menu "Wi-Fi" config ESP32_WIFI_SW_COEXIST_ENABLE bool "Software controls WiFi/Bluetooth coexistence" depends on BT_ENABLED default y help If enabled, WiFi & Bluetooth coexistence is controlled by software rather than hardware. Recommended for heavy traffic scenarios. Both coexistence configuration options are automatically managed, no user intervention is required. If only Bluetooth is used, it is recommended to disable this option to reduce binary file size. config ESP32_WIFI_STATIC_RX_BUFFER_NUM int "Max number of WiFi static RX buffers" range 2 25 default 10 if !SPIRAM_TRY_ALLOCATE_WIFI_LWIP default 16 if SPIRAM_TRY_ALLOCATE_WIFI_LWIP help Set the number of WiFi static RX buffers. Each buffer takes approximately 1.6KB of RAM. The static rx buffers are allocated when esp_wifi_init is called, they are not freed until esp_wifi_deinit is called. WiFi hardware use these buffers to receive all 802.11 frames. A higher number may allow higher throughput but increases memory use. If ESP32_WIFI_AMPDU_RX_ENABLED is enabled, this value is recommended to set equal or bigger than ESP32_WIFI_RX_BA_WIN in order to achieve better throughput and compatibility with both stations and APs. config ESP32_WIFI_DYNAMIC_RX_BUFFER_NUM int "Max number of WiFi dynamic RX buffers" range 0 128 if !LWIP_WND_SCALE range 0 1024 if LWIP_WND_SCALE default 32 help Set the number of WiFi dynamic RX buffers, 0 means unlimited RX buffers will be allocated (provided sufficient free RAM). The size of each dynamic RX buffer depends on the size of the received data frame. For each received data frame, the WiFi driver makes a copy to an RX buffer and then delivers it to the high layer TCP/IP stack. The dynamic RX buffer is freed after the higher layer has successfully received the data frame. For some applications, WiFi data frames may be received faster than the application can process them. In these cases we may run out of memory if RX buffer number is unlimited (0). If a dynamic RX buffer limit is set, it should be at least the number of static RX buffers. choice ESP32_WIFI_TX_BUFFER prompt "Type of WiFi TX buffers" default ESP32_WIFI_DYNAMIC_TX_BUFFER help Select type of WiFi TX buffers: If "Static" is selected, WiFi TX buffers are allocated when WiFi is initialized and released when WiFi is de-initialized. The size of each static TX buffer is fixed to about 1.6KB. If "Dynamic" is selected, each WiFi TX buffer is allocated as needed when a data frame is delivered to the Wifi driver from the TCP/IP stack. The buffer is freed after the data frame has been sent by the WiFi driver. The size of each dynamic TX buffer depends on the length of each data frame sent by the TCP/IP layer. If PSRAM is enabled, "Static" should be selected to guarantee enough WiFi TX buffers. If PSRAM is disabled, "Dynamic" should be selected to improve the utilization of RAM. config ESP32_WIFI_STATIC_TX_BUFFER bool "Static" config ESP32_WIFI_DYNAMIC_TX_BUFFER bool "Dynamic" depends on !SPIRAM_USE_MALLOC endchoice config ESP32_WIFI_TX_BUFFER_TYPE int default 0 if ESP32_WIFI_STATIC_TX_BUFFER default 1 if ESP32_WIFI_DYNAMIC_TX_BUFFER config ESP32_WIFI_STATIC_TX_BUFFER_NUM int "Max number of WiFi static TX buffers" depends on ESP32_WIFI_STATIC_TX_BUFFER range 1 64 default 16 help Set the number of WiFi static TX buffers. Each buffer takes approximately 1.6KB of RAM. The static RX buffers are allocated when esp_wifi_init() is called, they are not released until esp_wifi_deinit() is called. For each transmitted data frame from the higher layer TCP/IP stack, the WiFi driver makes a copy of it in a TX buffer. For some applications especially UDP applications, the upper layer can deliver frames faster than WiFi layer can transmit. In these cases, we may run out of TX buffers. config ESP32_WIFI_CACHE_TX_BUFFER_NUM int "Max number of WiFi cache TX buffers" depends on (ESP32_SPIRAM_SUPPORT || ESP32S2_SPIRAM_SUPPORT) range 16 128 default 32 help Set the number of WiFi cache TX buffer number. For each TX packet from uplayer, such as LWIP etc, WiFi driver needs to allocate a static TX buffer and makes a copy of uplayer packet. If WiFi driver fails to allocate the static TX buffer, it caches the uplayer packets to a dedicated buffer queue, this option is used to configure the size of the cached TX queue. config ESP32_WIFI_DYNAMIC_TX_BUFFER_NUM int "Max number of WiFi dynamic TX buffers" depends on ESP32_WIFI_DYNAMIC_TX_BUFFER range 1 128 default 32 help Set the number of WiFi dynamic TX buffers. The size of each dynamic TX buffer is not fixed, it depends on the size of each transmitted data frame. For each transmitted frame from the higher layer TCP/IP stack, the WiFi driver makes a copy of it in a TX buffer. For some applications, especially UDP applications, the upper layer can deliver frames faster than WiFi layer can transmit. In these cases, we may run out of TX buffers. config ESP32_WIFI_CSI_ENABLED bool "WiFi CSI(Channel State Information)" default n help Select this option to enable CSI(Channel State Information) feature. CSI takes about CONFIG_ESP32_WIFI_STATIC_RX_BUFFER_NUM KB of RAM. If CSI is not used, it is better to disable this feature in order to save memory. config ESP32_WIFI_AMPDU_TX_ENABLED bool "WiFi AMPDU TX" default y help Select this option to enable AMPDU TX feature config ESP32_WIFI_TX_BA_WIN int "WiFi AMPDU TX BA window size" depends on ESP32_WIFI_AMPDU_TX_ENABLED range 2 32 default 6 help Set the size of WiFi Block Ack TX window. Generally a bigger value means higher throughput but more memory. Most of time we should NOT change the default value unless special reason, e.g. test the maximum UDP TX throughput with iperf etc. For iperf test in shieldbox, the recommended value is 9~12. config ESP32_WIFI_AMPDU_RX_ENABLED bool "WiFi AMPDU RX" default y help Select this option to enable AMPDU RX feature config ESP32_WIFI_RX_BA_WIN int "WiFi AMPDU RX BA window size" depends on ESP32_WIFI_AMPDU_RX_ENABLED range 2 32 default 6 if !SPIRAM_TRY_ALLOCATE_WIFI_LWIP default 16 if SPIRAM_TRY_ALLOCATE_WIFI_LWIP help Set the size of WiFi Block Ack RX window. Generally a bigger value means higher throughput and better compatibility but more memory. Most of time we should NOT change the default value unless special reason, e.g. test the maximum UDP RX throughput with iperf etc. For iperf test in shieldbox, the recommended value is 9~12. If PSRAM is used and WiFi memory is prefered to allocat in PSRAM first, the default and minimum value should be 16 to achieve better throughput and compatibility with both stations and APs. config ESP32_WIFI_AMSDU_TX_ENABLED bool "WiFi AMSDU TX" depends on (ESP32_SPIRAM_SUPPORT || ESP32S2_SPIRAM_SUPPORT || ESP32S3_SPIRAM_SUPPORT) default n help Select this option to enable AMSDU TX feature config ESP32_WIFI_NVS_ENABLED bool "WiFi NVS flash" default y help Select this option to enable WiFi NVS flash choice ESP32_WIFI_TASK_CORE_ID depends on !FREERTOS_UNICORE prompt "WiFi Task Core ID" default ESP32_WIFI_TASK_PINNED_TO_CORE_0 help Pinned WiFi task to core 0 or core 1. config ESP32_WIFI_TASK_PINNED_TO_CORE_0 bool "Core 0" config ESP32_WIFI_TASK_PINNED_TO_CORE_1 bool "Core 1" endchoice config ESP32_WIFI_SOFTAP_BEACON_MAX_LEN int "Max length of WiFi SoftAP Beacon" range 752 1256 default 752 help ESP-MESH utilizes beacon frames to detect and resolve root node conflicts (see documentation). However the default length of a beacon frame can simultaneously hold only five root node identifier structures, meaning that a root node conflict of up to five nodes can be detected at one time. In the occurence of more root nodes conflict involving more than five root nodes, the conflict resolution process will detect five of the root nodes, resolve the conflict, and re-detect more root nodes. This process will repeat until all root node conflicts are resolved. However this process can generally take a very long time. To counter this situation, the beacon frame length can be increased such that more root nodes can be detected simultaneously. Each additional root node will require 36 bytes and should be added ontop of the default beacon frame length of 752 bytes. For example, if you want to detect 10 root nodes simultaneously, you need to set the beacon frame length as 932 (752+36*5). Setting a longer beacon length also assists with debugging as the conflicting root nodes can be identified more quickly. config ESP32_WIFI_MGMT_SBUF_NUM int "WiFi mgmt short buffer number" range 6 32 default 32 help Set the number of WiFi management short buffer. config ESP32_WIFI_DEBUG_LOG_ENABLE bool "Enable WiFi debug log" default n help Select this option to enable WiFi debug log choice ESP32_WIFI_DEBUG_LOG_LEVEL depends on ESP32_WIFI_DEBUG_LOG_ENABLE prompt "WiFi debug log level" default ESP32_WIFI_DEBUG_LOG_DEBUG help The WiFi log is divided into the following levels: ERROR,WARNING,INFO,DEBUG,VERBOSE. The ERROR,WARNING,INFO levels are enabled by default, and the DEBUG,VERBOSE levels can be enabled here. config ESP32_WIFI_DEBUG_LOG_DEBUG bool "WiFi Debug Log Debug" config ESP32_WIFI_DEBUG_LOG_VERBOSE bool "WiFi Debug Log Verbose" endchoice choice ESP32_WIFI_DEBUG_LOG_MODULE depends on ESP32_WIFI_DEBUG_LOG_ENABLE prompt "WiFi debug log module" default ESP32_WIFI_DEBUG_LOG_MODULE_WIFI help The WiFi log module contains three parts: WIFI,COEX,MESH. The WIFI module indicates the logs related to WiFi, the COEX module indicates the logs related to WiFi and BT(or BLE) coexist, the MESH module indicates the logs related to Mesh. When ESP32_WIFI_LOG_MODULE_ALL is enabled, all modules are selected. config ESP32_WIFI_DEBUG_LOG_MODULE_ALL bool "WiFi Debug Log Module All" config ESP32_WIFI_DEBUG_LOG_MODULE_WIFI bool "WiFi Debug Log Module WiFi" config ESP32_WIFI_DEBUG_LOG_MODULE_COEX bool "WiFi Debug Log Module Coex" config ESP32_WIFI_DEBUG_LOG_MODULE_MESH bool "WiFi Debug Log Module Mesh" endchoice config ESP32_WIFI_DEBUG_LOG_SUBMODULE depends on ESP32_WIFI_DEBUG_LOG_ENABLE bool "WiFi debug log submodule" default n help Enable this option to set the WiFi debug log submodule. Currently the log submodule contains the following parts: INIT,IOCTL,CONN,SCAN. The INIT submodule indicates the initialization process.The IOCTL submodule indicates the API calling process. The CONN submodule indicates the connecting process.The SCAN submodule indicates the scaning process. config ESP32_WIFI_DEBUG_LOG_SUBMODULE_ALL depends on ESP32_WIFI_DEBUG_LOG_SUBMODULE bool "WiFi Debug Log Submodule All" default n help When this option is enabled, all debug submodules are selected. config ESP32_WIFI_DEBUG_LOG_SUBMODULE_INIT depends on ESP32_WIFI_DEBUG_LOG_SUBMODULE && (!ESP32_WIFI_DEBUG_LOG_SUBMODULE_ALL) bool "WiFi Debug Log Submodule Init" default n config ESP32_WIFI_DEBUG_LOG_SUBMODULE_IOCTL depends on ESP32_WIFI_DEBUG_LOG_SUBMODULE && (!ESP32_WIFI_DEBUG_LOG_SUBMODULE_ALL) bool "WiFi Debug Log Submodule Ioctl" default n config ESP32_WIFI_DEBUG_LOG_SUBMODULE_CONN depends on ESP32_WIFI_DEBUG_LOG_SUBMODULE && (!ESP32_WIFI_DEBUG_LOG_SUBMODULE_ALL) bool "WiFi Debug Log Submodule Conn" default n config ESP32_WIFI_DEBUG_LOG_SUBMODULE_SCAN depends on ESP32_WIFI_DEBUG_LOG_SUBMODULE && (!ESP32_WIFI_DEBUG_LOG_SUBMODULE_ALL) bool "WiFi Debug Log Submodule Scan" default n config ESP32_WIFI_IRAM_OPT bool "WiFi IRAM speed optimization" default n if (BT_ENABLED && ESP32_SPIRAM_SUPPORT) default y help Select this option to place frequently called Wi-Fi library functions in IRAM. When this option is disabled, more than 10Kbytes of IRAM memory will be saved but Wi-Fi throughput will be reduced. config ESP32_WIFI_RX_IRAM_OPT bool "WiFi RX IRAM speed optimization" default n if (BT_ENABLED && ESP32_SPIRAM_SUPPORT) default y help Select this option to place frequently called Wi-Fi library RX functions in IRAM. When this option is disabled, more than 17Kbytes of IRAM memory will be saved but Wi-Fi performance will be reduced. config ESP32_WIFI_ENABLE_WPA3_SAE bool "Enable WPA3-Personal" default y help Select this option to allow the device to establish a WPA3-Personal connection with eligible AP's. PMF (Protected Management Frames) is a prerequisite feature for a WPA3 connection, it needs to be explicitly configured before attempting connection. Please refer to the Wi-Fi Driver API Guide for details. config ESP_WIFI_SLP_IRAM_OPT bool "WiFi SLP IRAM speed optimization" help Select this option to place called Wi-Fi library TBTT process and receive beacon functions in IRAM. Some functions can be put in IRAM either by ESP32_WIFI_IRAM_OPT and ESP32_WIFI_RX_IRAM_OPT, or this one. If already enabled ESP32_WIFI_IRAM_OPT, the other 7.3KB IRAM memory would be taken by this option. If already enabled ESP32_WIFI_RX_IRAM_OPT, the other 1.3KB IRAM memory would be taken by this option. If neither of them are enabled, the other 7.4KB IRAM memory would be taken by this option. Wi-Fi power-save mode average current would be reduced if this option is enabled. endmenu # Wi-Fi menu "PHY" config ESP32_PHY_CALIBRATION_AND_DATA_STORAGE # ToDo: remove target dependency once NVS and PHY partial calibration are supported # also re-enable the entry in docs/../api-guides/index.rst depends on IDF_TARGET_ESP32 bool "Store phy calibration data in NVS" default y help If this option is enabled, NVS will be initialized and calibration data will be loaded from there. PHY calibration will be skipped on deep sleep wakeup. If calibration data is not found, full calibration will be performed and stored in NVS. Normally, only partial calibration will be performed. If this option is disabled, full calibration will be performed. If it's easy that your board calibrate bad data, choose 'n'. Two cases for example, you should choose 'n': 1.If your board is easy to be booted up with antenna disconnected. 2.Because of your board design, each time when you do calibration, the result are too unstable. If unsure, choose 'y'. menuconfig ESP32_PHY_INIT_DATA_IN_PARTITION bool "Use a partition to store PHY init data" default n help If enabled, PHY init data will be loaded from a partition. When using a custom partition table, make sure that PHY data partition is included (type: 'data', subtype: 'phy'). With default partition tables, this is done automatically. If PHY init data is stored in a partition, it has to be flashed there, otherwise runtime error will occur. If this option is not enabled, PHY init data will be embedded into the application binary. If unsure, choose 'n'. if ESP32_PHY_INIT_DATA_IN_PARTITION config ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN bool "Support multiple PHY init data bin" depends on ESP32_PHY_INIT_DATA_IN_PARTITION default n help If enabled, the corresponding PHY init data type can be automatically switched according to the country code. China's PHY init data bin is used by default. Can be modified by country information in API esp_wifi_set_country(). The priority of switching the PHY init data type is: 1. Country configured by API esp_wifi_set_country() and the parameter policy is WIFI_COUNTRY_POLICY_MANUAL. 2. Country notified by the connected AP. 3. Country configured by API esp_wifi_set_country() and the parameter policy is WIFI_COUNTRY_POLICY_AUTO. config ESP32_PHY_INIT_DATA_ERROR bool "Terminate operation when PHY init data error" depends on ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN default n help If enabled, when an error occurs while the PHY init data is updated, the program will terminate and restart. If not enabled, the PHY init data will not be updated when an error occurs. endif config ESP32_PHY_MAX_WIFI_TX_POWER int "Max WiFi TX power (dBm)" range 10 20 default 20 help Set maximum transmit power for WiFi radio. Actual transmit power for high data rates may be lower than this setting. config ESP32_PHY_MAX_TX_POWER int default ESP32_PHY_MAX_WIFI_TX_POWER config ESP32_PHY_MAC_BB_PD bool "Power down MAC and baseband of Wi-Fi and Bluetooth when PHY is disabled" depends on IDF_TARGET_ESP32C3 default n help If enabled, the MAC and baseband of Wi-Fi and Bluetooth will be powered down when PHY is disabled. Enabling this setting reduces power consumption by a small amount but increases RAM use by approximately 4 KB(Wi-Fi only), 2 KB(Bluetooth only) or 5.3 KB(Wi-Fi + Bluetooth). endmenu # PHY