/* * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include //For max/min #include "esp_attr.h" #include "esp_private/system_internal.h" #include "esp_spi_flash.h" //for ``g_flash_guard_default_ops`` #include "esp_flash.h" #include "esp_flash_partitions.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "hal/spi_types.h" #include "sdkconfig.h" #include "esp_log.h" #include "esp_compiler.h" #include "esp_rom_sys.h" #include "driver/spi_common_internal.h" static const char TAG[] = "spi_flash"; /* * OS functions providing delay service and arbitration among chips, and with the cache. * * The cache needs to be disabled when chips on the SPI1 bus is under operation, hence these functions need to be put * into the IRAM,and their data should be put into the DRAM. */ typedef struct { spi_bus_lock_dev_handle_t dev_lock; } app_func_arg_t; /* * Time yield algorithm: * Every time spi_flash_os_check_yield() is called: * * 1. If the time since last end() function is longer than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS (time * to yield), all counters will be reset, as if the yield has just ends; * 2. If the time since last yield() is longer than CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS, will * return a yield request. When the yield() is called, all counters will be reset. * Note: Short intervals between start() and end() after the last yield() will not reset the * counter mentioned in #2, but still be counted into the time mentioned in #2. */ typedef struct { app_func_arg_t common_arg; //shared args, must be the first item bool no_protect; //to decide whether to check protected region (for the main chip) or not. uint32_t acquired_since_us; // Time since last explicit yield() uint32_t released_since_us; // Time since last end() (implicit yield) } spi1_app_func_arg_t; static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx); static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx); static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx); static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx); IRAM_ATTR static void cache_enable(void* arg) { #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND g_flash_guard_default_ops.end(); #endif } IRAM_ATTR static void cache_disable(void* arg) { #ifndef CONFIG_SPI_FLASH_AUTO_SUSPEND g_flash_guard_default_ops.start(); #endif } static IRAM_ATTR esp_err_t spi_start(void *arg) { spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t *)arg)->dev_lock; // wait for other devices (or cache) to finish their operation esp_err_t ret = spi_bus_lock_acquire_start(dev_lock, portMAX_DELAY); if (ret != ESP_OK) { return ret; } spi_bus_lock_touch(dev_lock); return ESP_OK; } static IRAM_ATTR esp_err_t spi_end(void *arg) { return spi_bus_lock_acquire_end(((app_func_arg_t *)arg)->dev_lock); } static IRAM_ATTR esp_err_t spi1_start(void *arg) { #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS //use the lock to disable the cache and interrupts before using the SPI bus return spi_start(arg); #else //directly disable the cache and interrupts when lock is not used cache_disable(NULL); on_spi1_acquired((spi1_app_func_arg_t*)arg); return ESP_OK; #endif } static IRAM_ATTR esp_err_t spi1_end(void *arg) { esp_err_t ret = ESP_OK; #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS ret = spi_end(arg); #else cache_enable(NULL); #endif on_spi1_released((spi1_app_func_arg_t*)arg); return ret; } static IRAM_ATTR esp_err_t spi1_flash_os_check_yield(void *arg, uint32_t chip_status, uint32_t* out_request) { assert (chip_status == 0); //TODO: support suspend esp_err_t ret = ESP_ERR_TIMEOUT; //Nothing happened uint32_t request = 0; if (on_spi1_check_yield((spi1_app_func_arg_t *)arg)) { request = SPI_FLASH_YIELD_REQ_YIELD; ret = ESP_OK; } if (out_request) { *out_request = request; } return ret; } static IRAM_ATTR esp_err_t spi1_flash_os_yield(void *arg, uint32_t* out_status) { if (likely(xTaskGetSchedulerState() == taskSCHEDULER_RUNNING)) { #ifdef CONFIG_SPI_FLASH_ERASE_YIELD_TICKS vTaskDelay(CONFIG_SPI_FLASH_ERASE_YIELD_TICKS); #else vTaskDelay(1); #endif } on_spi1_yielded((spi1_app_func_arg_t*)arg); return ESP_OK; } static IRAM_ATTR esp_err_t delay_us(void *arg, uint32_t us) { esp_rom_delay_us(us); return ESP_OK; } static IRAM_ATTR void* get_buffer_malloc(void* arg, size_t reqest_size, size_t* out_size) { /* Allocate temporary internal buffer to use for the actual read. If the preferred size doesn't fit in free internal memory, allocate the largest available free block. (May need to shrink read_chunk_size and retry due to race conditions with other tasks also allocating from the heap.) */ void* ret = NULL; unsigned retries = 5; size_t read_chunk_size = reqest_size; while(ret == NULL && retries--) { read_chunk_size = MIN(read_chunk_size, heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT)); read_chunk_size = (read_chunk_size + 3) & ~3; ret = heap_caps_malloc(read_chunk_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", ret, read_chunk_size); *out_size = (ret != NULL? read_chunk_size: 0); return ret; } static IRAM_ATTR void release_buffer_malloc(void* arg, void *temp_buf) { free(temp_buf); } static IRAM_ATTR esp_err_t main_flash_region_protected(void* arg, size_t start_addr, size_t size) { if (((spi1_app_func_arg_t*)arg)->no_protect || esp_partition_main_flash_region_safe(start_addr, size)) { //ESP_OK = 0, also means protected==0 return ESP_OK; } else { return ESP_ERR_NOT_SUPPORTED; } } static DRAM_ATTR spi1_app_func_arg_t main_flash_arg = {}; //for SPI1, we have to disable the cache and interrupts before using the SPI bus static const DRAM_ATTR esp_flash_os_functions_t esp_flash_spi1_default_os_functions = { .start = spi1_start, .end = spi1_end, .region_protected = main_flash_region_protected, .delay_us = delay_us, .get_temp_buffer = get_buffer_malloc, .release_temp_buffer = release_buffer_malloc, .check_yield = spi1_flash_os_check_yield, .yield = spi1_flash_os_yield, }; static const esp_flash_os_functions_t esp_flash_spi23_default_os_functions = { .start = spi_start, .end = spi_end, .delay_us = delay_us, .get_temp_buffer = get_buffer_malloc, .release_temp_buffer = release_buffer_malloc, .region_protected = NULL, .check_yield = NULL, .yield = NULL, }; static spi_bus_lock_dev_handle_t register_dev(int host_id) { spi_bus_lock_handle_t lock = spi_bus_lock_get_by_id(host_id); spi_bus_lock_dev_handle_t dev_handle; spi_bus_lock_dev_config_t config = {.flags = SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED}; esp_err_t err = spi_bus_lock_register_dev(lock, &config, &dev_handle); if (err != ESP_OK) { return NULL; } return dev_handle; } esp_err_t esp_flash_init_os_functions(esp_flash_t *chip, int host_id, int* out_dev_id) { spi_bus_lock_dev_handle_t dev_handle = NULL; // Skip initializing the bus lock when the bus is SPI1 and the bus is not shared with SPI Master // driver, leaving dev_handle = NULL bool skip_register_dev = (host_id == SPI1_HOST); #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS skip_register_dev = false; #endif if (!skip_register_dev) { dev_handle = register_dev(host_id); } if (host_id == SPI1_HOST) { //SPI1 chip->os_func = &esp_flash_spi1_default_os_functions; chip->os_func_data = heap_caps_malloc(sizeof(spi1_app_func_arg_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (chip->os_func_data == NULL) { return ESP_ERR_NO_MEM; } *(spi1_app_func_arg_t*) chip->os_func_data = (spi1_app_func_arg_t) { .common_arg = { .dev_lock = dev_handle, }, .no_protect = true, }; } else if (host_id == SPI2_HOST || host_id == SPI3_HOST) { //SPI2, SPI3 chip->os_func = &esp_flash_spi23_default_os_functions; chip->os_func_data = heap_caps_malloc(sizeof(app_func_arg_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (chip->os_func_data == NULL) { return ESP_ERR_NO_MEM; } *(app_func_arg_t*) chip->os_func_data = (app_func_arg_t) { .dev_lock = dev_handle, }; } else { return ESP_ERR_INVALID_ARG; } // Bus lock not initialized, the device ID should be directly given by application. if (dev_handle) { *out_dev_id = spi_bus_lock_get_dev_id(dev_handle); } return ESP_OK; } esp_err_t esp_flash_deinit_os_functions(esp_flash_t* chip) { if (chip->os_func_data) { spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t*)chip->os_func_data)->dev_lock; // SPI bus lock is possible not used on SPI1 bus if (dev_lock) { spi_bus_lock_unregister_dev(dev_lock); } free(chip->os_func_data); } chip->os_func = NULL; chip->os_func_data = NULL; return ESP_OK; } esp_err_t esp_flash_init_main_bus_lock(void) { spi_bus_lock_init_main_bus(); spi_bus_lock_set_bg_control(g_main_spi_bus_lock, cache_enable, cache_disable, NULL); esp_err_t err = spi_bus_lock_init_main_dev(); if (err != ESP_OK) { return err; } return ESP_OK; } esp_err_t esp_flash_app_enable_os_functions(esp_flash_t* chip) { main_flash_arg = (spi1_app_func_arg_t) { .common_arg = { .dev_lock = g_spi_lock_main_flash_dev, //for SPI1, }, .no_protect = false, }; chip->os_func = &esp_flash_spi1_default_os_functions; chip->os_func_data = &main_flash_arg; return ESP_OK; } // The goal of this part is to manually insert one valid task execution interval, if the time since // last valid interval exceed the limitation (CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS). // // Valid task execution interval: continuous time with the cache enabled, which is longer than // CONFIG_SPI_FLASH_ERASE_YIELD_TICKS. Yield time shorter than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS is // not treated as valid interval. static inline IRAM_ATTR bool on_spi1_check_yield(spi1_app_func_arg_t* ctx) { #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE uint32_t time = esp_system_get_time(); // We handle the reset here instead of in `on_spi1_acquired()`, when acquire() and release() is // larger than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, to save one `esp_system_get_time()` call if ((time - ctx->released_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_TICKS * portTICK_PERIOD_MS * 1000) { // Reset the acquired time as if the yield has just happened. ctx->acquired_since_us = time; } else if ((time - ctx->acquired_since_us) >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS * 1000) { return true; } #endif return false; } static inline IRAM_ATTR void on_spi1_released(spi1_app_func_arg_t* ctx) { #ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE ctx->released_since_us = esp_system_get_time(); #endif } static inline IRAM_ATTR void on_spi1_acquired(spi1_app_func_arg_t* ctx) { // Ideally, when the time after `on_spi1_released()` before this function is called is larger // than CONFIG_SPI_FLASH_ERASE_YIELD_TICKS, the acquired time should be reset. We assume the // time after `on_spi1_check_yield()` before this function is so short that we can do the reset // in that function instead. } static inline IRAM_ATTR void on_spi1_yielded(spi1_app_func_arg_t* ctx) { uint32_t time = esp_system_get_time(); ctx->acquired_since_us = time; }