/** * \brief Multi-precision integer library, ESP-IDF hardware accelerated parts * * based on mbedTLS implementation * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include "soc/hwcrypto_periph.h" #include "soc/dport_reg.h" #include "esp_private/periph_ctrl.h" #include #include "bignum_impl.h" #include #include static _lock_t mpi_lock; /* Round up number of words to nearest 512 bit (16 word) block count. */ size_t esp_mpi_hardware_words(size_t words) { return (words + 0xF) & ~0xF; } void esp_mpi_enable_hardware_hw_op( void ) { /* newlib locks lazy initialize on ESP-IDF */ _lock_acquire(&mpi_lock); /* Enable RSA hardware */ periph_module_enable(PERIPH_RSA_MODULE); DPORT_REG_CLR_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD); while (DPORT_REG_READ(RSA_CLEAN_REG) != 1) { } // Note: from enabling RSA clock to here takes about 1.3us } void esp_mpi_disable_hardware_hw_op( void ) { DPORT_REG_SET_BIT(DPORT_RSA_PD_CTRL_REG, DPORT_RSA_PD); /* Disable RSA hardware */ periph_module_disable(PERIPH_RSA_MODULE); _lock_release(&mpi_lock); } void esp_mpi_interrupt_enable( bool enable ) { DPORT_REG_WRITE(RSA_INTERRUPT_REG, enable); } void esp_mpi_interrupt_clear( void ) { DPORT_REG_WRITE(RSA_CLEAR_INTERRUPT_REG, 1); } /* Copy mbedTLS MPI bignum 'mpi' to hardware memory block at 'mem_base'. If hw_words is higher than the number of words in the bignum then these additional words will be zeroed in the memory buffer. */ static inline void mpi_to_mem_block(uint32_t mem_base, const mbedtls_mpi *mpi, size_t hw_words) { uint32_t *pbase = (uint32_t *)mem_base; uint32_t copy_words = MIN(hw_words, mpi->n); /* Copy MPI data to memory block registers */ for (uint32_t i = 0; i < copy_words; i++) { pbase[i] = mpi->p[i]; } /* Zero any remaining memory block data */ for (uint32_t i = copy_words; i < hw_words; i++) { pbase[i] = 0; } } /* Read mbedTLS MPI bignum back from hardware memory block. Reads num_words words from block. Bignum 'x' should already be grown to at least num_words by caller (can be done while calculation is in progress, to save some cycles) */ static inline void mem_block_to_mpi(mbedtls_mpi *x, uint32_t mem_base, size_t num_words) { assert(x->n >= num_words); /* Copy data from memory block registers */ esp_dport_access_read_buffer(x->p, mem_base, num_words); /* Zero any remaining limbs in the bignum, if the buffer is bigger than num_words */ for (size_t i = num_words; i < x->n; i++) { x->p[i] = 0; } } /* Begin an RSA operation. op_reg specifies which 'START' register to write to. */ static inline void start_op(uint32_t op_reg) { /* Clear interrupt status */ DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1); /* Note: above REG_WRITE includes a memw, so we know any writes to the memory blocks are also complete. */ DPORT_REG_WRITE(op_reg, 1); } /* Wait for an RSA operation to complete. */ static inline void wait_op_complete(void) { while (DPORT_REG_READ(RSA_INTERRUPT_REG) != 1) { } /* clear the interrupt */ DPORT_REG_WRITE(RSA_INTERRUPT_REG, 1); } /* Read result from last MPI operation */ void esp_mpi_read_result_hw_op(mbedtls_mpi *Z, size_t z_words) { wait_op_complete(); mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, z_words); } /* Z = (X * Y) mod M */ void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t hw_words) { /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */ mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words); mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Rinv, hw_words); DPORT_REG_WRITE(RSA_M_DASH_REG, (uint32_t)Mprime); /* "mode" register loaded with number of 512-bit blocks, minus 1 */ DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1); /* Execute first stage montgomery multiplication */ start_op(RSA_MULT_START_REG); wait_op_complete(); /* execute second stage */ /* Load Y to X input memory block, rerun */ mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words); start_op(RSA_MULT_START_REG); } /* Z = X * Y */ void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t hw_words) { /* Copy X (right-extended) & Y (left-extended) to memory block */ mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); mpi_to_mem_block(RSA_MEM_Z_BLOCK_BASE + hw_words * 4, Y, hw_words); /* NB: as Y is left-extended, we don't zero the bottom words_mult words of Y block. This is OK for now because zeroing is done by hardware when we do esp_mpi_acquire_hardware(). */ DPORT_REG_WRITE(RSA_M_DASH_REG, 0); /* "mode" register loaded with number of 512-bit blocks in result, plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8)) */ DPORT_REG_WRITE(RSA_MULT_MODE_REG, ((hw_words * 2) / 16) + 7); start_op(RSA_MULT_START_REG); } int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi_uint Mprime, size_t hw_words, bool again) { // Note Z may be the same pointer as X or Y int ret = 0; // montgomery mult prepare if (again == false) { mpi_to_mem_block(RSA_MEM_M_BLOCK_BASE, M, hw_words); DPORT_REG_WRITE(RSA_M_DASH_REG, Mprime); DPORT_REG_WRITE(RSA_MULT_MODE_REG, hw_words / 16 - 1); } mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); mpi_to_mem_block(RSA_MEM_RB_BLOCK_BASE, Y, hw_words); start_op(RSA_MULT_START_REG); Z->s = 1; // The sign of Z will be = M->s (but M->s is always 1) MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) ); wait_op_complete(); /* Read back the result */ mem_block_to_mpi(Z, RSA_MEM_Z_BLOCK_BASE, hw_words); /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */ if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) { MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M)); } cleanup: return ret; } /* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod multiplication to calculate an mbedtls_mpi_mult_mpi result where either A or B are >2048 bits so can't use the standard multiplication method. Result (z_words, based on A bits + B bits) must still be less than 4096 bits. This case is simpler than the general case modulo multiply of esp_mpi_mul_mpi_mod() because we can control the other arguments: * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output isn't actually modulo anything. * Mprime and Rinv are therefore predictable as follows: Mprime = 1 Rinv = 1 (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv) */ void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words) { size_t hw_words = num_words; /* M = 2^num_words - 1, so block is entirely FF */ for (size_t i = 0; i < hw_words; i++) { DPORT_REG_WRITE(RSA_MEM_M_BLOCK_BASE + i * 4, UINT32_MAX); } /* Mprime = 1 */ DPORT_REG_WRITE(RSA_M_DASH_REG, 1); /* "mode" register loaded with number of 512-bit blocks, minus 1 */ DPORT_REG_WRITE(RSA_MULT_MODE_REG, (hw_words / 16) - 1); /* Load X */ mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, X, hw_words); /* Rinv = 1, write first word */ DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE, 1); /* Zero out rest of the Rinv words */ for (size_t i = 1; i < hw_words; i++) { DPORT_REG_WRITE(RSA_MEM_RB_BLOCK_BASE + i * 4, 0); } start_op(RSA_MULT_START_REG); wait_op_complete(); /* finish the modular multiplication */ /* Load Y to X input memory block, rerun */ mpi_to_mem_block(RSA_MEM_X_BLOCK_BASE, Y, hw_words); start_op(RSA_MULT_START_REG); }