// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "esp_flash_partitions.h" #include "esp_attr.h" #include "esp_flash.h" #include "esp_spi_flash.h" #include "esp_partition.h" #include "esp_flash_encrypt.h" #include "esp_log.h" #include "bootloader_common.h" #include "bootloader_util.h" #include "esp_ota_ops.h" #define HASH_LEN 32 /* SHA-256 digest length */ #ifndef NDEBUG // Enable built-in checks in queue.h in debug builds #define INVARIANTS #endif #include "sys/queue.h" typedef struct partition_list_item_ { esp_partition_t info; bool user_registered; SLIST_ENTRY(partition_list_item_) next; } partition_list_item_t; typedef struct esp_partition_iterator_opaque_ { esp_partition_type_t type; // requested type esp_partition_subtype_t subtype; // requested subtype const char* label; // requested label (can be NULL) partition_list_item_t* next_item; // next item to iterate to esp_partition_t* info; // pointer to info (it is redundant, but makes code more readable) } esp_partition_iterator_opaque_t; static esp_partition_iterator_opaque_t* iterator_create(esp_partition_type_t type, esp_partition_subtype_t subtype, const char* label); static esp_err_t load_partitions(void); static esp_err_t ensure_partitions_loaded(void); static const char* TAG = "partition"; static SLIST_HEAD(partition_list_head_, partition_list_item_) s_partition_list = SLIST_HEAD_INITIALIZER(s_partition_list); static _lock_t s_partition_list_lock; static esp_err_t ensure_partitions_loaded(void) { esp_err_t err = ESP_OK; if (SLIST_EMPTY(&s_partition_list)) { // only lock if list is empty (and check again after acquiring lock) _lock_acquire(&s_partition_list_lock); if (SLIST_EMPTY(&s_partition_list)) { ESP_LOGD(TAG, "Loading the partition table"); err = load_partitions(); if (err != ESP_OK) { ESP_LOGE(TAG, "load_partitions returned 0x%x", err); } } _lock_release(&s_partition_list_lock); } return err; } esp_partition_iterator_t esp_partition_find(esp_partition_type_t type, esp_partition_subtype_t subtype, const char* label) { if (ensure_partitions_loaded() != ESP_OK) { return NULL; } // create an iterator pointing to the start of the list // (next item will be the first one) esp_partition_iterator_t it = iterator_create(type, subtype, label); // advance iterator to the next item which matches constraints it = esp_partition_next(it); // if nothing found, it == NULL and iterator has been released return it; } esp_partition_iterator_t esp_partition_next(esp_partition_iterator_t it) { assert(it); // iterator reached the end of linked list? if (it->next_item == NULL) { esp_partition_iterator_release(it); return NULL; } _lock_acquire(&s_partition_list_lock); for (; it->next_item != NULL; it->next_item = SLIST_NEXT(it->next_item, next)) { esp_partition_t* p = &it->next_item->info; if (it->type != p->type) { continue; } if (it->subtype != 0xff && it->subtype != p->subtype) { continue; } if (it->label != NULL && strcmp(it->label, p->label) != 0) { continue; } // all constraints match, bail out break; } _lock_release(&s_partition_list_lock); if (it->next_item == NULL) { esp_partition_iterator_release(it); return NULL; } it->info = &it->next_item->info; it->next_item = SLIST_NEXT(it->next_item, next); return it; } const esp_partition_t* esp_partition_find_first(esp_partition_type_t type, esp_partition_subtype_t subtype, const char* label) { esp_partition_iterator_t it = esp_partition_find(type, subtype, label); if (it == NULL) { return NULL; } const esp_partition_t* res = esp_partition_get(it); esp_partition_iterator_release(it); return res; } static esp_partition_iterator_opaque_t* iterator_create(esp_partition_type_t type, esp_partition_subtype_t subtype, const char* label) { esp_partition_iterator_opaque_t* it = (esp_partition_iterator_opaque_t*) malloc(sizeof(esp_partition_iterator_opaque_t)); it->type = type; it->subtype = subtype; it->label = label; it->next_item = SLIST_FIRST(&s_partition_list); it->info = NULL; return it; } // Create linked list of partition_list_item_t structures. // This function is called only once, with s_partition_list_lock taken. static esp_err_t load_partitions(void) { const uint32_t* ptr; spi_flash_mmap_handle_t handle; // map 64kB block where partition table is located esp_err_t err = spi_flash_mmap(ESP_PARTITION_TABLE_OFFSET & 0xffff0000, SPI_FLASH_SEC_SIZE, SPI_FLASH_MMAP_DATA, (const void**) &ptr, &handle); if (err != ESP_OK) { return err; } // calculate partition address within mmap-ed region const esp_partition_info_t* it = (const esp_partition_info_t*) (ptr + (ESP_PARTITION_TABLE_OFFSET & 0xffff) / sizeof(*ptr)); const esp_partition_info_t* end = it + SPI_FLASH_SEC_SIZE / sizeof(*it); // tail of the linked list of partitions partition_list_item_t* last = NULL; for (; it != end; ++it) { if (it->magic != ESP_PARTITION_MAGIC) { break; } // allocate new linked list item and populate it with data from partition table partition_list_item_t* item = (partition_list_item_t*) calloc(sizeof(partition_list_item_t), 1); if (item == NULL) { err = ESP_ERR_NO_MEM; break; } item->info.flash_chip = esp_flash_default_chip; item->info.address = it->pos.offset; item->info.size = it->pos.size; item->info.type = it->type; item->info.subtype = it->subtype; item->info.encrypted = it->flags & PART_FLAG_ENCRYPTED; item->user_registered = false; if (!esp_flash_encryption_enabled()) { /* If flash encryption is not turned on, no partitions should be treated as encrypted */ item->info.encrypted = false; } else if (it->type == PART_TYPE_APP || (it->type == PART_TYPE_DATA && it->subtype == PART_SUBTYPE_DATA_OTA) || (it->type == PART_TYPE_DATA && it->subtype == PART_SUBTYPE_DATA_NVS_KEYS)) { /* If encryption is turned on, all app partitions and OTA data are always encrypted */ item->info.encrypted = true; } // it->label may not be zero-terminated strncpy(item->info.label, (const char*) it->label, sizeof(item->info.label) - 1); item->info.label[sizeof(it->label)] = 0; // add it to the list if (last == NULL) { SLIST_INSERT_HEAD(&s_partition_list, item, next); } else { SLIST_INSERT_AFTER(last, item, next); } last = item; } spi_flash_munmap(handle); return err; } void esp_partition_iterator_release(esp_partition_iterator_t iterator) { // iterator == NULL is okay free(iterator); } const esp_partition_t* esp_partition_get(esp_partition_iterator_t iterator) { assert(iterator != NULL); return iterator->info; } esp_err_t esp_partition_register_external(esp_flash_t* flash_chip, size_t offset, size_t size, const char* label, esp_partition_type_t type, esp_partition_subtype_t subtype, const esp_partition_t** out_partition) { if (out_partition != NULL) { *out_partition = NULL; } #ifdef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return ESP_ERR_NOT_SUPPORTED; #endif if (offset + size > flash_chip->size) { return ESP_ERR_INVALID_SIZE; } esp_err_t err = ensure_partitions_loaded(); if (err != ESP_OK) { return err; } partition_list_item_t* item = (partition_list_item_t*) calloc(sizeof(partition_list_item_t), 1); if (item == NULL) { return ESP_ERR_NO_MEM; } item->info.flash_chip = flash_chip; item->info.address = offset; item->info.size = size; item->info.type = type; item->info.subtype = subtype; item->info.encrypted = false; item->user_registered = true; strlcpy(item->info.label, label, sizeof(item->info.label)); _lock_acquire(&s_partition_list_lock); partition_list_item_t *it, *last = NULL; SLIST_FOREACH(it, &s_partition_list, next) { /* Check if the new partition overlaps an existing one */ if (it->info.flash_chip == flash_chip && bootloader_util_regions_overlap(offset, offset + size, it->info.address, it->info.address + it->info.size)) { _lock_release(&s_partition_list_lock); free(item); return ESP_ERR_INVALID_ARG; } last = it; } if (last == NULL) { SLIST_INSERT_HEAD(&s_partition_list, item, next); } else { SLIST_INSERT_AFTER(last, item, next); } _lock_release(&s_partition_list_lock); if (out_partition != NULL) { *out_partition = &item->info; } return ESP_OK; } esp_err_t esp_partition_deregister_external(const esp_partition_t* partition) { esp_err_t result = ESP_ERR_NOT_FOUND; _lock_acquire(&s_partition_list_lock); partition_list_item_t *it; SLIST_FOREACH(it, &s_partition_list, next) { if (&it->info == partition) { if (!it->user_registered) { result = ESP_ERR_INVALID_ARG; break; } SLIST_REMOVE(&s_partition_list, it, partition_list_item_, next); free(it); result = ESP_OK; break; } } _lock_release(&s_partition_list_lock); return result; } const esp_partition_t *esp_partition_verify(const esp_partition_t *partition) { assert(partition != NULL); const char *label = (strlen(partition->label) > 0) ? partition->label : NULL; esp_partition_iterator_t it = esp_partition_find(partition->type, partition->subtype, label); while (it != NULL) { const esp_partition_t *p = esp_partition_get(it); /* Can't memcmp() whole structure here as padding contents may be different */ if (p->flash_chip == partition->flash_chip && p->address == partition->address && partition->size == p->size && partition->encrypted == p->encrypted) { esp_partition_iterator_release(it); return p; } it = esp_partition_next(it); } esp_partition_iterator_release(it); return NULL; } esp_err_t esp_partition_read(const esp_partition_t* partition, size_t src_offset, void* dst, size_t size) { assert(partition != NULL); if (src_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (src_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } if (!partition->encrypted) { #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_read(partition->flash_chip, dst, partition->address + src_offset, size); #else return spi_flash_read(partition->address + src_offset, dst, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL } else { #if CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE if (partition->flash_chip != esp_flash_default_chip) { return ESP_ERR_NOT_SUPPORTED; } /* Encrypted partitions need to be read via a cache mapping */ const void *buf; spi_flash_mmap_handle_t handle; esp_err_t err; err = esp_partition_mmap(partition, src_offset, size, SPI_FLASH_MMAP_DATA, &buf, &handle); if (err != ESP_OK) { return err; } memcpy(dst, buf, size); spi_flash_munmap(handle); return ESP_OK; #else return ESP_ERR_NOT_SUPPORTED; #endif // CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE } } esp_err_t esp_partition_write(const esp_partition_t* partition, size_t dst_offset, const void* src, size_t size) { assert(partition != NULL); if (dst_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (dst_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } dst_offset = partition->address + dst_offset; if (!partition->encrypted) { #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_write(partition->flash_chip, src, dst_offset, size); #else return spi_flash_write(dst_offset, src, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL } else { #if CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE if (partition->flash_chip != esp_flash_default_chip) { return ESP_ERR_NOT_SUPPORTED; } #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_write_encrypted(partition->flash_chip, dst_offset, src, size); #else return spi_flash_write_encrypted(dst_offset, src, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL #else return ESP_ERR_NOT_SUPPORTED; #endif // CONFIG_SPI_FLASH_ENABLE_ENCRYPTED_READ_WRITE } } esp_err_t esp_partition_read_raw(const esp_partition_t* partition, size_t src_offset, void* dst, size_t size) { assert(partition != NULL); if (src_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (src_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_read(partition->flash_chip, dst, partition->address + src_offset, size); #else return spi_flash_read(partition->address + src_offset, dst, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL } esp_err_t esp_partition_write_raw(const esp_partition_t* partition, size_t dst_offset, const void* src, size_t size) { assert(partition != NULL); if (dst_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (dst_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } dst_offset = partition->address + dst_offset; #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_write(partition->flash_chip, src, dst_offset, size); #else return spi_flash_write(dst_offset, src, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL } esp_err_t esp_partition_erase_range(const esp_partition_t* partition, size_t offset, size_t size) { assert(partition != NULL); if (offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } if (size % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_SIZE; } if (offset % SPI_FLASH_SEC_SIZE != 0) { return ESP_ERR_INVALID_ARG; } #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL return esp_flash_erase_region(partition->flash_chip, partition->address + offset, size); #else return spi_flash_erase_range(partition->address + offset, size); #endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL } /* * Note: current implementation ignores the possibility of multiple regions in the same partition being * mapped. Reference counting and address space re-use is delegated to spi_flash_mmap. * * If this becomes a performance issue (i.e. if we need to map multiple regions within the partition), * we can add esp_partition_mmapv which will accept an array of offsets and sizes, and return array of * mmaped pointers, and a single handle for all these regions. */ esp_err_t esp_partition_mmap(const esp_partition_t* partition, size_t offset, size_t size, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { assert(partition != NULL); if (offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } if (partition->flash_chip != esp_flash_default_chip) { return ESP_ERR_NOT_SUPPORTED; } size_t phys_addr = partition->address + offset; // offset within 64kB block size_t region_offset = phys_addr & 0xffff; size_t mmap_addr = phys_addr & 0xffff0000; esp_err_t rc = spi_flash_mmap(mmap_addr, size+region_offset, memory, out_ptr, out_handle); // adjust returned pointer to point to the correct offset if (rc == ESP_OK) { *out_ptr = (void*) (((ptrdiff_t) *out_ptr) + region_offset); } return rc; } esp_err_t esp_partition_get_sha256(const esp_partition_t *partition, uint8_t *sha_256) { return bootloader_common_get_sha256_of_partition(partition->address, partition->size, partition->type, sha_256); } bool esp_partition_check_identity(const esp_partition_t *partition_1, const esp_partition_t *partition_2) { uint8_t sha_256[2][HASH_LEN] = { 0 }; if (esp_partition_get_sha256(partition_1, sha_256[0]) == ESP_OK && esp_partition_get_sha256(partition_2, sha_256[1]) == ESP_OK) { if (memcmp(sha_256[0], sha_256[1], HASH_LEN) == 0) { // The partitions are identity return true; } } return false; } bool esp_partition_main_flash_region_safe(size_t addr, size_t size) { bool result = true; if (addr <= ESP_PARTITION_TABLE_OFFSET + ESP_PARTITION_TABLE_MAX_LEN) { return false; } const esp_partition_t *p = esp_ota_get_running_partition(); if (addr >= p->address && addr < p->address + p->size) { return false; } if (addr < p->address && addr + size > p->address) { return false; } return result; }