/* * SPDX-FileCopyrightText: 2010-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "sdkconfig.h" #include "soc/soc.h" #include "soc/tracemem_config.h" #include "heap_memory_layout.h" #include "esp_heap_caps.h" /* Memory layout for ESP32 SoC */ /* Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory map consist of one or more regions in the address space. Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier ones can't fulfill the memory request. The prioritised capabilities work roughly like this: - For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions, finally eat into the application memory. - For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM. - Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM. - Most other malloc caps only fit in one region anyway. */ const soc_memory_type_desc_t soc_memory_types[] = { //Type 0: DRAM { "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false}, // Type 1: DRAM used for startup stacks { "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, true}, //Type 2: DRAM which has an alias on the I-port { "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, false}, //Type 3: IRAM //In ESP32S2, All IRAM region are available by D-port (D/IRAM). { "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL, 0, 0 }, false, false}, //Type 4: SPI SRAM data //TODO, in fact, part of them support EDMA, to be supported. { "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false}, //Type 5: RTC Fast RAM { "RTCRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_32BIT, MALLOC_CAP_RTCRAM }, false, false}, }; #ifdef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #define SOC_MEMORY_TYPE_DEFAULT 0 #else #define SOC_MEMORY_TYPE_DEFAULT 2 #endif const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t); /* Region descriptors. These describe all regions of memory available, and map them to a type in the above type. Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted from low to high start address. */ const soc_memory_region_t soc_memory_regions[] = { #ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP { SOC_RTC_DRAM_LOW, 0x2000, 5, 0}, //RTC Fast Memory #endif #ifdef CONFIG_SPIRAM { SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_SIZE, 4, 0}, //SPI SRAM, if available #endif #if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB #if CONFIG_ESP32S2_DATA_CACHE_0KB { 0x3FFB2000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40022000}, //Block 1, can be use as I/D cache memory { 0x3FFB4000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40024000}, //Block 2, can be use as D cache memory { 0x3FFB6000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40026000}, //Block 3, can be use as D cache memory #elif CONFIG_ESP32S2_DATA_CACHE_8KB { 0x3FFB4000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40024000}, //Block 2, can be use as D cache memory { 0x3FFB6000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40026000}, //Block 3, can be use as D cache memory #else { 0x3FFB6000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40026000}, //Block 3, can be use as D cache memory #endif #else #if CONFIG_ESP32S2_DATA_CACHE_0KB { 0x3FFB4000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40024000}, //Block SOC_MEMORY_TYPE_DEFAULT, can be use as D cache memory { 0x3FFB6000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40026000}, //Block 3, can be use as D cache memory #elif CONFIG_ESP32S2_DATA_CACHE_8KB { 0x3FFB6000, 0x2000, SOC_MEMORY_TYPE_DEFAULT, 0x40026000}, //Block 3, can be use as D cache memory #endif #endif { 0x3FFB8000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40028000}, //Block 4, can be remapped to ROM, can be used as trace memory { 0x3FFBC000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x4002C000}, //Block 5, can be remapped to ROM, can be used as trace memory { 0x3FFC0000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40030000}, //Block 6, can be used as trace memory { 0x3FFC4000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40034000}, //Block 7, can be used as trace memory { 0x3FFC8000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40038000}, //Block 8, can be used as trace memory { 0x3FFCC000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x4003C000}, //Block 9, can be used as trace memory { 0x3FFD0000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40040000}, //Block 10, can be used as trace memory { 0x3FFD4000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40044000}, //Block 11, can be used as trace memory { 0x3FFD8000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40048000}, //Block 12, can be used as trace memory { 0x3FFDC000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x4004C000}, //Block 13, can be used as trace memory { 0x3FFE0000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40050000}, //Block 14, can be used as trace memory { 0x3FFE4000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40054000}, //Block 15, can be used as trace memory { 0x3FFE8000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40058000}, //Block 16, can be used as trace memory { 0x3FFEC000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x4005C000}, //Block 17, can be used as trace memory { 0x3FFF0000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40060000}, //Block 18, can be used for MAC dump, can be used as trace memory { 0x3FFF4000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40064000}, //Block 19, can be used for MAC dump, can be used as trace memory { 0x3FFF8000, 0x4000, SOC_MEMORY_TYPE_DEFAULT, 0x40068000}, //Block 20, can be used for MAC dump, can be used as trace memory { 0x3FFFC000, 0x4000, 1, 0x4006C000}, //Block 21, can be used for MAC dump, can be used as trace memory, used for startup stack }; const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t); extern int _dram0_rtos_reserved_start; extern int _data_start, _heap_start, _iram_start, _iram_end, _rtc_force_fast_end, _rtc_noinit_end; /* Reserved memory regions These are removed from the soc_memory_regions array when heaps are created. */ //ROM data region SOC_RESERVE_MEMORY_REGION((intptr_t)&_dram0_rtos_reserved_start, SOC_BYTE_ACCESSIBLE_HIGH, rom_data_region); // Static data region. DRAM used by data+bss and possibly rodata SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data); // ESP32S2 has a big D/IRAM region, the part used by code is reserved // The address of the D/I bus are in the same order, directly shift IRAM address to get reserved DRAM address #define I_D_OFFSET (SOC_IRAM_LOW - SOC_DRAM_LOW) SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start - I_D_OFFSET, (intptr_t)&_iram_end - I_D_OFFSET, iram_code); #ifdef CONFIG_SPIRAM /* Reserve the whole possible SPIRAM region here, spiram.c will add some or all of this * memory to heap depending on the actual SPIRAM chip size. */ SOC_RESERVE_MEMORY_REGION( SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH, extram_data_region); #endif // Blocks 19 and 20 may be reserved for the trace memory #if CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM > 0 SOC_RESERVE_MEMORY_REGION(TRACEMEM_BLK0_ADDR, TRACEMEM_BLK0_ADDR + CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM / 2, trace_mem0); SOC_RESERVE_MEMORY_REGION(TRACEMEM_BLK1_ADDR, TRACEMEM_BLK1_ADDR + CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM / 2, trace_mem1); #endif // RTC Fast RAM region #ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP #ifdef CONFIG_ESP32S2_RTCDATA_IN_FAST_MEM SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_noinit_end, rtcram_data); #else SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_force_fast_end, rtcram_data); #endif #endif