// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // This is a driver for OpenCores Ethernet MAC (https://opencores.org/projects/ethmac). // Espressif chips do not use this MAC, but it is supported in QEMU // (see hw/net/opencores_eth.c). Since the interface of this MAC is a relatively // simple one, it is used for the purpose of running IDF apps in QEMU. // The QEMU driver also emulates the DP83848C PHY, which is supported in IDF. // Note that this driver is written with QEMU in mind. For example, it doesn't // handle errors which QEMU will not report, and doesn't wait for TX to be // finished, since QEMU does this instantly. #include #include #include #include #include "esp_log.h" #include "esp_check.h" #include "esp_eth.h" #include "esp_intr_alloc.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "hal/cpu_hal.h" #include "openeth.h" static const char *TAG = "opencores.emac"; // Driver state structure typedef struct { esp_eth_mac_t parent; esp_eth_mediator_t *eth; intr_handle_t intr_hdl; TaskHandle_t rx_task_hdl; int cur_rx_desc; int cur_tx_desc; uint8_t addr[6]; uint8_t *rx_buf[RX_BUF_COUNT]; uint8_t *tx_buf[TX_BUF_COUNT]; } emac_opencores_t; // Interrupt handler and the receive task static esp_err_t emac_opencores_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length); static IRAM_ATTR void emac_opencores_isr_handler(void *args) { emac_opencores_t *emac = (emac_opencores_t *) args; BaseType_t high_task_wakeup; uint32_t status = REG_READ(OPENETH_INT_SOURCE_REG); if (status & OPENETH_INT_RXB) { // Notify receive task vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup) { portYIELD_FROM_ISR(); } } if (status & OPENETH_INT_BUSY) { ESP_EARLY_LOGW(TAG, "%s: RX frame dropped (0x%x)", __func__, status); } // Clear interrupt REG_WRITE(OPENETH_INT_SOURCE_REG, status); } static void emac_opencores_rx_task(void *arg) { emac_opencores_t *emac = (emac_opencores_t *)arg; uint8_t *buffer = NULL; uint32_t length = 0; while (1) { if (ulTaskNotifyTake(pdFALSE, portMAX_DELAY)) { while (true) { length = ETH_MAX_PACKET_SIZE; buffer = malloc(length); if (!buffer) { ESP_LOGE(TAG, "no mem for receive buffer"); } else if (emac_opencores_receive(&emac->parent, buffer, &length) == ESP_OK) { // pass the buffer to the upper layer if (length) { emac->eth->stack_input(emac->eth, buffer, length); } else { free(buffer); } } else { free(buffer); break; } } } } vTaskDelete(NULL); } // Below functions implement the driver interface static esp_err_t emac_opencores_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac's mediator to null"); emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); emac->eth = eth; return ESP_OK; err: return ret; } static esp_err_t emac_opencores_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value) { ESP_LOGV(TAG, "%s: addr=%d reg=0x%x val=0x%04x", __func__, phy_addr, phy_reg, reg_value); REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_FIAD, phy_addr); REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_RGAD, phy_reg); REG_WRITE(OPENETH_MIITX_DATA_REG, reg_value & OPENETH_MII_DATA_MASK); REG_SET_BIT(OPENETH_MIICOMMAND_REG, OPENETH_WCTRLDATA); return ESP_OK; } static esp_err_t emac_opencores_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "can't set reg_value to null"); REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_FIAD, phy_addr); REG_SET_FIELD(OPENETH_MIIADDRESS_REG, OPENETH_RGAD, phy_reg); REG_SET_BIT(OPENETH_MIICOMMAND_REG, OPENETH_RSTAT); *reg_value = (REG_READ(OPENETH_MIIRX_DATA_REG) & OPENETH_MII_DATA_MASK); ESP_LOGV(TAG, "%s: addr=%d reg=0x%x val=0x%04x", __func__, phy_addr, phy_reg, *reg_value); return ESP_OK; err: return ret; } static esp_err_t emac_opencores_set_addr(esp_eth_mac_t *mac, uint8_t *addr) { ESP_LOGV(TAG, "%s: " MACSTR, __func__, MAC2STR(addr)); esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null"); emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); memcpy(emac->addr, addr, 6); const uint8_t mac0[4] = {addr[5], addr[4], addr[3], addr[2]}; const uint8_t mac1[4] = {addr[1], addr[0]}; uint32_t mac0_u32, mac1_u32; memcpy(&mac0_u32, &mac0, 4); memcpy(&mac1_u32, &mac1, 4); REG_WRITE(OPENETH_MAC_ADDR0_REG, mac0_u32); REG_WRITE(OPENETH_MAC_ADDR1_REG, mac1_u32); return ESP_OK; err: return ret; } static esp_err_t emac_opencores_get_addr(esp_eth_mac_t *mac, uint8_t *addr) { ESP_LOGV(TAG, "%s: " MACSTR, __func__, MAC2STR(addr)); esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null"); emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); memcpy(addr, emac->addr, 6); return ESP_OK; err: return ret; } static esp_err_t emac_opencores_set_link(esp_eth_mac_t *mac, eth_link_t link) { ESP_LOGV(TAG, "%s: %s", __func__, link == ETH_LINK_UP ? "up" : "down"); esp_err_t ret = ESP_OK; emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); switch (link) { case ETH_LINK_UP: ESP_GOTO_ON_ERROR(esp_intr_enable(emac->intr_hdl), err, TAG, "enable interrupt failed"); openeth_enable(); break; case ETH_LINK_DOWN: ESP_GOTO_ON_ERROR(esp_intr_disable(emac->intr_hdl), err, TAG, "disable interrupt failed"); openeth_disable(); break; default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status"); break; } return ESP_OK; err: return ret; } static esp_err_t emac_opencores_set_speed(esp_eth_mac_t *mac, eth_speed_t speed) { /* QEMU doesn't emulate PHY speed, so accept any value */ return ESP_OK; } static esp_err_t emac_opencores_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex) { /* QEMU doesn't emulate full/half duplex, so accept any value */ return ESP_OK; } static esp_err_t emac_opencores_set_promiscuous(esp_eth_mac_t *mac, bool enable) { if (enable) { REG_SET_BIT(OPENETH_MODER_REG, OPENETH_PRO); } else { REG_CLR_BIT(OPENETH_MODER_REG, OPENETH_PRO); } return ESP_OK; } static esp_err_t emac_opencores_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable) { /* QEMU doesn't emulate flow control function, so accept any value */ return ESP_OK; } static esp_err_t emac_opencores_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability) { /* QEMU doesn't emulate PAUSE function, so accept any value */ return ESP_OK; } static esp_err_t emac_opencores_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length) { esp_err_t ret = ESP_OK; emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); ESP_GOTO_ON_FALSE(length < DMA_BUF_SIZE * TX_BUF_COUNT, ESP_ERR_INVALID_SIZE, err, TAG, "insufficient TX buffer size"); uint32_t bytes_remaining = length; // In QEMU, there never is a TX operation in progress, so start with descriptor 0. ESP_LOGV(TAG, "%s: len=%d", __func__, length); while (bytes_remaining > 0) { uint32_t will_write = MIN(bytes_remaining, DMA_BUF_SIZE); memcpy(emac->tx_buf[emac->cur_tx_desc], buf, will_write); openeth_tx_desc_t *desc_ptr = openeth_tx_desc(emac->cur_tx_desc); openeth_tx_desc_t desc_val = *desc_ptr; desc_val.wr = (emac->cur_tx_desc == TX_BUF_COUNT - 1); desc_val.len = will_write; desc_val.rd = 1; // TXEN is already set, and this triggers a TX operation for the descriptor ESP_LOGV(TAG, "%s: desc %d (%p) len=%d wr=%d", __func__, emac->cur_tx_desc, desc_ptr, will_write, desc_val.wr); *desc_ptr = desc_val; bytes_remaining -= will_write; buf += will_write; emac->cur_tx_desc = (emac->cur_tx_desc + 1) % TX_BUF_COUNT; } return ESP_OK; err: return ret; } static esp_err_t emac_opencores_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length) { esp_err_t ret = ESP_OK; emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); openeth_rx_desc_t *desc_ptr = openeth_rx_desc(emac->cur_rx_desc); openeth_rx_desc_t desc_val = *desc_ptr; ESP_LOGV(TAG, "%s: desc %d (%p) e=%d len=%d wr=%d", __func__, emac->cur_rx_desc, desc_ptr, desc_val.e, desc_val.len, desc_val.wr); if (desc_val.e) { ret = ESP_ERR_INVALID_STATE; goto err; } size_t rx_length = desc_val.len; ESP_GOTO_ON_FALSE(*length >= rx_length, ESP_ERR_INVALID_SIZE, err, TAG, "RX length too large"); *length = rx_length; memcpy(buf, desc_val.rxpnt, *length); desc_val.e = 1; *desc_ptr = desc_val; emac->cur_rx_desc = (emac->cur_rx_desc + 1) % RX_BUF_COUNT; return ESP_OK; err: return ret; } static esp_err_t emac_opencores_init(esp_eth_mac_t *mac) { esp_err_t ret = ESP_OK; emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); esp_eth_mediator_t *eth = emac->eth; ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed"); ESP_GOTO_ON_ERROR(esp_read_mac(emac->addr, ESP_MAC_ETH), err, TAG, "fetch ethernet mac address failed"); // Sanity check if (REG_READ(OPENETH_MODER_REG) != OPENETH_MODER_DEFAULT) { ESP_LOGE(TAG, "CONFIG_ETH_USE_OPENETH should only be used when running in QEMU."); ESP_LOGE(TAG, "When running the app on the ESP32, use CONFIG_ETH_USE_ESP32_EMAC instead."); abort(); } // Initialize the MAC openeth_reset(); openeth_set_tx_desc_cnt(TX_BUF_COUNT); emac_opencores_set_addr(mac, emac->addr); return ESP_OK; err: eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); return ret; } static esp_err_t emac_opencores_deinit(esp_eth_mac_t *mac) { emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); esp_eth_mediator_t *eth = emac->eth; eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); return ESP_OK; } static esp_err_t emac_opencores_start(esp_eth_mac_t *mac) { openeth_enable(); return ESP_OK; } static esp_err_t emac_opencores_stop(esp_eth_mac_t *mac) { openeth_disable(); return ESP_OK; } static esp_err_t emac_opencores_del(esp_eth_mac_t *mac) { emac_opencores_t *emac = __containerof(mac, emac_opencores_t, parent); esp_intr_free(emac->intr_hdl); vTaskDelete(emac->rx_task_hdl); for (int i = 0; i < RX_BUF_COUNT; i++) { free(emac->rx_buf[i]); } for (int i = 0; i < TX_BUF_COUNT; i++) { free(emac->tx_buf[i]); } free(emac); return ESP_OK; } esp_eth_mac_t *esp_eth_mac_new_openeth(const eth_mac_config_t *config) { esp_eth_mac_t *ret = NULL; emac_opencores_t *emac = NULL; ESP_GOTO_ON_FALSE(config, NULL, out, TAG, "can't set mac config to null"); emac = calloc(1, sizeof(emac_opencores_t)); ESP_GOTO_ON_FALSE(emac, NULL, out, TAG, "calloc emac failed"); // Allocate DMA buffers for (int i = 0; i < RX_BUF_COUNT; i++) { emac->rx_buf[i] = heap_caps_calloc(1, DMA_BUF_SIZE, MALLOC_CAP_DMA); if (!(emac->rx_buf[i])) { goto out; } openeth_init_rx_desc(openeth_rx_desc(i), emac->rx_buf[i]); } openeth_rx_desc(RX_BUF_COUNT - 1)->wr = 1; emac->cur_rx_desc = 0; for (int i = 0; i < TX_BUF_COUNT; i++) { emac->tx_buf[i] = heap_caps_calloc(1, DMA_BUF_SIZE, MALLOC_CAP_DMA); if (!(emac->tx_buf[i])) { goto out; } openeth_init_tx_desc(openeth_tx_desc(i), emac->tx_buf[i]); } openeth_tx_desc(TX_BUF_COUNT - 1)->wr = 1; emac->cur_tx_desc = 0; emac->parent.set_mediator = emac_opencores_set_mediator; emac->parent.init = emac_opencores_init; emac->parent.deinit = emac_opencores_deinit; emac->parent.start = emac_opencores_start; emac->parent.stop = emac_opencores_stop; emac->parent.del = emac_opencores_del; emac->parent.write_phy_reg = emac_opencores_write_phy_reg; emac->parent.read_phy_reg = emac_opencores_read_phy_reg; emac->parent.set_addr = emac_opencores_set_addr; emac->parent.get_addr = emac_opencores_get_addr; emac->parent.set_speed = emac_opencores_set_speed; emac->parent.set_duplex = emac_opencores_set_duplex; emac->parent.set_link = emac_opencores_set_link; emac->parent.set_promiscuous = emac_opencores_set_promiscuous; emac->parent.set_peer_pause_ability = emac_opencores_set_peer_pause_ability; emac->parent.enable_flow_ctrl = emac_opencores_enable_flow_ctrl; emac->parent.transmit = emac_opencores_transmit; emac->parent.receive = emac_opencores_receive; // Initialize the interrupt ESP_GOTO_ON_FALSE(esp_intr_alloc(OPENETH_INTR_SOURCE, ESP_INTR_FLAG_IRAM, emac_opencores_isr_handler, emac, &(emac->intr_hdl)) == ESP_OK, NULL, out, TAG, "alloc emac interrupt failed"); // Create the RX task BaseType_t core_num = tskNO_AFFINITY; if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) { core_num = cpu_hal_get_core_id(); } BaseType_t xReturned = xTaskCreatePinnedToCore(emac_opencores_rx_task, "emac_rx", config->rx_task_stack_size, emac, config->rx_task_prio, &emac->rx_task_hdl, core_num); ESP_GOTO_ON_FALSE(xReturned == pdPASS, NULL, out, TAG, "create emac_rx task failed"); return &(emac->parent); out: if (emac) { if (emac->rx_task_hdl) { vTaskDelete(emac->rx_task_hdl); } if (emac->intr_hdl) { esp_intr_free(emac->intr_hdl); } for (int i = 0; i < TX_BUF_COUNT; i++) { free(emac->tx_buf[i]); } for (int i = 0; i < RX_BUF_COUNT; i++) { free(emac->rx_buf[i]); } free(emac); } return ret; }