/* * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG // uncomment this line to enable debug logs #include #include #include "freertos/FreeRTOS.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_heap_caps.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_check.h" #include "esp_pm.h" #include "driver/gptimer.h" #include "hal/timer_types.h" #include "hal/timer_hal.h" #include "hal/timer_ll.h" #include "soc/timer_periph.h" #include "soc/soc_memory_types.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_clk.h" // If ISR handler is allowed to run whilst cache is disabled, // Make sure all the code and related variables used by the handler are in the SRAM #if CONFIG_GPTIMER_ISR_IRAM_SAFE #define GPTIMER_INTR_ALLOC_FLAGS (ESP_INTR_FLAG_IRAM | ESP_INTR_FLAG_INTRDISABLED) #define GPTIMER_MEM_ALLOC_CAPS (MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT) #else #define GPTIMER_INTR_ALLOC_FLAGS ESP_INTR_FLAG_INTRDISABLED #define GPTIMER_MEM_ALLOC_CAPS MALLOC_CAP_DEFAULT #endif //CONFIG_GPTIMER_ISR_IRAM_SAFE #if CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM #define GPTIMER_CTRL_FUNC_ATTR IRAM_ATTR #else #define GPTIMER_CTRL_FUNC_ATTR #endif // CONFIG_GPTIMER_CTRL_FUNC_IN_IRAM #define GPTIMER_PM_LOCK_NAME_LEN_MAX 16 static const char *TAG = "gptimer"; typedef struct gptimer_platform_t gptimer_platform_t; typedef struct gptimer_group_t gptimer_group_t; typedef struct gptimer_t gptimer_t; struct gptimer_platform_t { _lock_t mutex; // platform level mutex lock gptimer_group_t *groups[SOC_TIMER_GROUPS]; // timer group pool int group_ref_counts[SOC_TIMER_GROUPS]; // reference count used to protect group install/uninstall }; struct gptimer_group_t { int group_id; portMUX_TYPE spinlock; // to protect per-group register level concurrent access gptimer_t *timers[SOC_TIMER_GROUP_TIMERS_PER_GROUP]; }; typedef enum { GPTIMER_FSM_STOP, GPTIMER_FSM_START, } gptimer_lifecycle_fsm_t; struct gptimer_t { gptimer_group_t *group; int timer_id; unsigned int resolution_hz; unsigned long long reload_count; unsigned long long alarm_count; gptimer_count_direction_t direction; timer_hal_context_t hal; gptimer_lifecycle_fsm_t fsm; // access to fsm should be protect by spinlock, as fsm is also accessed from ISR handler intr_handle_t intr; _lock_t mutex; // to protect other resource allocation, like interrupt handle portMUX_TYPE spinlock; // to protect per-timer resources concurent accessed by task and ISR handler gptimer_alarm_cb_t on_alarm; void *user_ctx; esp_pm_lock_handle_t pm_lock; // power management lock #if CONFIG_PM_ENABLE char pm_lock_name[GPTIMER_PM_LOCK_NAME_LEN_MAX]; // pm lock name #endif struct { uint32_t intr_shared: 1; uint32_t auto_reload_on_alarm: 1; uint32_t alarm_en: 1; } flags; }; // gptimer driver platform, it's always a singleton static gptimer_platform_t s_platform; static gptimer_group_t *gptimer_acquire_group_handle(int group_id); static void gptimer_release_group_handle(gptimer_group_t *group); static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz); static esp_err_t gptimer_install_interrupt(gptimer_t *timer); IRAM_ATTR static void gptimer_default_isr(void *args); esp_err_t gptimer_new_timer(const gptimer_config_t *config, gptimer_handle_t *ret_timer) { esp_err_t ret = ESP_OK; gptimer_group_t *group = NULL; gptimer_t *timer = NULL; int group_id = -1; int timer_id = -1; ESP_GOTO_ON_FALSE(config && ret_timer, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); ESP_GOTO_ON_FALSE(config->resolution_hz, ESP_ERR_INVALID_ARG, err, TAG, "invalid timer resolution:%d", config->resolution_hz); timer = heap_caps_calloc(1, sizeof(gptimer_t), GPTIMER_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(timer, ESP_ERR_NO_MEM, err, TAG, "no mem for gptimer"); for (int i = 0; (i < SOC_TIMER_GROUPS) && (timer_id < 0); i++) { group = gptimer_acquire_group_handle(i); ESP_GOTO_ON_FALSE(group, ESP_ERR_NO_MEM, err, TAG, "no mem for group (%d)", group_id); // loop to search free timer in the group portENTER_CRITICAL(&group->spinlock); for (int j = 0; j < SOC_TIMER_GROUP_TIMERS_PER_GROUP; j++) { if (!group->timers[j]) { group_id = i; timer_id = j; group->timers[j] = timer; break; } } portEXIT_CRITICAL(&group->spinlock); if (timer_id < 0) { gptimer_release_group_handle(group); group = NULL; } } ESP_GOTO_ON_FALSE(timer_id != -1, ESP_ERR_NOT_FOUND, err, TAG, "no free timer"); timer->timer_id = timer_id; timer->group = group; // initialize HAL layer timer_hal_init(&timer->hal, group_id, timer_id); // stop counter, alarm, auto-reload timer_ll_enable_counter(timer->hal.dev, timer_id, false); timer_ll_enable_auto_reload(timer->hal.dev, timer_id, false); timer_ll_enable_alarm(timer->hal.dev, timer_id, false); // select clock source, set clock resolution ESP_GOTO_ON_ERROR(gptimer_select_periph_clock(timer, config->clk_src, config->resolution_hz), err, TAG, "set periph clock failed"); // initialize counter value to zero timer_hal_set_counter_value(&timer->hal, 0); // set counting direction timer_ll_set_count_direction(timer->hal.dev, timer_id, config->direction); // interrupt register is shared by all timers in the same group portENTER_CRITICAL(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id), false); // disable interrupt timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer_id)); // clear pending interrupt event portEXIT_CRITICAL(&group->spinlock); // initialize other members of timer timer->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; timer->fsm = GPTIMER_FSM_STOP; timer->direction = config->direction; timer->flags.intr_shared = config->flags.intr_shared; _lock_init(&timer->mutex); ESP_LOGD(TAG, "new gptimer (%d,%d) at %p, resolution=%uHz", group_id, timer_id, timer, timer->resolution_hz); *ret_timer = timer; return ESP_OK; err: if (timer) { if (timer->pm_lock) { esp_pm_lock_delete(timer->pm_lock); } free(timer); } if (group) { gptimer_release_group_handle(group); } return ret; } esp_err_t gptimer_del_timer(gptimer_handle_t timer) { gptimer_group_t *group = NULL; bool valid_state = true; ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL(&timer->spinlock); if (timer->fsm != GPTIMER_FSM_STOP) { valid_state = false; } portEXIT_CRITICAL(&timer->spinlock); ESP_RETURN_ON_FALSE(valid_state, ESP_ERR_INVALID_STATE, TAG, "can't delete timer as it's not in stop state"); group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; if (timer->intr) { esp_intr_free(timer->intr); ESP_LOGD(TAG, "uninstall interrupt service for timer (%d,%d)", group_id, timer_id); } if (timer->pm_lock) { esp_pm_lock_delete(timer->pm_lock); ESP_LOGD(TAG, "uninstall APB_FREQ_MAX lock for timer (%d,%d)", group_id, timer_id); } _lock_close(&timer->mutex); free(timer); ESP_LOGD(TAG, "del timer (%d,%d)", group_id, timer_id); portENTER_CRITICAL(&group->spinlock); group->timers[timer_id] = NULL; portEXIT_CRITICAL(&group->spinlock); // timer has a reference on group, release it now gptimer_release_group_handle(group); return ESP_OK; } GPTIMER_CTRL_FUNC_ATTR esp_err_t gptimer_set_raw_count(gptimer_handle_t timer, unsigned long long value) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL_SAFE(&timer->spinlock); timer_hal_set_counter_value(&timer->hal, value); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } GPTIMER_CTRL_FUNC_ATTR esp_err_t gptimer_get_raw_count(gptimer_handle_t timer, unsigned long long *value) { ESP_RETURN_ON_FALSE(timer && value, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); portENTER_CRITICAL_SAFE(&timer->spinlock); *value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } esp_err_t gptimer_register_event_callbacks(gptimer_handle_t timer, const gptimer_event_callbacks_t *cbs, void *user_data) { gptimer_group_t *group = NULL; ESP_RETURN_ON_FALSE(timer && cbs, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); group = timer->group; #if CONFIG_GPTIMER_ISR_IRAM_SAFE if (cbs->on_alarm) { ESP_RETURN_ON_FALSE(esp_ptr_in_iram(cbs->on_alarm), ESP_ERR_INVALID_ARG, TAG, "on_alarm callback not in IRAM"); } if (user_data) { ESP_RETURN_ON_FALSE(esp_ptr_in_dram(user_data) || esp_ptr_in_diram_dram(user_data) || esp_ptr_in_rtc_dram_fast(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in DRAM"); } #endif // lazy install interrupt service ESP_RETURN_ON_ERROR(gptimer_install_interrupt(timer), TAG, "install interrupt service failed"); // enable/disable GPTimer interrupt events portENTER_CRITICAL_SAFE(&group->spinlock); timer_ll_enable_intr(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id), cbs->on_alarm); // enable timer interrupt portEXIT_CRITICAL_SAFE(&group->spinlock); timer->on_alarm = cbs->on_alarm; timer->user_ctx = user_data; return ESP_OK; } GPTIMER_CTRL_FUNC_ATTR esp_err_t gptimer_set_alarm_action(gptimer_handle_t timer, const gptimer_alarm_config_t *config) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); if (config) { // When auto_reload is enabled, alarm_count should not be equal to reload_count bool valid_auto_reload = !config->flags.auto_reload_on_alarm || config->alarm_count != config->reload_count; ESP_RETURN_ON_FALSE(valid_auto_reload, ESP_ERR_INVALID_ARG, TAG, "reload count can't equal to alarm count"); timer->reload_count = config->reload_count; timer->alarm_count = config->alarm_count; timer->flags.auto_reload_on_alarm = config->flags.auto_reload_on_alarm; timer->flags.alarm_en = true; portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_set_reload_value(timer->hal.dev, timer->timer_id, config->reload_count); timer_ll_set_alarm_value(timer->hal.dev, timer->timer_id, config->alarm_count); portEXIT_CRITICAL_SAFE(&timer->spinlock); } else { timer->flags.auto_reload_on_alarm = false; timer->flags.alarm_en = false; } portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_auto_reload(timer->hal.dev, timer->timer_id, timer->flags.auto_reload_on_alarm); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } GPTIMER_CTRL_FUNC_ATTR esp_err_t gptimer_start(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // acquire power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_acquire(timer->pm_lock), TAG, "acquire APB_FREQ_MAX lock failed"); } // interrupt interupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_enable(timer->intr), TAG, "enable interrupt service failed"); } portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_counter(timer->hal.dev, timer->timer_id, true); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, timer->flags.alarm_en); timer->fsm = GPTIMER_FSM_START; portEXIT_CRITICAL_SAFE(&timer->spinlock); return ESP_OK; } GPTIMER_CTRL_FUNC_ATTR esp_err_t gptimer_stop(gptimer_handle_t timer) { ESP_RETURN_ON_FALSE(timer, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // disable counter, alarm, autoreload portENTER_CRITICAL_SAFE(&timer->spinlock); timer_ll_enable_counter(timer->hal.dev, timer->timer_id, false); timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, false); timer->fsm = GPTIMER_FSM_STOP; portEXIT_CRITICAL_SAFE(&timer->spinlock); // disable interrupt service if (timer->intr) { ESP_RETURN_ON_ERROR(esp_intr_disable(timer->intr), TAG, "disable interrupt service failed"); } // release power manager lock if (timer->pm_lock) { ESP_RETURN_ON_ERROR(esp_pm_lock_release(timer->pm_lock), TAG, "release APB_FREQ_MAX lock failed"); } return ESP_OK; } static gptimer_group_t *gptimer_acquire_group_handle(int group_id) { // esp_log_level_set(TAG, ESP_LOG_DEBUG); bool new_group = false; gptimer_group_t *group = NULL; // prevent install timer group concurrently _lock_acquire(&s_platform.mutex); if (!s_platform.groups[group_id]) { group = heap_caps_calloc(1, sizeof(gptimer_group_t), GPTIMER_MEM_ALLOC_CAPS); if (group) { new_group = true; s_platform.groups[group_id] = group; // initialize timer group members group->group_id = group_id; group->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; // enable APB access timer registers periph_module_enable(timer_group_periph_signals.groups[group_id].module); } } else { group = s_platform.groups[group_id]; } // someone acquired the group handle means we have a new object that refer to this group s_platform.group_ref_counts[group_id]++; _lock_release(&s_platform.mutex); if (new_group) { ESP_LOGD(TAG, "new group (%d) @%p", group_id, group); } return group; } static void gptimer_release_group_handle(gptimer_group_t *group) { int group_id = group->group_id; bool do_deinitialize = false; _lock_acquire(&s_platform.mutex); s_platform.group_ref_counts[group_id]--; if (s_platform.group_ref_counts[group_id] == 0) { assert(s_platform.groups[group_id]); do_deinitialize = true; s_platform.groups[group_id] = NULL; // Theoretically we need to disable the peripheral clock for the timer group // However, next time when we enable the peripheral again, the registers will be reset to default value, including the watchdog registers inside the group // Then the watchdog will go into reset state, e.g. the flash boot watchdog is enabled again and reset the system very soon // periph_module_disable(timer_group_periph_signals.groups[group_id].module); } _lock_release(&s_platform.mutex); if (do_deinitialize) { free(group); ESP_LOGD(TAG, "del group (%d)", group_id); } } static esp_err_t gptimer_select_periph_clock(gptimer_t *timer, gptimer_clock_source_t src_clk, uint32_t resolution_hz) { unsigned int counter_src_hz = 0; esp_err_t ret = ESP_OK; int timer_id = timer->timer_id; switch (src_clk) { case GPTIMER_CLK_SRC_APB: counter_src_hz = esp_clk_apb_freq(); #if CONFIG_PM_ENABLE sprintf(timer->pm_lock_name, "gptimer_%d_%d", timer->group->group_id, timer_id); // e.g. gptimer_0_0 ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, timer->pm_lock_name, &timer->pm_lock); ESP_RETURN_ON_ERROR(ret, TAG, "create APB_FREQ_MAX lock failed"); ESP_LOGD(TAG, "install APB_FREQ_MAX lock for timer (%d,%d)", timer->group->group_id, timer_id); #endif break; #if SOC_TIMER_GROUP_SUPPORT_XTAL case GPTIMER_CLK_SRC_XTAL: counter_src_hz = esp_clk_xtal_freq(); break; #endif default: ESP_RETURN_ON_FALSE(false, ESP_ERR_NOT_SUPPORTED, TAG, "clock source %d is not support", src_clk); break; } timer_ll_set_clock_source(timer->hal.dev, timer_id, src_clk); unsigned int prescale = counter_src_hz / resolution_hz; // potential resolution loss here timer_ll_set_clock_prescale(timer->hal.dev, timer_id, prescale); timer->resolution_hz = counter_src_hz / prescale; // this is the real resolution if (timer->resolution_hz != resolution_hz) { ESP_LOGW(TAG, "resolution lost, expect %ul, real %ul", resolution_hz, timer->resolution_hz); } return ret; } static esp_err_t gptimer_install_interrupt(gptimer_t *timer) { esp_err_t ret = ESP_OK; gptimer_group_t *group = timer->group; int group_id = group->group_id; int timer_id = timer->timer_id; bool new_isr = false; if (!timer->intr) { _lock_acquire(&timer->mutex); if (!timer->intr) { // if user wants to control the interrupt allocation more precisely, we can expose more flags in `gptimer_config_t` int extra_isr_flags = timer->flags.intr_shared ? ESP_INTR_FLAG_SHARED : 0; ret = esp_intr_alloc_intrstatus(timer_group_periph_signals.groups[group_id].timer_irq_id[timer_id], extra_isr_flags | GPTIMER_INTR_ALLOC_FLAGS, (uint32_t)timer_ll_get_intr_status_reg(timer->hal.dev), TIMER_LL_EVENT_ALARM(timer_id), gptimer_default_isr, timer, &timer->intr); new_isr = (ret == ESP_OK); } _lock_release(&timer->mutex); } if (new_isr) { ESP_LOGD(TAG, "install interrupt service for timer (%d,%d)", group_id, timer_id); } return ret; } // Put the default ISR handler in the IRAM for better performance IRAM_ATTR static void gptimer_default_isr(void *args) { bool need_yield = false; gptimer_t *timer = (gptimer_t *)args; gptimer_group_t *group = timer->group; gptimer_alarm_cb_t on_alarm_cb = timer->on_alarm; uint32_t intr_status = timer_ll_get_intr_status(timer->hal.dev); if (intr_status & TIMER_LL_EVENT_ALARM(timer->timer_id)) { // Note: when alarm event happends, the alarm will be disabled automatically by hardware gptimer_alarm_event_data_t edata = { .count_value = timer_ll_get_counter_value(timer->hal.dev, timer->timer_id), .alarm_value = timer->alarm_count, }; portENTER_CRITICAL_ISR(&group->spinlock); timer_ll_clear_intr_status(timer->hal.dev, TIMER_LL_EVENT_ALARM(timer->timer_id)); // for auto-reload, we need to re-enable the alarm manually if (timer->flags.auto_reload_on_alarm) { timer_ll_enable_alarm(timer->hal.dev, timer->timer_id, true); } portEXIT_CRITICAL_ISR(&group->spinlock); if (on_alarm_cb) { if (on_alarm_cb(timer, &edata, timer->user_ctx)) { need_yield = true; } } } if (need_yield) { portYIELD_FROM_ISR(); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///// The Following APIs are for internal use only (e.g. unit test) ///////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// esp_err_t gptimer_get_intr_handle(gptimer_handle_t timer, intr_handle_t *ret_intr_handle) { ESP_RETURN_ON_FALSE(timer && ret_intr_handle, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); *ret_intr_handle = timer->intr; return ESP_OK; } esp_err_t gptimer_get_pm_lock(gptimer_handle_t timer, esp_pm_lock_handle_t *ret_pm_lock) { ESP_RETURN_ON_FALSE(timer && ret_pm_lock, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); *ret_pm_lock = timer->pm_lock; return ESP_OK; } /** * @brief This function will be called during start up, to check that gptimer driver is not running along with the legacy timer group driver */ __attribute__((constructor)) static void check_gptimer_driver_conflict(void) { extern int timer_group_driver_init_count; timer_group_driver_init_count++; if (timer_group_driver_init_count > 1) { ESP_EARLY_LOGE(TAG, "CONFLICT! The gptimer driver can't work along with the legacy timer group driver"); abort(); } }