens after start of 4 and before end of 5, the next boot will fail * (bootloader header is encrypted and flash encryption isn't enabled yet, so it looks like * noise to the ROM bootloader). The check in the ROM is pretty basic so if the first byte of * ciphertext happens to be the magic byte E9 then it may try to boot, but it will definitely * crash (no chance that the remaining ciphertext will look like a valid bootloader image). * Only solution is to reflash with all plaintext and the whole process starts again: skips * Step 1, repeats Step 2, skips Step 3, etc. * * If power failure happens after 5 but before 6, the device will reboot with flash * encryption on and will regenerate an encrypted digest in Step 2. This should still * be valid as the input data for the digest is read via flash cache (so will be decrypted) * and the code in secure_boot_generate() tells bootloader_flash_write() to encrypt the data * on write if flash encryption is enabled. Steps 3 - 5 are skipped (encryption already on), * then Step 6 enables secure boot. */ #if defined(CONFIG_SECURE_BOOT) || defined(CONFIG_SECURE_FLASH_ENC_ENABLED) esp_err_t err; #endif #ifdef CONFIG_SECURE_BOOT_V2_ENABLED err = esp_secure_boot_v2_permanently_enable(image_data); if (err != ESP_OK) { ESP_LOGE(TAG, "Secure Boot v2 failed (%d)", err); return; } #endif #ifdef CONFIG_SECURE_BOOT_V1_ENABLED /* Steps 1 & 2 (see above for full description): * 1) Generate secure boot EFUSE key * 2) Compute digest of plaintext bootloader */ err = esp_secure_boot_generate_digest(); if (err != ESP_OK) { ESP_LOGE(TAG, "Bootloader digest generation for secure boot failed (%d).", err); return; } #endif #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED /* Steps 3, 4 & 5 (see above for full description): * 3) Generate flash encryption EFUSE key * 4) Encrypt flash contents * 5) Burn EFUSE to enable flash encryption */ ESP_LOGI(TAG, "Checking flash encryption..."); bool flash_encryption_enabled = esp_flash_encryption_enabled(); err = esp_flash_encrypt_check_and_update(); if (err != ESP_OK) { ESP_LOGE(TAG, "Flash encryption check failed (%d).", err); return; } #endif #ifdef CONFIG_SECURE_BOOT_V1_ENABLED /* Step 6 (see above for full description): * 6) Burn EFUSE to enable secure boot */ ESP_LOGI(TAG, "Checking secure boot..."); err = esp_secure_boot_permanently_enable(); if (err != ESP_OK) { ESP_LOGE(TAG, "FAILED TO ENABLE SECURE BOOT (%d).", err); /* Panic here as secure boot is not properly enabled due to one of the reasons in above function */ abort(); } #endif #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED if (!flash_encryption_enabled && esp_flash_encryption_enabled()) { /* Flash encryption was just enabled for the first time, so issue a system reset to ensure flash encryption cache resets properly */ ESP_LOGI(TAG, "Resetting with flash encryption enabled..."); uart_tx_wait_idle(0); bootloader_reset(); } #endif ESP_LOGI(TAG, "Disabling RNG early entropy source..."); bootloader_random_disable(); // copy loaded segments to RAM, set up caches for mapped segments, and start application unpack_load_app(image_data); } static void unpack_load_app(const esp_image_metadata_t *data) { uint32_t drom_addr = 0; uint32_t drom_load_addr = 0; uint32_t drom_size = 0; uint32_t irom_addr = 0; uint32_t irom_load_addr = 0; uint32_t irom_size = 0; // Find DROM & IROM addresses, to configure cache mappings for (int i = 0; i < data->image.segment_count; i++) { const esp_image_segment_header_t *header = &data->segments[i]; if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) { if (drom_addr != 0) { ESP_LOGE(TAG, MAP_ERR_MSG, "DROM"); } else { ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM"); } drom_addr = data->segment_data[i]; drom_load_addr = header->load_addr; drom_size = header->data_len; } if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) { if (irom_addr != 0) { ESP_LOGE(TAG, MAP_ERR_MSG, "IROM"); } else { ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM"); } irom_addr = data->segment_data[i]; irom_load_addr = header->load_addr; irom_size = header->data_len; } } ESP_LOGD(TAG, "calling set_cache_and_start_app"); set_cache_and_start_app(drom_addr, drom_load_addr, drom_size, irom_addr, irom_load_addr, irom_size, data->image.entry_addr); } static void set_cache_and_start_app( uint32_t drom_addr, uint32_t drom_load_addr, uint32_t drom_size, uint32_t irom_addr, uint32_t irom_load_addr, uint32_t irom_size, uint32_t entry_addr) { int rc; ESP_LOGD(TAG, "configure drom and irom and start"); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #endif /* Clear the MMU entries that are already set up, so the new app only has the mappings it creates. */ #if CONFIG_IDF_TARGET_ESP32 for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) { DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL; } #elif CONFIG_IDF_TARGET_ESP32S2 for (int i = 0; i < FLASH_MMU_TABLE_SIZE; i++) { FLASH_MMU_TABLE[i] = MMU_TABLE_INVALID_VAL; } #endif uint32_t drom_load_addr_aligned = drom_load_addr & MMU_FLASH_MASK; uint32_t drom_page_count = bootloader_cache_pages_to_map(drom_size, drom_load_addr); ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & MMU_FLASH_MASK, drom_load_addr_aligned, drom_size, drom_page_count); #if CONFIG_IDF_TARGET_ESP32 rc = cache_flash_mmu_set(0, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count); #elif CONFIG_IDF_TARGET_ESP32S2 rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count, 0); #endif ESP_LOGV(TAG, "rc=%d", rc); #if CONFIG_IDF_TARGET_ESP32 rc = cache_flash_mmu_set(1, 0, drom_load_addr_aligned, drom_addr & MMU_FLASH_MASK, 64, drom_page_count); ESP_LOGV(TAG, "rc=%d", rc); #endif uint32_t irom_load_addr_aligned = irom_load_addr & MMU_FLASH_MASK; uint32_t irom_page_count = bootloader_cache_pages_to_map(irom_size, irom_load_addr); ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & MMU_FLASH_MASK, irom_load_addr_aligned, irom_size, irom_page_count); #if CONFIG_IDF_TARGET_ESP32 rc = cache_flash_mmu_set(0, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t iram1_used = 0; if (irom_load_addr + irom_size > IRAM1_ADDRESS_LOW) { iram1_used = 1; } if (iram1_used) { rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM0_ADDRESS_LOW, 0, 64, 64, 1); rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, IRAM1_ADDRESS_LOW, 0, 64, 64, 1); REG_CLR_BIT(EXTMEM_PRO_ICACHE_CTRL1_REG, EXTMEM_PRO_ICACHE_MASK_IRAM1); } rc = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count, 0); #endif ESP_LOGV(TAG, "rc=%d", rc); #if CONFIG_IDF_TARGET_ESP32 rc = cache_flash_mmu_set(1, 0, irom_load_addr_aligned, irom_addr & MMU_FLASH_MASK, 64, irom_page_count); ESP_LOGV(TAG, "rc=%d", rc); DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 ); DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 ); #elif CONFIG_IDF_TARGET_ESP32S2 REG_CLR_BIT( EXTMEM_PRO_ICACHE_CTRL1_REG, (EXTMEM_PRO_ICACHE_MASK_IRAM0) | (EXTMEM_PRO_ICACHE_MASK_IRAM1 & 0) | EXTMEM_PRO_ICACHE_MASK_DROM0 ); #endif #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #endif // Application will need to do Cache_Flush(1) and Cache_Read_Enable(1) ESP_LOGD(TAG, "start: 0x%08x", entry_addr); typedef void (*entry_t)(void) __attribute__((noreturn)); entry_t entry = ((entry_t) entry_addr); // TODO: we have used quite a bit of stack at this point. // use "movsp" instruction to reset stack back to where ROM stack starts. (*entry)(); } void bootloader_reset(void) { #ifdef BOOTLOADER_BUILD uart_tx_flush(0); /* Ensure any buffered log output is displayed */ uart_tx_flush(1); ets_delay_us(1000); /* Allow last byte to leave FIFO */ REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST); while (1) { } /* This line will never be reached, used to keep gcc happy */ #else abort(); /* This function should really not be called from application code */ #endif } esp_err_t bootloader_sha256_hex_to_str(char *out_str, const uint8_t *in_array_hex, size_t len) { if (out_str == NULL || in_array_hex == NULL || len == 0) { return ESP_ERR_INVALID_ARG; } for (int i = 0; i < len; i++) { for (int shift = 0; shift < 2; shift++) { uint8_t nibble = (in_array_hex[i] >> (shift ? 0 : 4)) & 0x0F; if (nibble < 10) { out_str[i * 2 + shift] = '0' + nibble; } else { out_str[i * 2 + shift] = 'a' + nibble - 10; } } } return ESP_OK; } void bootloader_debug_buffer(const void *buffer, size_t length, const char *label) { #if BOOT_LOG_LEVEL >= LOG_LEVEL_DEBUG assert(length <= 128); // Avoid unbounded VLA size const uint8_t *bytes = (const uint8_t *)buffer; char hexbuf[length * 2 + 1]; hexbuf[length * 2] = 0; for (int i = 0; i < length; i++) { for (int shift = 0; shift < 2; shift++) { uint8_t nibble = (bytes[i] >> (shift ? 0 : 4)) & 0x0F; if (nibble < 10) { hexbuf[i * 2 + shift] = '0' + nibble; } else { hexbuf[i * 2 + shift] = 'a' + nibble - 10; } } } ESP_LOGD(TAG, "%s: %s", label, hexbuf); #endif } esp_err_t bootloader_sha256_flash_contents(uint32_t flash_offset, uint32_t len, uint8_t *digest) { if (digest == NULL) { return ESP_ERR_INVALID_ARG; } /* Handling firmware images larger than MMU capacity */ uint32_t mmu_free_pages_count = bootloader_mmap_get_free_pages(); bootloader_sha256_handle_t sha_handle = NULL; sha_handle = bootloader_sha256_start(); if (sha_handle == NULL) { return ESP_ERR_NO_MEM; } while (len > 0) { uint32_t mmu_page_offset = ((flash_offset & MMAP_ALIGNED_MASK) != 0) ? 1 : 0; /* Skip 1st MMU Page if it is already populated */ uint32_t partial_image_len = MIN(len, ((mmu_free_pages_count - mmu_page_offset) * SPI_FLASH_MMU_PAGE_SIZE)); /* Read the image that fits in the free MMU pages */ const void * image = bootloader_mmap(flash_offset, partial_image_len); if (image == NULL) { bootloader_sha256_finish(sha_handle, NULL); return ESP_FAIL; } bootloader_sha256_data(sha_handle, image, partial_image_len); bootloader_munmap(image); flash_offset += partial_image_len; len -= partial_image_len; } bootloader_sha256_finish(sha_handle, digest); return ESP_OK; }