/* * SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_sleep.h" #include "ulp.h" #include "soc/soc.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/sens_reg.h" #include "soc/rtc_io_reg.h" #include "hal/misc.h" #include "driver/rtc_io.h" #include "sdkconfig.h" #include "esp_rom_sys.h" #include "ulp_test_app.h" extern const uint8_t ulp_test_app_bin_start[] asm("_binary_ulp_test_app_bin_start"); extern const uint8_t ulp_test_app_bin_end[] asm("_binary_ulp_test_app_bin_end"); #define HEX_DUMP_DEBUG 0 static void hexdump(const uint32_t* src, size_t count) { #if HEX_DUMP_DEBUG for (size_t i = 0; i < count; ++i) { printf("%08x ", *src); ++src; if ((i + 1) % 4 == 0) { printf("\n"); } } #else (void)src; (void)count; #endif } TEST_CASE("ULP FSM addition test", "[ulp]") { hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to add data in 2 memory locations using ULP macros */ const ulp_insn_t program[] = { I_MOVI(R3, 16), // r3 = 16 I_LD(R0, R3, 0), // r0 = mem[r3 + 0] I_LD(R1, R3, 1), // r1 = mem[r3 + 1] I_ADDR(R2, R0, R1), // r2 = r0 + r1 I_ST(R2, R3, 2), // mem[r3 + 2] = r2 I_HALT() // halt }; /* Load the memory regions used by the ULP co-processor */ RTC_SLOW_MEM[16] = 10; RTC_SLOW_MEM[17] = 11; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); /* Wait for the ULP co-processor to finish up */ esp_rom_delay_us(1000); hexdump(RTC_SLOW_MEM, 20); /* Verify the test results */ TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff); } TEST_CASE("ULP FSM subtraction and branch test", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to perform subtractions and branch to a label */ const ulp_insn_t program[] = { I_MOVI(R0, 34), // r0 = 34 M_LABEL(1), // define a label with label number as 1 I_MOVI(R1, 32), // r1 = 32 I_LD(R1, R1, 0), // r1 = mem[32 + 0] I_MOVI(R2, 33), // r2 = 33 I_LD(R2, R2, 0), // r2 = mem[33 + 0] I_SUBR(R3, R1, R2), // r3 = r1 - r2 I_ST(R3, R0, 0), // mem[r0 + 0] = r3 I_ADDI(R0, R0, 1), // r0 = r0 + 1 M_BL(1, 64), // branch to label 1 if r0 < 64 I_HALT(), // halt }; /* Load the memory regions used by the ULP co-processor */ RTC_SLOW_MEM[32] = 42; RTC_SLOW_MEM[33] = 18; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); printf("\n\n"); /* Wait for the ULP co-processor to finish up */ esp_rom_delay_us(1000); hexdump(RTC_SLOW_MEM, 50); /* Verify the test results */ for (int i = 34; i < 64; ++i) { TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff); } TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]); } TEST_CASE("ULP FSM JUMPS instruction test", "[ulp]") { /* * Load the ULP binary. * * This ULP program is written in assembly. Please refer associated .S file. */ esp_err_t err = ulp_load_binary(0, ulp_test_app_bin_start, (ulp_test_app_bin_end - ulp_test_app_bin_start) / sizeof(uint32_t)); TEST_ESP_OK(err); /* Clear ULP FSM raw interrupt */ REG_CLR_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW); /* Run the ULP coprocessor */ TEST_ESP_OK(ulp_run(&ulp_test_jumps - RTC_SLOW_MEM)); /* Wait for the ULP co-processor to finish up */ esp_rom_delay_us(1000); /* Verify that ULP FSM issued an interrupt to wake up the main CPU */ TEST_ASSERT_NOT_EQUAL(0, REG_GET_BIT(RTC_CNTL_INT_RAW_REG, RTC_CNTL_ULP_CP_INT_RAW)); /* Verify the test results */ TEST_ASSERT_EQUAL(0, ulp_jumps_fail & UINT16_MAX); TEST_ASSERT_EQUAL(1, ulp_jumps_pass & UINT16_MAX); } TEST_CASE("ULP FSM light-sleep wakeup test", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */ const ulp_insn_t program[] = { I_MOVI(R1, 1024), // r1 = 1024 M_LABEL(1), // define label 1 I_DELAY(32000), // add a delay (NOP for 32000 cycles) I_SUBI(R1, R1, 1), // r1 = r1 - 1 M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0) I_RSHI(R3, R1, 5), // r3 = r1 / 32 I_ST(R1, R3, 16), // mem[r3 + 16] = r1 M_BX(1), // loop to label 1 M_LABEL(3), // define label 3 I_MOVI(R2, 42), // r2 = 42 I_MOVI(R3, 15), // r3 = 15 I_ST(R2, R3, 0), // mem[r3 + 0] = r2 I_WAKE(), // wake the SoC from deep-sleep I_END(), // stop ULP timer I_HALT() // halt }; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); /* Enter Light Sleep */ TEST_ASSERT(esp_light_sleep_start() == ESP_OK); /* Wait for wakeup from ULP FSM Coprocessor */ printf("cause %d\r\n", esp_sleep_get_wakeup_cause()); TEST_ASSERT(esp_sleep_get_wakeup_cause() == ESP_SLEEP_WAKEUP_ULP); } TEST_CASE("ULP FSM deep-sleep wakeup test", "[ulp][ulp_deep_sleep_wakeup]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clearout the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to perform some activities and wakeup the main CPU from deep-sleep */ const ulp_insn_t program[] = { I_MOVI(R1, 1024), // r1 = 1024 M_LABEL(1), // define label 1 I_DELAY(32000), // add a delay (NOP for 32000 cycles) I_SUBI(R1, R1, 1), // r1 = r1 - 1 M_BXZ(3), // branch to label 3 if ALU value is 0. (r1 = 0) I_RSHI(R3, R1, 5), // r3 = r1 / 32 I_ST(R1, R3, 16), // mem[r3 + 16] = r1 M_BX(1), // loop to label 1 M_LABEL(3), // define label 3 I_MOVI(R2, 42), // r2 = 42 I_MOVI(R3, 15), // r3 = 15 I_ST(R2, R3, 0), // mem[r3 + 0] = r2 I_WAKE(), // wake the SoC from deep-sleep I_END(), // stop ULP timer I_HALT() // halt }; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); /* Enter Deep Sleep */ esp_deep_sleep_start(); UNITY_TEST_FAIL(__LINE__, "Should not get here!"); } TEST_CASE("ULP FSM can write and read peripheral registers", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear ULP timer */ CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG); uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG); /* ULP co-processor program to read from and write to peripheral registers */ const ulp_insn_t program[] = { I_MOVI(R1, 64), // r1 = 64 I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15), // r0 = REG_READ(RTC_CNTL_STORE1_REG[15:0]) I_ST(R0, R1, 0), // mem[r1 + 0] = r0 I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11), // r0 = REG_READ(RTC_CNTL_STORE1_REG[11:4]) I_ST(R0, R1, 1), // mem[r1 + 1] = r0 I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31), // r0 = REG_READ(RTC_CNTL_STORE1_REG[31:16]) I_ST(R0, R1, 2), // mem[r1 + 2] = r0 I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27), // r0 = REG_READ(RTC_CNTL_STORE1_REG[27:20]) I_ST(R0, R1, 3), // mem[r1 + 3] = r0 I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89), // REG_WRITE(RTC_CNTL_STORE0_REG[7:0], 0x89) I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab), // REG_WRITE(RTC_CNTL_STORE0_REG[15:8], 0xab) I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd), // REG_WRITE(RTC_CNTL_STORE0_REG[23:16], 0xcd) I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef), // REG_WRITE(RTC_CNTL_STORE0_REG[31:24], 0xef) I_LD(R0, R1, 4), // r0 = mem[r1 + 4] I_ADDI(R0, R0, 1), // r0 = r0 + 1 I_ST(R0, R1, 4), // mem[r1 + 4] = r0 I_END(), // stop ULP timer I_HALT() // halt }; /* Set data in the peripheral register to be read by the ULP co-processor */ REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef); /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); TEST_ESP_OK(ulp_run(0)); /* Wait for the ULP co-processor to finish up */ vTaskDelay(100/portTICK_PERIOD_MS); /* Verify the test results */ TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG)); TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff); TEST_ASSERT_EQUAL_HEX16(1, RTC_SLOW_MEM[68] & 0xffff); /* Restore initial calibration values */ REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0); REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1); } TEST_CASE("ULP FSM I_WR_REG instruction test", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* Define the test set */ typedef struct { int low; int width; } wr_reg_test_item_t; const wr_reg_test_item_t test_items[] = { {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}, {15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8}, {16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8}, {18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8}, {24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8}, }; const size_t test_items_count = sizeof(test_items)/sizeof(test_items[0]); for (size_t i = 0; i < test_items_count; ++i) { const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low); const uint32_t not_mask = ~mask; printf("#%2d: low: %2d width: %2d mask: %08" PRIx32 " expected: %08" PRIx32 " ", i, test_items[i].low, test_items[i].width, mask, not_mask); /* Set all bits in RTC_CNTL_STORE0_REG and reset all bits in RTC_CNTL_STORE1_REG */ uint32_t rtc_store0 = REG_READ(RTC_CNTL_STORE0_REG); uint32_t rtc_store1 = REG_READ(RTC_CNTL_STORE1_REG); REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff); REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000); /* ULP co-processor program to write to peripheral registers */ const ulp_insn_t program[] = { I_WR_REG(RTC_CNTL_STORE0_REG, test_items[i].low, test_items[i].low + test_items[i].width - 1, 0), I_WR_REG(RTC_CNTL_STORE1_REG, test_items[i].low, test_items[i].low + test_items[i].width - 1, 0xff & ((1 << test_items[i].width) - 1)), I_END(), I_HALT() }; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); TEST_ESP_OK(ulp_run(0)); /* Wait for the ULP co-processor to finish up */ vTaskDelay(10/portTICK_PERIOD_MS); /* Verify the test results */ uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG); uint32_t set = REG_READ(RTC_CNTL_STORE1_REG); printf("clear: %08" PRIx32 " set: %08" PRIx32 "\n", clear, set); /* Restore initial calibration values */ REG_WRITE(RTC_CNTL_STORE0_REG, rtc_store0); REG_WRITE(RTC_CNTL_STORE1_REG, rtc_store1); TEST_ASSERT_EQUAL_HEX32(not_mask, clear); TEST_ASSERT_EQUAL_HEX32(mask, set); } } TEST_CASE("ULP FSM controls RTC_IO", "[ulp][ulp_deep_sleep_wakeup]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to toggle LED */ const ulp_insn_t program[] = { I_MOVI(R0, 0), // r0 is LED state I_MOVI(R2, 16), // loop r2 from 16 down to 0 M_LABEL(4), // define label 4 I_SUBI(R2, R2, 1), // r2 = r2 - 1 M_BXZ(6), // branch to label 6 if r2 = 0 I_ADDI(R0, R0, 1), // r0 = (r0 + 1) % 2 I_ANDI(R0, R0, 0x1), M_BL(0, 1), // if r0 < 1 goto 0 M_LABEL(1), // define label 1 I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1), // RTC_GPIO12 = 1 M_BX(2), // goto 2 M_LABEL(0), // define label 0 I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0), // RTC_GPIO12 = 0 M_LABEL(2), // define label 2 I_MOVI(R1, 100), // loop R1 from 100 down to 0 M_LABEL(3), // define label 3 I_SUBI(R1, R1, 1), // r1 = r1 - 1 M_BXZ(5), // branch to label 5 if r1 = 0 I_DELAY(32000), // delay for a while M_BX(3), // goto 3 M_LABEL(5), // define label 5 M_BX(4), // loop back to label 4 M_LABEL(6), // define label 6 I_WAKE(), // wake up the SoC I_END(), // stop ULP program timer I_HALT() }; /* Configure LED GPIOs */ const gpio_num_t led_gpios[] = { GPIO_NUM_2, GPIO_NUM_0, GPIO_NUM_4 }; for (size_t i = 0; i < sizeof(led_gpios)/sizeof(led_gpios[0]); ++i) { rtc_gpio_init(led_gpios[i]); rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY); rtc_gpio_set_level(led_gpios[i], 0); } /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); TEST_ESP_OK(ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); /* Enter Deep Sleep */ esp_deep_sleep_start(); UNITY_TEST_FAIL(__LINE__, "Should not get here!"); } TEST_CASE("ULP FSM power consumption in deep sleep", "[ulp][ulp_deep_sleep_wakeup]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* Put the ULP coprocessor in halt state */ ulp_insn_t insn = I_HALT(); hal_memcpy(RTC_SLOW_MEM, &insn, sizeof(insn)); /* Set ULP timer */ ulp_set_wakeup_period(0, 0x8000); /* Run the ULP coprocessor */ TEST_ESP_OK(ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK); /* Enter Deep Sleep */ esp_deep_sleep_start(); UNITY_TEST_FAIL(__LINE__, "Should not get here!"); } TEST_CASE("ULP FSM timer setting", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* * Run a simple ULP program which increments the counter, for one second. * Program calls I_HALT each time and gets restarted by the timer. * Compare the expected number of times the program runs with the actual. */ const int offset = 6; const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 0), // load counter I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 0), // save counter I_HALT(), }; /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size && "data offset needs to be greater or equal to program size"); TEST_ESP_OK(ulp_run(0)); /* Disable the ULP program timer — we will enable it later */ ulp_timer_stop(); /* Define the test data */ const uint32_t cycles_to_test[] = { 10000, // 10 ms 20000, // 20 ms 50000, // 50 ms 100000, // 100 ms 200000, // 200 ms 500000, // 500 ms 1000000 }; // 1 sec const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]); for (size_t i = 0; i < tests_count; ++i) { // zero out the counter RTC_SLOW_MEM[offset] = 0; // set the ulp timer period ulp_set_wakeup_period(0, cycles_to_test[i]); // enable the timer and wait for a second ulp_timer_resume(); vTaskDelay(1000 / portTICK_PERIOD_MS); // stop the timer and get the counter value ulp_timer_stop(); uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff; // calculate the expected counter value and allow a tolerance of 15% uint32_t expected_counter = 1000000 / cycles_to_test[i]; uint32_t tolerance = (expected_counter * 15 / 100); tolerance = tolerance ? tolerance : 1; // Keep a tolerance of at least 1 count printf("expected: %" PRIu32 "\t tolerance: +/- %" PRIu32 "\t actual: %" PRIu32 "\n", expected_counter, tolerance, counter); // Should be within 15% TEST_ASSERT_INT_WITHIN(tolerance, expected_counter, counter); } } #if !DISABLED_FOR_TARGETS(ESP32) TEST_CASE("ULP FSM can use temperature sensor (TSENS) in deep sleep", "[ulp][ulp_deep_sleep_wakeup]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); // Allow TSENS to be controlled by the ULP SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S); #if CONFIG_IDF_TARGET_ESP32S2 SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, SENS_FORCE_XPD_SAR_FSM, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_MASK(SENS_SAR_TSENS_CTRL2_REG, SENS_TSENS_CLKGATE_EN); #elif CONFIG_IDF_TARGET_ESP32S3 SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_TSENS_CLK_EN); #endif CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP); CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT); CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE); // data start offset size_t offset = 20; // number of samples to collect RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8; // sample counter RTC_SLOW_MEM[offset + 1] = 0; /* ULP co-processor program to record temperature sensor readings */ const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 1), // r2 <- counter I_LD(R3, R1, 0), // r3 <- length I_SUBI(R3, R3, 1), // end = length - 1 I_SUBR(R3, R3, R2), // r3 = length - counter M_BXF(1), // if overflow goto 1: I_TSENS(R0, 16383), // r0 <- tsens I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] <- r0 I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 1), // save counter I_HALT(), // enter sleep M_LABEL(1), // done with measurements I_END(), // stop ULP timer I_WAKE(), // initiate wakeup I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size); /* Run the ULP coprocessor */ TEST_ESP_OK(ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK); /* Enter Deep Sleep */ esp_deep_sleep_start(); UNITY_TEST_FAIL(__LINE__, "Should not get here!"); } #endif //#if !DISABLED_FOR_TARGETS(ESP32) TEST_CASE("ULP FSM can use ADC in deep sleep", "[ulp][ulp_deep_sleep_wakeup]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); const int adc = 0; const int channel = 0; const int atten = 0; /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); #if defined(CONFIG_IDF_TARGET_ESP32) // Configure SAR ADCn resolution SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S); SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S); SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S); SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S); // SAR ADCn is started by ULP FSM CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE); // Use ULP FSM to power up SAR ADCn SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S); // SAR ADCn invert result SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV); SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV); // Set SAR ADCn pad enable bitmap to be controlled by ULP FSM CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M); #elif defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) // SAR ADCn is started by ULP FSM CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_MEAS2_START_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_MEAS1_START_FORCE); // Use ULP FSM to power up/down SAR ADCn SET_PERI_REG_BITS(SENS_SAR_POWER_XPD_SAR_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_BITS(SENS_SAR_MEAS1_CTRL1_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S); // SAR1 invert result SET_PERI_REG_MASK(SENS_SAR_READER1_CTRL_REG, SENS_SAR1_DATA_INV); SET_PERI_REG_MASK(SENS_SAR_READER2_CTRL_REG, SENS_SAR2_DATA_INV); // Set SAR ADCn pad enable bitmap to be controlled by ULP FSM CLEAR_PERI_REG_MASK(SENS_SAR_MEAS1_CTRL2_REG, SENS_SAR1_EN_PAD_FORCE_M); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS2_CTRL2_REG, SENS_SAR2_EN_PAD_FORCE_M); // Enable SAR ADCn clock gate on esp32s3 #if CONFIG_IDF_TARGET_ESP32S3 SET_PERI_REG_MASK(SENS_SAR_PERI_CLK_GATE_CONF_REG, SENS_SARADC_CLK_EN); #endif #endif SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation // data start offset size_t offset = 20; // number of samples to collect RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8; // sample counter RTC_SLOW_MEM[offset + 1] = 0; const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 1), // r2 <- counter I_LD(R3, R1, 0), // r3 <- length I_SUBI(R3, R3, 1), // end = length - 1 I_SUBR(R3, R3, R2), // r3 = length - counter M_BXF(1), // if overflow goto 1: I_ADC(R0, adc, channel), // r0 <- ADC I_ST(R0, R2, offset + 4), // mem[r2 + offset +4] = r0 I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 1), // save counter I_HALT(), // enter sleep M_LABEL(1), // done with measurements I_END(), // stop ULP program timer I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size); /* Run the ULP coprocessor */ TEST_ESP_OK(ulp_run(0)); /* Setup wakeup triggers */ TEST_ASSERT(esp_sleep_enable_ulp_wakeup() == ESP_OK); TEST_ASSERT(esp_sleep_enable_timer_wakeup(10 * 1000000) == ESP_OK); /* Enter Deep Sleep */ esp_deep_sleep_start(); UNITY_TEST_FAIL(__LINE__, "Should not get here!"); } static void ulp_isr(void *arg) { BaseType_t yield = 0; SemaphoreHandle_t sem = (SemaphoreHandle_t)arg; xSemaphoreGiveFromISR(sem, &yield); if (yield) { portYIELD_FROM_ISR(); } } TEST_CASE("ULP FSM interrupt signal can be handled via ISRs on the main core", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); /* Clear the RTC_SLOW_MEM region for the ULP co-processor binary to be loaded */ hal_memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); /* ULP co-processor program to send a wakeup to the main CPU */ const ulp_insn_t program[] = { I_WAKE(), // send wakeup signal to main CPU I_END(), // stop ULP timer I_HALT() // halt }; /* Create test semaphore */ SemaphoreHandle_t ulp_isr_sem = xSemaphoreCreateBinary(); TEST_ASSERT_NOT_NULL(ulp_isr_sem); /* Register ULP wakeup signal ISR */ TEST_ASSERT_EQUAL(ESP_OK, ulp_isr_register(ulp_isr, (void *)ulp_isr_sem)); /* Calculate the size of the ULP co-processor binary, load it and run the ULP coprocessor */ size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); /* Wait from ISR to be called */ TEST_ASSERT_EQUAL(pdTRUE, xSemaphoreTake(ulp_isr_sem, portMAX_DELAY)); /* Deregister the ISR */ TEST_ASSERT_EQUAL(ESP_OK, ulp_isr_deregister(ulp_isr, (void *)ulp_isr_sem )); /* Delete test semaphore */ vSemaphoreDelete(ulp_isr_sem); }