/* * SPDX-FileCopyrightText: 2017-2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "mesh.h" #include "mesh/main.h" #include "transport.h" #include "foundation.h" #include "mesh/client_common.h" #include "mesh/common.h" #include "mesh_v1.1/utils.h" #define HCI_TIME_FOR_START_ADV K_MSEC(5) /* Three adv related hci commands may take 4 ~ 5ms */ static bt_mesh_client_node_t *bt_mesh_client_pick_node(sys_slist_t *list, uint16_t tx_dst) { bt_mesh_client_node_t *node = NULL; sys_snode_t *cur = NULL; bt_mesh_list_lock(); if (sys_slist_is_empty(list)) { bt_mesh_list_unlock(); return NULL; } for (cur = sys_slist_peek_head(list); cur != NULL; cur = sys_slist_peek_next(cur)) { node = (bt_mesh_client_node_t *)cur; if (node->ctx.addr == tx_dst) { bt_mesh_list_unlock(); return node; } } bt_mesh_list_unlock(); return NULL; } bt_mesh_client_node_t *bt_mesh_is_client_recv_publish_msg(struct bt_mesh_model *model, struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *buf, bool need_pub) { bt_mesh_client_internal_data_t *data = NULL; bt_mesh_client_user_data_t *cli = NULL; bt_mesh_client_node_t *node = NULL; if (!model || !ctx || !buf) { BT_ERR("%s, Invalid parameter", __func__); return NULL; } cli = (bt_mesh_client_user_data_t *)model->user_data; if (!cli) { BT_ERR("Invalid client user data"); return NULL; } /** If the received message address is not a unicast address, * the address may be a group/virtual address, and we push * this message to the application layer. */ if (!BLE_MESH_ADDR_IS_UNICAST(ctx->recv_dst)) { BT_DBG("Unexpected status message 0x%08x", ctx->recv_op); if (cli->publish_status && need_pub) { cli->publish_status(ctx->recv_op, model, ctx, buf); } return NULL; } /** If the source address of the received status message is * different with the destination address of the sending * message, then the message is from another element and * push it to application layer. */ data = (bt_mesh_client_internal_data_t *)cli->internal_data; if (!data) { BT_ERR("Invalid client internal data"); return NULL; } if ((node = bt_mesh_client_pick_node(&data->queue, ctx->addr)) == NULL) { BT_DBG("Unexpected status message 0x%08x", ctx->recv_op); if (cli->publish_status && need_pub) { cli->publish_status(ctx->recv_op, model, ctx, buf); } return NULL; } if (node->op_pending != ctx->recv_op) { BT_DBG("Unexpected status message 0x%08x", ctx->recv_op); if (cli->publish_status && need_pub) { cli->publish_status(ctx->recv_op, model, ctx, buf); } return NULL; } if (k_delayed_work_remaining_get(&node->timer) == 0) { BT_DBG("Unexpected status message 0x%08x", ctx->recv_op); if (cli->publish_status && need_pub) { cli->publish_status(ctx->recv_op, model, ctx, buf); } return NULL; } return node; } static bool bt_mesh_client_check_node_in_list(sys_slist_t *list, uint16_t tx_dst) { bt_mesh_client_node_t *node = NULL; sys_snode_t *cur = NULL; bt_mesh_list_lock(); if (sys_slist_is_empty(list)) { bt_mesh_list_unlock(); return false; } for (cur = sys_slist_peek_head(list); cur != NULL; cur = sys_slist_peek_next(cur)) { node = (bt_mesh_client_node_t *)cur; if (node->ctx.addr == tx_dst) { bt_mesh_list_unlock(); return true; } } bt_mesh_list_unlock(); return false; } static uint32_t bt_mesh_client_get_status_op(const bt_mesh_client_op_pair_t *op_pair, int size, uint32_t opcode) { if (!op_pair || size == 0) { return 0; } const bt_mesh_client_op_pair_t *op = op_pair; for (int i = 0; i < size; i++) { if (op->cli_op == opcode) { return op->status_op; } op++; } return 0; } static int32_t bt_mesh_get_adv_duration(struct bt_mesh_msg_ctx *ctx) { uint16_t duration = 0, adv_int = 0; uint8_t xmit = 0; /* Initialize with network transmission */ xmit = bt_mesh_net_transmit_get(); if (bt_mesh_tag_immutable_cred(ctx->send_tag)) { #if CONFIG_BLE_MESH_DF_SRV if (ctx->send_cred == BLE_MESH_DIRECTED_CRED) { xmit = bt_mesh_direct_net_transmit_get(); /* Directed network transmission */ } #endif } adv_int = BLE_MESH_TRANSMIT_INT(xmit); duration = (BLE_MESH_TRANSMIT_COUNT(xmit) + 1) * (adv_int + 10); return (int32_t)duration; } static int32_t bt_mesh_client_calc_timeout(struct bt_mesh_msg_ctx *ctx, struct net_buf_simple *msg, uint32_t opcode, int32_t timeout) { int32_t seg_rtx_to = 0, duration = 0, time = 0; uint8_t seg_count = 0, seg_rtx_num = 0; bool need_seg = false; uint8_t mic_size = 0; if (msg->len > BLE_MESH_SDU_UNSEG_MAX || bt_mesh_tag_send_segmented(ctx->send_tag)) { need_seg = true; /* Needs segmentation */ } mic_size = (need_seg && ctx->send_szmic == BLE_MESH_SEG_SZMIC_LONG && net_buf_simple_tailroom(msg) >= BLE_MESH_MIC_LONG) ? BLE_MESH_MIC_LONG : BLE_MESH_MIC_SHORT; if (need_seg) { /* Based on the message length, calculate how many segments are needed. * All the messages sent from here are access messages. */ seg_rtx_num = bt_mesh_get_seg_retrans_num(); seg_rtx_to = bt_mesh_get_seg_retrans_timeout(ctx->send_ttl); seg_count = (msg->len + mic_size - 1) / 12U + 1U; duration = bt_mesh_get_adv_duration(ctx); /* Currently only consider the time consumption of the same segmented * messages, but if there are other messages between any two retrans- * missions of the same segmented messages, then the whole time will * be longer. * * Since the transport behavior has been changed, i.e. start retransmit * timer after the last segment is sent, so we can simplify the timeout * calculation here. And the retransmit timer will be started event if * the attempts reaches ZERO when the dst is a unicast address. */ int32_t seg_duration = seg_count * (duration + HCI_TIME_FOR_START_ADV); time = (seg_duration + seg_rtx_to) * seg_rtx_num; BT_INFO("Original timeout %dms, calculated timeout %dms", timeout, time); if (time < timeout) { /* If the calculated time is smaller than the input timeout value, * then use the original timeout value. */ time = timeout; } } else { /* For unsegmented access messages, directly use the timeout * value from the application layer. */ time = timeout; } BT_INFO("Client message 0x%08x with timeout %dms", opcode, time); return time; } static void msg_send_start(uint16_t duration, int err, void *cb_data) { bt_mesh_client_node_t *node = cb_data; BT_DBG("%s, duration %ums", __func__, duration); if (err) { if (!k_delayed_work_free(&node->timer)) { bt_mesh_client_free_node(node); } return; } k_delayed_work_submit(&node->timer, node->timeout); } static const struct bt_mesh_send_cb send_cb = { .start = msg_send_start, .end = NULL, }; int bt_mesh_client_send_msg(bt_mesh_client_common_param_t *param, struct net_buf_simple *msg, bool need_ack, k_work_handler_t timer_handler) { bt_mesh_client_internal_data_t *internal = NULL; bt_mesh_client_user_data_t *client = NULL; bt_mesh_client_node_t *node = NULL; int err = 0; if (!param || !param->model || !msg) { BT_ERR("%s, Invalid parameter", __func__); return -EINVAL; } client = (bt_mesh_client_user_data_t *)param->model->user_data; if (!client) { BT_ERR("Invalid client user data"); return -EINVAL; } internal = (bt_mesh_client_internal_data_t *)client->internal_data; if (!internal) { BT_ERR("Invalid client internal data"); return -EINVAL; } if (param->ctx.addr == BLE_MESH_ADDR_UNASSIGNED) { BT_ERR("Invalid DST 0x%04x", param->ctx.addr); return -EINVAL; } if (need_ack == false || !BLE_MESH_ADDR_IS_UNICAST(param->ctx.addr)) { /* 1. If this is an unacknowledged message, send it directly. * 2. If this is an acknowledged message, but the destination * is not a unicast address, e.g. a group/virtual address, * then all the corresponding responses will be treated as * publish messages, and no timeout will be used. */ err = bt_mesh_model_send(param->model, ¶m->ctx, msg, param->cb, param->cb_data); if (err) { BT_ERR("Failed to send client message 0x%08x", param->opcode); } return err; } if (!timer_handler) { BT_ERR("Invalid timeout handler"); return -EINVAL; } if (bt_mesh_client_check_node_in_list(&internal->queue, param->ctx.addr)) { BT_ERR("Busy sending message to DST 0x%04x", param->ctx.addr); return -EBUSY; } /* Don't forget to free the node in the timeout (timer_handler) function. */ node = (bt_mesh_client_node_t *)bt_mesh_calloc(sizeof(bt_mesh_client_node_t)); if (!node) { BT_ERR("%s, Out of memory", __func__); return -ENOMEM; } memcpy(&node->ctx, ¶m->ctx, sizeof(struct bt_mesh_msg_ctx)); node->model = param->model; node->opcode = param->opcode; node->op_pending = bt_mesh_client_get_status_op(client->op_pair, client->op_pair_size, param->opcode); if (node->op_pending == 0U) { BT_ERR("Status opcode not found in op_pair list, opcode 0x%08x", param->opcode); bt_mesh_free(node); return -EINVAL; } node->timeout = bt_mesh_client_calc_timeout(¶m->ctx, msg, param->opcode, param->msg_timeout ? param->msg_timeout : CONFIG_BLE_MESH_CLIENT_MSG_TIMEOUT); if (k_delayed_work_init(&node->timer, timer_handler)) { BT_ERR("Failed to create a timer"); bt_mesh_free(node); return -EIO; } bt_mesh_list_lock(); sys_slist_append(&internal->queue, &node->client_node); bt_mesh_list_unlock(); /* "bt_mesh_model_send" will post the mesh packet to the mesh adv queue. * Due to the higher priority of adv_thread (than btc task), we need to * send the packet after the list item "node" is initialized properly. */ err = bt_mesh_model_send(param->model, ¶m->ctx, msg, &send_cb, node); if (err) { BT_ERR("Failed to send client message 0x%08x", node->opcode); k_delayed_work_free(&node->timer); bt_mesh_client_free_node(node); } return err; } static bt_mesh_mutex_t client_model_lock; void bt_mesh_client_model_lock(void) { bt_mesh_mutex_lock(&client_model_lock); } void bt_mesh_client_model_unlock(void) { bt_mesh_mutex_unlock(&client_model_lock); } int bt_mesh_client_init(struct bt_mesh_model *model) { bt_mesh_client_internal_data_t *internal = NULL; bt_mesh_client_user_data_t *client = NULL; if (!model || !model->op) { BT_ERR("Invalid vendor client model"); return -EINVAL; } client = (bt_mesh_client_user_data_t *)model->user_data; if (!client) { BT_ERR("No vendor client context provided"); return -EINVAL; } if (client->internal_data) { BT_WARN("%s, Already", __func__); return -EALREADY; } internal = bt_mesh_calloc(sizeof(bt_mesh_client_internal_data_t)); if (!internal) { BT_ERR("%s, Out of memory", __func__); return -ENOMEM; } sys_slist_init(&internal->queue); client->model = model; client->internal_data = internal; bt_mesh_mutex_create(&client_model_lock); return 0; } #if CONFIG_BLE_MESH_DEINIT int bt_mesh_client_deinit(struct bt_mesh_model *model) { bt_mesh_client_user_data_t *client = NULL; if (!model) { BT_ERR("Invalid vendor client model"); return -EINVAL; } client = (bt_mesh_client_user_data_t *)model->user_data; if (!client) { BT_ERR("No vendor client context provided"); return -EINVAL; } if (client->internal_data) { /* Remove items from the list */ bt_mesh_client_clear_list(client->internal_data); /* Free the allocated internal data */ bt_mesh_free(client->internal_data); client->internal_data = NULL; } bt_mesh_mutex_free(&client_model_lock); return 0; } #endif /* CONFIG_BLE_MESH_DEINIT */ int bt_mesh_client_free_node(bt_mesh_client_node_t *node) { bt_mesh_client_internal_data_t *internal = NULL; bt_mesh_client_user_data_t *client = NULL; if (!node || !node->model) { BT_ERR("Invalid client list item"); return -EINVAL; } client = (bt_mesh_client_user_data_t *)node->model->user_data; if (!client) { BT_ERR("Invalid client user data"); return -EINVAL; } internal = (bt_mesh_client_internal_data_t *)client->internal_data; if (!internal) { BT_ERR("Invalid client internal data"); return -EINVAL; } // Release the client node from the queue bt_mesh_list_lock(); sys_slist_find_and_remove(&internal->queue, &node->client_node); bt_mesh_list_unlock(); // Free the node bt_mesh_free(node); return 0; } int bt_mesh_client_clear_list(void *data) { bt_mesh_client_internal_data_t *internal = NULL; bt_mesh_client_node_t *node = NULL; if (!data) { BT_ERR("%s, Invalid parameter", __func__); return -EINVAL; } internal = (bt_mesh_client_internal_data_t *)data; bt_mesh_list_lock(); while (!sys_slist_is_empty(&internal->queue)) { node = (void *)sys_slist_get_not_empty(&internal->queue); k_delayed_work_free(&node->timer); bt_mesh_free(node); } bt_mesh_list_unlock(); return 0; }