/* * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_log.h" #include "esp_pm.h" #include "soc/rtc.h" #include "driver/rtc_io.h" #include "sys/lock.h" #include "driver/gpio.h" #include "esp_private/adc_share_hw_ctrl.h" #include "esp_private/sar_periph_ctrl.h" #include "adc1_private.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/adc_hal_common.h" #include "hal/adc_hal_conf.h" #include "esp_private/periph_ctrl.h" #include "driver/adc_types_legacy.h" #if SOC_DAC_SUPPORTED #include "driver/dac.h" #include "hal/dac_hal.h" #endif #if CONFIG_IDF_TARGET_ESP32S3 #include "esp_efuse_rtc_calib.h" #endif #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) //////////////////////// Locks /////////////////////////////////////////// extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define RTC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define RTC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) #define DIGI_ENTER_CRITICAL() #define DIGI_EXIT_CRITICAL() #define ADC_POWER_ENTER() RTC_ENTER_CRITICAL() #define ADC_POWER_EXIT() RTC_EXIT_CRITICAL() #define DIGI_CONTROLLER_ENTER() DIGI_ENTER_CRITICAL() #define DIGI_CONTROLLER_EXIT() DIGI_EXIT_CRITICAL() #define SARADC1_ENTER() RTC_ENTER_CRITICAL() #define SARADC1_EXIT() RTC_EXIT_CRITICAL() #define SARADC2_ENTER() RTC_ENTER_CRITICAL() #define SARADC2_EXIT() RTC_EXIT_CRITICAL() //n stands for ADC unit: 1 for ADC1 and 2 for ADC2. Currently both unit touches the same registers #define VREF_ENTER(n) RTC_ENTER_CRITICAL() #define VREF_EXIT(n) RTC_EXIT_CRITICAL() #define FSM_ENTER() RTC_ENTER_CRITICAL() #define FSM_EXIT() RTC_EXIT_CRITICAL() #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 //prevent ADC1 being used by I2S dma and other tasks at the same time. static _lock_t adc1_dma_lock; #define SARADC1_ACQUIRE() _lock_acquire( &adc1_dma_lock ) #define SARADC1_RELEASE() _lock_release( &adc1_dma_lock ) #endif /* In ADC2, there're two locks used for different cases: 1. lock shared with app and Wi-Fi: ESP32: When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed. ESP32S2: The controller's control over the ADC is determined by the arbiter. There is no need to control by lock. 2. lock shared between tasks: when several tasks sharing the ADC2, we want to guarantee all the requests will be handled. Since conversions are short (about 31us), app returns the lock very soon, we use a spinlock to stand there waiting to do conversions one by one. adc2_spinlock should be acquired first, then call `adc_lock_release(ADC_UNIT_2)` or rtc_spinlock. */ #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE static esp_pm_lock_handle_t s_adc2_arbiter_lock; #endif //CONFIG_PM_ENABLE #endif // !CONFIG_IDF_TARGET_ESP32 static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw); /*--------------------------------------------------------------- ADC Common ---------------------------------------------------------------*/ esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num) { ADC_CHANNEL_CHECK(ADC_UNIT_1, channel); int io = ADC_GET_IO_NUM(ADC_UNIT_1, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; } else { *gpio_num = (gpio_num_t)io; } return ESP_OK; } #if (SOC_ADC_PERIPH_NUM >= 2) esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num) { ADC_CHANNEL_CHECK(ADC_UNIT_2, channel); int io = ADC_GET_IO_NUM(ADC_UNIT_2, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; } else { *gpio_num = (gpio_num_t)io; } return ESP_OK; } #endif //------------------------------------------------------------RTC Single Read----------------------------------------------// #if SOC_ADC_RTC_CTRL_SUPPORTED esp_err_t adc_set_clk_div(uint8_t clk_div) { DIGI_CONTROLLER_ENTER(); adc_ll_digi_set_clk_div(clk_div); DIGI_CONTROLLER_EXIT(); return ESP_OK; } static void adc_rtc_chan_init(adc_unit_t adc_unit) { if (adc_unit == ADC_UNIT_1) { /* Workaround: Disable the synchronization operation function of ADC1 and DAC. If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */ #if SOC_DAC_SUPPORTED dac_hal_rtc_sync_by_adc(false); #endif adc_oneshot_ll_output_invert(ADC_UNIT_1, ADC_HAL_DATA_INVERT_DEFAULT(ADC_UNIT_1)); adc_ll_set_sar_clk_div(ADC_UNIT_1, ADC_HAL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_1)); #ifdef CONFIG_IDF_TARGET_ESP32 adc_ll_hall_disable(); //Disable other peripherals. adc_ll_amp_disable(); //Currently the LNA is not open, close it by default. #endif } if (adc_unit == ADC_UNIT_2) { adc_hal_pwdet_set_cct(ADC_HAL_PWDET_CCT_DEFAULT); adc_oneshot_ll_output_invert(ADC_UNIT_2, ADC_HAL_DATA_INVERT_DEFAULT(ADC_UNIT_2)); adc_ll_set_sar_clk_div(ADC_UNIT_2, ADC_HAL_SAR_CLK_DIV_DEFAULT(ADC_UNIT_2)); } } esp_err_t adc_common_gpio_init(adc_unit_t adc_unit, adc_channel_t channel) { gpio_num_t gpio_num = 0; //If called with `ADC_UNIT_BOTH (ADC_UNIT_1 | ADC_UNIT_2)`, both if blocks will be run if (adc_unit == ADC_UNIT_1) { ADC_CHANNEL_CHECK(ADC_UNIT_1, channel); gpio_num = ADC_GET_IO_NUM(ADC_UNIT_1, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } if (adc_unit == ADC_UNIT_2) { ADC_CHANNEL_CHECK(ADC_UNIT_2, channel); gpio_num = ADC_GET_IO_NUM(ADC_UNIT_2, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } return ESP_OK; } esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en) { if (adc_unit == ADC_UNIT_1) { SARADC1_ENTER(); adc_oneshot_ll_output_invert(ADC_UNIT_1, inv_en); SARADC1_EXIT(); } if (adc_unit == ADC_UNIT_2) { SARADC2_ENTER(); adc_oneshot_ll_output_invert(ADC_UNIT_2, inv_en); SARADC2_EXIT(); } return ESP_OK; } esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t width_bit) { ADC_CHECK(width_bit < ADC_WIDTH_MAX, "unsupported bit width", ESP_ERR_INVALID_ARG); adc_bitwidth_t bitwidth = 0; #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; } else { switch(width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break; case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break; case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break; case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break; default: return ESP_ERR_INVALID_ARG; } } #elif CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif if (adc_unit == ADC_UNIT_1) { SARADC1_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth); SARADC1_EXIT(); } if (adc_unit == ADC_UNIT_2) { SARADC2_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth); SARADC2_EXIT(); } return ESP_OK; } /** * @brief Reset RTC controller FSM. * * @return * - ESP_OK Success */ #if !CONFIG_IDF_TARGET_ESP32 esp_err_t adc_rtc_reset(void) { FSM_ENTER(); adc_ll_rtc_reset(); FSM_EXIT(); return ESP_OK; } #endif /*------------------------------------------------------------------------------------- * ADC1 *------------------------------------------------------------------------------------*/ esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_UNIT_1, channel); ADC_CHECK(atten < SOC_ADC_ATTEN_NUM, "ADC Atten Err", ESP_ERR_INVALID_ARG); adc_common_gpio_init(ADC_UNIT_1, channel); SARADC1_ENTER(); adc_rtc_chan_init(ADC_UNIT_1); adc_oneshot_ll_set_atten(ADC_UNIT_1, channel, atten); SARADC1_EXIT(); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_1); #endif return ESP_OK; } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { ADC_CHECK(width_bit < ADC_WIDTH_MAX, "unsupported bit width", ESP_ERR_INVALID_ARG); adc_bitwidth_t bitwidth = 0; #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; } else { switch(width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break; case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break; case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break; case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break; default: return ESP_ERR_INVALID_ARG; } } #elif CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif SARADC1_ENTER(); adc_oneshot_ll_set_output_bits(ADC_UNIT_1, bitwidth); SARADC1_EXIT(); return ESP_OK; } esp_err_t adc1_dma_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ SARADC1_ACQUIRE(); ESP_LOGD( ADC_TAG, "dma mode takes adc1 lock." ); sar_periph_ctrl_adc_continuous_power_acquire(); SARADC1_ENTER(); /* switch SARADC into DIG channel */ adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_DIG); SARADC1_EXIT(); return ESP_OK; } esp_err_t adc1_rtc_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ SARADC1_ACQUIRE(); sar_periph_ctrl_adc_oneshot_power_acquire(); SARADC1_ENTER(); /* switch SARADC into RTC channel. */ adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); SARADC1_EXIT(); return ESP_OK; } esp_err_t adc1_lock_release(void) { ADC_CHECK((uint32_t *)adc1_dma_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE ); /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ sar_periph_ctrl_adc_oneshot_power_release(); SARADC1_RELEASE(); return ESP_OK; } int adc1_get_raw(adc1_channel_t channel) { int adc_value; ADC_CHANNEL_CHECK(ADC_UNIT_1, channel); adc1_rtc_mode_acquire(); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_1, channel); adc_set_hw_calibration_code(ADC_UNIT_1, atten); #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED SARADC1_ENTER(); #ifdef CONFIG_IDF_TARGET_ESP32 adc_ll_hall_disable(); //Disable other peripherals. adc_ll_amp_disable(); //Currently the LNA is not open, close it by default. #endif adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_RTC); //Set controller adc_oneshot_ll_set_channel(ADC_UNIT_1, channel); adc_hal_convert(ADC_UNIT_1, channel, &adc_value); //Start conversion, For ADC1, the data always valid. #if !CONFIG_IDF_TARGET_ESP32 adc_ll_rtc_reset(); //Reset FSM of rtc controller #endif SARADC1_EXIT(); adc1_lock_release(); return adc_value; } int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead { return adc1_get_raw(channel); } #if SOC_ULP_SUPPORTED void adc1_ulp_enable(void) { sar_periph_ctrl_adc_oneshot_power_acquire(); SARADC1_ENTER(); adc_ll_set_controller(ADC_UNIT_1, ADC_LL_CTRL_ULP); /* since most users do not need LNA and HALL with uLP, we disable them here open them in the uLP if needed. */ #ifdef CONFIG_IDF_TARGET_ESP32 /* disable other peripherals. */ adc_ll_hall_disable(); adc_ll_amp_disable(); #endif SARADC1_EXIT(); } #endif #if (SOC_ADC_PERIPH_NUM >= 2) /*--------------------------------------------------------------- ADC2 ---------------------------------------------------------------*/ esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_UNIT_2, channel); ADC_CHECK(atten <= SOC_ADC_ATTEN_NUM, "ADC2 Atten Err", ESP_ERR_INVALID_ARG); adc_common_gpio_init(ADC_UNIT_2, channel); #if CONFIG_IDF_TARGET_ESP32 /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/ if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { //try the lock, return if failed (wifi using). return ESP_ERR_TIMEOUT; } #endif //avoid collision with other tasks SARADC2_ENTER(); adc_rtc_chan_init(ADC_UNIT_2); adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten); SARADC2_EXIT(); #if CONFIG_IDF_TARGET_ESP32 adc_lock_release(ADC_UNIT_2); #endif #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_2); #endif return ESP_OK; } static inline void adc2_init(void) { #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE /* Lock APB clock. */ if (s_adc2_arbiter_lock == NULL) { esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc2", &s_adc2_arbiter_lock); } #endif //CONFIG_PM_ENABLE #endif //CONFIG_IDF_TARGET_ESP32S2 } static inline void adc2_dac_disable( adc2_channel_t channel) { #if SOC_DAC_SUPPORTED #ifdef CONFIG_IDF_TARGET_ESP32 if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1 dac_output_disable(DAC_CHANNEL_1); } else if ( channel == ADC2_CHANNEL_9 ) { dac_output_disable(DAC_CHANNEL_2); } #else if ( channel == ADC2_CHANNEL_6 ) { // the same as DAC channel 1 dac_output_disable(DAC_CHANNEL_1); } else if ( channel == ADC2_CHANNEL_7 ) { dac_output_disable(DAC_CHANNEL_2); } #endif #endif // SOC_DAC_SUPPORTED } /** * @note For ESP32S2: * The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * Or, the RTC controller will fail when get raw data. * This issue does not occur on digital controllers (DMA mode), and the hardware guarantees that there will be no errors. */ esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { esp_err_t ret = ESP_OK; int adc_value = 0; adc_bitwidth_t bitwidth = 0; ADC_CHECK(raw_out != NULL, "ADC out value err", ESP_ERR_INVALID_ARG); ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); ADC_CHECK(width_bit < ADC_WIDTH_MAX, "unsupported bit width", ESP_ERR_INVALID_ARG); #if CONFIG_IDF_TARGET_ESP32 if ((uint32_t)width_bit == (uint32_t)ADC_BITWIDTH_DEFAULT) { bitwidth = SOC_ADC_RTC_MAX_BITWIDTH; } else { switch(width_bit) { case ADC_WIDTH_BIT_9: bitwidth = ADC_BITWIDTH_9; break; case ADC_WIDTH_BIT_10: bitwidth = ADC_BITWIDTH_10; break; case ADC_WIDTH_BIT_11: bitwidth = ADC_BITWIDTH_11; break; case ADC_WIDTH_BIT_12: bitwidth = ADC_BITWIDTH_12; break; default: return ESP_ERR_INVALID_ARG; } } #elif CONFIG_IDF_TARGET_ESP32S2 bitwidth = ADC_BITWIDTH_13; #else //esp32s3 bitwidth = ADC_BITWIDTH_12; #endif #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_atten_t atten = adc_ll_get_atten(ADC_UNIT_2, channel); adc_set_hw_calibration_code(ADC_UNIT_2, atten); #endif //SOC_ADC_CALIBRATION_V1_SUPPORTED #if CONFIG_IDF_TARGET_ESP32 /** For ESP32S2 and S3, the right to use ADC2 is controlled by the arbiter, and there is no need to set a lock.*/ if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { //try the lock, return if failed (wifi using). return ESP_ERR_TIMEOUT; } #endif sar_periph_ctrl_adc_oneshot_power_acquire(); //in critical section with whole rtc module //avoid collision with other tasks adc2_init(); // in critical section with whole rtc module. because the PWDET use the same registers, place it here. SARADC2_ENTER(); #if SOC_ADC_ARBITER_SUPPORTED adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); #endif #ifdef CONFIG_ADC_DISABLE_DAC adc2_dac_disable(channel); //disable other peripherals #endif adc_oneshot_ll_set_output_bits(ADC_UNIT_2, bitwidth); #if CONFIG_IDF_TARGET_ESP32 adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_RTC);// set controller #else adc_ll_set_controller(ADC_UNIT_2, ADC_LL_CTRL_ARB);// set controller #endif #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE if (s_adc2_arbiter_lock) { esp_pm_lock_acquire(s_adc2_arbiter_lock); } #endif //CONFIG_PM_ENABLE #endif //CONFIG_IDF_TARGET_ESP32 adc_oneshot_ll_set_channel(ADC_UNIT_2, channel); ret = adc_hal_convert(ADC_UNIT_2, channel, &adc_value); if (ret != ESP_OK) { adc_value = -1; } #if CONFIG_IDF_TARGET_ESP32S2 #ifdef CONFIG_PM_ENABLE /* Release APB clock. */ if (s_adc2_arbiter_lock) { esp_pm_lock_release(s_adc2_arbiter_lock); } #endif //CONFIG_PM_ENABLE #endif //CONFIG_IDF_TARGET_ESP32 SARADC2_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); #if CONFIG_IDF_TARGET_ESP32 adc_lock_release(ADC_UNIT_2); #endif *raw_out = adc_value; return ret; } esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio) { #ifdef CONFIG_IDF_TARGET_ESP32 if (adc_unit == ADC_UNIT_1) { return ESP_ERR_INVALID_ARG; } #endif adc2_channel_t ch = ADC2_CHANNEL_MAX; /* Check if the GPIO supported. */ for (int i = 0; i < ADC2_CHANNEL_MAX; i++) { if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) { ch = i; break; } } if (ch == ADC2_CHANNEL_MAX) { return ESP_ERR_INVALID_ARG; } sar_periph_ctrl_adc_oneshot_power_acquire(); if (adc_unit == ADC_UNIT_1) { VREF_ENTER(1); adc_hal_vref_output(ADC_UNIT_1, ch, true); VREF_EXIT(1); } else if (adc_unit == ADC_UNIT_2) { VREF_ENTER(2); adc_hal_vref_output(ADC_UNIT_2, ch, true); VREF_EXIT(2); } //Configure RTC gpio, Only ADC2's channels IO are supported to output reference voltage. adc_common_gpio_init(ADC_UNIT_2, ch); return ESP_OK; } #endif //SOC_ADC_RTC_CTRL_SUPPORTED #endif //#if (SOC_ADC_PERIPH_NUM >= 2) #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED /*--------------------------------------------------------------- Legacy ADC Single Read Mode when RTC controller isn't supported ---------------------------------------------------------------*/ #include "esp_check.h" portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED; #define ADC_REG_LOCK_ENTER() portENTER_CRITICAL(&adc_reg_lock) #define ADC_REG_LOCK_EXIT() portEXIT_CRITICAL(&adc_reg_lock) static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC1, used by single read API #if (SOC_ADC_PERIPH_NUM >= 2) static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX]; //Array saving attenuate of each channel of ADC2, used by single read API #endif static int8_t adc_digi_get_io_num(adc_unit_t adc_unit, uint8_t adc_channel) { assert(adc_unit < SOC_ADC_PERIPH_NUM); uint8_t adc_n = (adc_unit == ADC_UNIT_1) ? 0 : 1; return adc_channel_io_map[adc_n][adc_channel]; } static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask) { esp_err_t ret = ESP_OK; uint64_t gpio_mask = 0; uint32_t n = 0; int8_t io = 0; while (channel_mask) { if (channel_mask & 0x1) { io = adc_digi_get_io_num(adc_unit, n); if (io < 0) { return ESP_ERR_INVALID_ARG; } gpio_mask |= BIT64(io); } channel_mask = channel_mask >> 1; n++; } gpio_config_t cfg = { .pin_bit_mask = gpio_mask, .mode = GPIO_MODE_DISABLE, }; ret = gpio_config(&cfg); return ret; } #if CONFIG_IDF_TARGET_ESP32C3 esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio) { esp_err_t ret; uint32_t channel = ADC2_CHANNEL_MAX; if (adc_unit == ADC_UNIT_2) { for (int i = 0; i < ADC2_CHANNEL_MAX; i++) { if (gpio == ADC_GET_IO_NUM(ADC_UNIT_2, i)) { channel = i; break; } } if (channel == ADC2_CHANNEL_MAX) { return ESP_ERR_INVALID_ARG; } } sar_periph_ctrl_adc_oneshot_power_acquire(); if (adc_unit == ADC_UNIT_1) { RTC_ENTER_CRITICAL(); adc_hal_vref_output(ADC_UNIT_1, channel, true); RTC_EXIT_CRITICAL(); } else { //ADC_UNIT_2 RTC_ENTER_CRITICAL(); adc_hal_vref_output(ADC_UNIT_2, channel, true); RTC_EXIT_CRITICAL(); } ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel)); return ret; } #endif esp_err_t adc1_config_width(adc_bits_width_t width_bit) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error"); ESP_RETURN_ON_FALSE((atten < SOC_ADC_ATTEN_NUM), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err"); esp_err_t ret = ESP_OK; s_atten1_single[channel] = atten; ret = adc_digi_gpio_init(ADC_UNIT_1, BIT(channel)); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_1); #endif return ret; } int adc1_get_raw(adc1_channel_t channel) { int raw_out = 0; if (adc_lock_try_acquire(ADC_UNIT_1) != ESP_OK) { return ESP_ERR_TIMEOUT; } periph_module_enable(PERIPH_SARADC_MODULE); sar_periph_ctrl_adc_oneshot_power_acquire(); adc_ll_digi_clk_sel(0); adc_atten_t atten = s_atten1_single[channel]; #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_set_hw_calibration_code(ADC_UNIT_1, atten); #endif ADC_REG_LOCK_ENTER(); adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten); adc_hal_convert(ADC_UNIT_1, channel, &raw_out); ADC_REG_LOCK_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); periph_module_disable(PERIPH_SARADC_MODULE); adc_lock_release(ADC_UNIT_1); return raw_out; } #if (SOC_ADC_PERIPH_NUM >= 2) esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_UNIT_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error"); ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_DB_11), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err"); esp_err_t ret = ESP_OK; s_atten2_single[channel] = atten; ret = adc_digi_gpio_init(ADC_UNIT_2, BIT(channel)); #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_hal_calibration_init(ADC_UNIT_2); #endif return ret; } esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { //On ESP32C3, the data width is always 12-bits. if (width_bit != ADC_WIDTH_BIT_12) { return ESP_ERR_INVALID_ARG; } esp_err_t ret = ESP_OK; if (adc_lock_try_acquire(ADC_UNIT_2) != ESP_OK) { return ESP_ERR_TIMEOUT; } periph_module_enable(PERIPH_SARADC_MODULE); sar_periph_ctrl_adc_oneshot_power_acquire(); adc_ll_digi_clk_sel(0); adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT(); adc_hal_arbiter_config(&config); adc_atten_t atten = s_atten2_single[channel]; #if SOC_ADC_CALIBRATION_V1_SUPPORTED adc_set_hw_calibration_code(ADC_UNIT_2, atten); #endif ADC_REG_LOCK_ENTER(); adc_oneshot_ll_set_atten(ADC_UNIT_2, channel, atten); ret = adc_hal_convert(ADC_UNIT_2, channel, raw_out); ADC_REG_LOCK_EXIT(); sar_periph_ctrl_adc_oneshot_power_release(); periph_module_disable(PERIPH_SARADC_MODULE); adc_lock_release(ADC_UNIT_2); return ret; } #endif //#if (SOC_ADC_PERIPH_NUM >= 2) #endif //#if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED static void adc_hal_onetime_start(adc_unit_t adc_n) { #if SOC_ADC_DIG_CTRL_SUPPORTED && !SOC_ADC_RTC_CTRL_SUPPORTED (void)adc_n; /** * There is a hardware limitation. If the APB clock frequency is high, the step of this reg signal: ``onetime_start`` may not be captured by the * ADC digital controller (when its clock frequency is too slow). A rough estimate for this step should be at least 3 ADC digital controller * clock cycle. * * This limitation will be removed in hardware future versions. * */ uint32_t digi_clk = APB_CLK_FREQ / (ADC_LL_CLKM_DIV_NUM_DEFAULT + ADC_LL_CLKM_DIV_A_DEFAULT / ADC_LL_CLKM_DIV_B_DEFAULT + 1); //Convert frequency to time (us). Since decimals are removed by this division operation. Add 1 here in case of the fact that delay is not enough. uint32_t delay = (1000 * 1000) / digi_clk + 1; //3 ADC digital controller clock cycle delay = delay * 3; //This coefficient (8) is got from test. When digi_clk is not smaller than ``APB_CLK_FREQ/8``, no delay is needed. if (digi_clk >= APB_CLK_FREQ/8) { delay = 0; } adc_oneshot_ll_start(false); esp_rom_delay_us(delay); adc_oneshot_ll_start(true); //No need to delay here. Becuase if the start signal is not seen, there won't be a done intr. #else adc_oneshot_ll_start(adc_n); #endif } static esp_err_t adc_hal_convert(adc_unit_t adc_n, int channel, int *out_raw) { uint32_t event = (adc_n == ADC_UNIT_1) ? ADC_LL_EVENT_ADC1_ONESHOT_DONE : ADC_LL_EVENT_ADC2_ONESHOT_DONE; adc_oneshot_ll_clear_event(event); adc_oneshot_ll_disable_all_unit(); adc_oneshot_ll_enable(adc_n); adc_oneshot_ll_set_channel(adc_n, channel); adc_hal_onetime_start(adc_n); while (adc_oneshot_ll_get_event(event) != true) { ; } *out_raw = adc_oneshot_ll_get_raw_result(adc_n); if (adc_oneshot_ll_raw_check_valid(adc_n, *out_raw) == false) { return ESP_ERR_INVALID_STATE; } //HW workaround: when enabling periph clock, this should be false adc_oneshot_ll_disable_all_unit(); return ESP_OK; } /** * @brief This function will be called during start up, to check that adc_oneshot driver is not running along with the legacy adc oneshot driver */ __attribute__((constructor)) static void check_adc_oneshot_driver_conflict(void) { // This function was declared as weak here. adc_oneshot driver has one implementation. // So if adc_oneshot driver is not linked in, then `adc_oneshot_new_unit` should be NULL at runtime. extern __attribute__((weak)) esp_err_t adc_oneshot_new_unit(const void *init_config, void **ret_unit); if ((void *)adc_oneshot_new_unit != NULL) { ESP_EARLY_LOGE(ADC_TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver"); abort(); } ESP_EARLY_LOGW(ADC_TAG, "legacy driver is deprecated, please migrate to `esp_adc/adc_oneshot.h`"); } #if SOC_ADC_CALIBRATION_V1_SUPPORTED /*--------------------------------------------------------------- ADC Hardware Calibration ---------------------------------------------------------------*/ static __attribute__((constructor)) void adc_hw_calibration(void) { //Calculate all ICode for (int i = 0; i < SOC_ADC_PERIPH_NUM; i++) { adc_hal_calibration_init(i); for (int j = 0; j < SOC_ADC_ATTEN_NUM; j++) { /** * This may get wrong when attenuations are NOT consecutive on some chips, * update this when bringing up the calibration on that chip */ adc_calc_hw_calibration_code(i, j); } } } #endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED