/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/portmacro.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "hcd.h" #include "usbh.h" #include "usb/usb_helpers.h" #include "usb/usb_types_ch9.h" #define EP_NUM_MIN 1 // The smallest possible non-default endpoint number #define EP_NUM_MAX 16 // The largest possible non-default endpoint number #define NUM_NON_DEFAULT_EP ((EP_NUM_MAX - 1) * 2) // The total number of non-default endpoints a device can have. // Device action flags. LISTED IN THE ORDER THEY SHOULD BE HANDLED IN within usbh_process(). Some actions are mutually exclusive typedef enum { DEV_ACTION_EPn_HALT_FLUSH = (1 << 0), // Halt all non-default endpoints then flush them (called after a device gone is gone) DEV_ACTION_EP0_FLUSH = (1 << 1), // Retire all URBS submitted to EP0 DEV_ACTION_EP0_DEQUEUE = (1 << 2), // Dequeue all URBs from EP0 DEV_ACTION_EP0_CLEAR = (1 << 3), // Move EP0 to the the active state DEV_ACTION_PROP_GONE_EVT = (1 << 4), // Propagate a USBH_EVENT_DEV_GONE event DEV_ACTION_FREE_AND_RECOVER = (1 << 5), // Free the device object, but send a USBH_HUB_REQ_PORT_RECOVER request afterwards. DEV_ACTION_FREE = (1 << 6), // Free the device object DEV_ACTION_PORT_DISABLE = (1 << 7), // Request the hub driver to disable the port of the device DEV_ACTION_PROP_NEW = (1 << 8), // Propagate a USBH_EVENT_DEV_NEW event } dev_action_t; typedef struct device_s device_t; typedef struct { struct { usbh_ep_cb_t ep_cb; void *ep_cb_arg; hcd_pipe_handle_t pipe_hdl; device_t *dev; // Pointer to the device object that this endpoint is contained in const usb_ep_desc_t *ep_desc; // This just stores a pointer endpoint descriptor inside the device's "config_desc" } constant; } endpoint_t; struct device_s { // Dynamic members require a critical section struct { TAILQ_ENTRY(device_s) tailq_entry; union { struct { uint32_t in_pending_list: 1; uint32_t is_gone: 1; uint32_t waiting_close: 1; uint32_t waiting_port_disable: 1; uint32_t waiting_free: 1; uint32_t reserved27: 27; }; uint32_t val; } flags; uint32_t action_flags; int num_ctrl_xfers_inflight; usb_device_state_t state; uint32_t ref_count; } dynamic; // Mux protected members must be protected by the USBH mux_lock when accessed struct { /* - Endpoint object pointers for each possible non-default endpoint - All OUT EPs are listed before IN EPs (i.e., EP_NUM_MIN OUT ... EP_NUM_MAX OUT ... EP_NUM_MIN IN ... EP_NUM_MAX) */ endpoint_t *endpoints[NUM_NON_DEFAULT_EP]; } mux_protected; // Constant members do not change after device allocation and enumeration thus do not require a critical section struct { hcd_pipe_handle_t default_pipe; hcd_port_handle_t port_hdl; uint8_t address; usb_speed_t speed; const usb_device_desc_t *desc; const usb_config_desc_t *config_desc; const usb_str_desc_t *str_desc_manu; const usb_str_desc_t *str_desc_product; const usb_str_desc_t *str_desc_ser_num; } constant; }; typedef struct { // Dynamic members require a critical section struct { TAILQ_HEAD(tailhead_devs, device_s) devs_idle_tailq; // Tailq of all enum and configured devices TAILQ_HEAD(tailhead_devs_cb, device_s) devs_pending_tailq; // Tailq of devices that need to have their cb called } dynamic; // Mux protected members must be protected by the USBH mux_lock when accessed struct { uint8_t num_device; // Number of enumerated devices } mux_protected; // Constant members do no change after installation thus do not require a critical section struct { usb_proc_req_cb_t proc_req_cb; void *proc_req_cb_arg; usbh_hub_req_cb_t hub_req_cb; void *hub_req_cb_arg; usbh_event_cb_t event_cb; void *event_cb_arg; usbh_ctrl_xfer_cb_t ctrl_xfer_cb; void *ctrl_xfer_cb_arg; SemaphoreHandle_t mux_lock; } constant; } usbh_t; static usbh_t *p_usbh_obj = NULL; static portMUX_TYPE usbh_lock = portMUX_INITIALIZER_UNLOCKED; const char *USBH_TAG = "USBH"; #define USBH_ENTER_CRITICAL_ISR() portENTER_CRITICAL_ISR(&usbh_lock) #define USBH_EXIT_CRITICAL_ISR() portEXIT_CRITICAL_ISR(&usbh_lock) #define USBH_ENTER_CRITICAL() portENTER_CRITICAL(&usbh_lock) #define USBH_EXIT_CRITICAL() portEXIT_CRITICAL(&usbh_lock) #define USBH_ENTER_CRITICAL_SAFE() portENTER_CRITICAL_SAFE(&usbh_lock) #define USBH_EXIT_CRITICAL_SAFE() portEXIT_CRITICAL_SAFE(&usbh_lock) #define USBH_CHECK(cond, ret_val) ({ \ if (!(cond)) { \ return (ret_val); \ } \ }) #define USBH_CHECK_FROM_CRIT(cond, ret_val) ({ \ if (!(cond)) { \ USBH_EXIT_CRITICAL(); \ return ret_val; \ } \ }) // ------------------------------------------------- Forward Declare --------------------------------------------------- static bool ep0_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr); static bool epN_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr); static bool _dev_set_actions(device_t *dev_obj, uint32_t action_flags); // ----------------------------------------------------- Helpers ------------------------------------------------------- static inline bool check_ep_addr(uint8_t bEndpointAddress) { /* Check that the bEndpointAddress is valid - Must be <= EP_NUM_MAX (e.g., 16) - Must be >= EP_NUM_MIN (e.g., 1). - EP0 is the owned/managed by USBH, thus must never by directly addressed by users (see USB 2.0 section 10.5.1.2) */ uint8_t addr = bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK; return (addr >= EP_NUM_MIN) && (addr <= EP_NUM_MAX); } static endpoint_t *get_ep_from_addr(device_t *dev_obj, uint8_t bEndpointAddress) { /* CALLER IS RESPONSIBLE FOR TAKING THE mux_lock */ // Calculate index to the device's endpoint object list int index; // EP_NUM_MIN should map to an index of 0 index = (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) - EP_NUM_MIN; assert(index >= 0); // Endpoint address is not supported if (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK) { // OUT EPs are listed before IN EPs, so add an offset index += (EP_NUM_MAX - EP_NUM_MIN); } return dev_obj->mux_protected.endpoints[index]; } static inline void set_ep_from_addr(device_t *dev_obj, uint8_t bEndpointAddress, endpoint_t *ep_obj) { /* CALLER IS RESPONSIBLE FOR TAKING THE mux_lock */ // Calculate index to the device's endpoint object list int index; // EP_NUM_MIN should map to an index of 0 index = (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_NUM_MASK) - EP_NUM_MIN; assert(index >= 0); // Endpoint address is not supported if (bEndpointAddress & USB_B_ENDPOINT_ADDRESS_EP_DIR_MASK) { // OUT EPs are listed before IN EPs, so add an offset index += (EP_NUM_MAX - EP_NUM_MIN); } dev_obj->mux_protected.endpoints[index] = ep_obj; } static bool urb_check_args(urb_t *urb) { if (urb->transfer.callback == NULL) { ESP_LOGE(USBH_TAG, "usb_transfer_t callback is NULL"); return false; } if (urb->transfer.num_bytes > urb->transfer.data_buffer_size) { ESP_LOGE(USBH_TAG, "usb_transfer_t num_bytes > data_buffer_size"); return false; } return true; } static bool transfer_check_usb_compliance(usb_transfer_t *transfer, usb_transfer_type_t type, int mps, bool is_in) { if (type == USB_TRANSFER_TYPE_CTRL) { // Check that num_bytes and wLength are set correctly usb_setup_packet_t *setup_pkt = (usb_setup_packet_t *)transfer->data_buffer; if (transfer->num_bytes != sizeof(usb_setup_packet_t) + setup_pkt->wLength) { ESP_LOGE(USBH_TAG, "usb_transfer_t num_bytes and usb_setup_packet_t wLength mismatch"); return false; } } else if (type == USB_TRANSFER_TYPE_ISOCHRONOUS) { // Check that there is at least one isochronous packet descriptor if (transfer->num_isoc_packets <= 0) { ESP_LOGE(USBH_TAG, "usb_transfer_t num_isoc_packets is 0"); return false; } // Check that sum of all packet lengths add up to transfer length // If IN, check that each packet length is integer multiple of MPS int total_num_bytes = 0; bool mod_mps_all_zero = true; for (int i = 0; i < transfer->num_isoc_packets; i++) { total_num_bytes += transfer->isoc_packet_desc[i].num_bytes; if (transfer->isoc_packet_desc[i].num_bytes % mps != 0) { mod_mps_all_zero = false; } } if (transfer->num_bytes != total_num_bytes) { ESP_LOGE(USBH_TAG, "ISOC transfer num_bytes != num_bytes of all packets"); return false; } if (is_in && !mod_mps_all_zero) { ESP_LOGE(USBH_TAG, "ISOC IN num_bytes not integer multiple of MPS"); return false; } } else { // Check that IN transfers are integer multiple of MPS if (is_in && (transfer->num_bytes % mps != 0)) { ESP_LOGE(USBH_TAG, "IN transfer num_bytes not integer multiple of MPS"); return false; } } return true; } // --------------------------------------------------- Allocation ------------------------------------------------------ static esp_err_t endpoint_alloc(device_t *dev_obj, const usb_ep_desc_t *ep_desc, usbh_ep_config_t *ep_config, endpoint_t **ep_obj_ret) { esp_err_t ret; endpoint_t *ep_obj; hcd_pipe_handle_t pipe_hdl; ep_obj = heap_caps_calloc(1, sizeof(endpoint_t), MALLOC_CAP_DEFAULT); if (ep_obj == NULL) { return ESP_ERR_NO_MEM; } // Allocate the EP's underlying pipe hcd_pipe_config_t pipe_config = { .callback = epN_pipe_callback, .callback_arg = (void *)ep_obj, .context = ep_config->context, .ep_desc = ep_desc, .dev_speed = dev_obj->constant.speed, .dev_addr = dev_obj->constant.address, }; ret = hcd_pipe_alloc(dev_obj->constant.port_hdl, &pipe_config, &pipe_hdl); if (ret != ESP_OK) { goto pipe_err; } // Initialize the endpoint object ep_obj->constant.pipe_hdl = pipe_hdl; ep_obj->constant.ep_cb = ep_config->ep_cb; ep_obj->constant.ep_cb_arg = ep_config->ep_cb_arg; ep_obj->constant.dev = dev_obj; ep_obj->constant.ep_desc = ep_desc; // Return the endpoint object *ep_obj_ret = ep_obj; ret = ESP_OK; return ret; pipe_err: heap_caps_free(ep_obj); return ret; } static void endpoint_free(endpoint_t *ep_obj) { if (ep_obj == NULL) { return; } // Deallocate the EP's underlying pipe ESP_ERROR_CHECK(hcd_pipe_free(ep_obj->constant.pipe_hdl)); // Free the heap object heap_caps_free(ep_obj); } static esp_err_t device_alloc(hcd_port_handle_t port_hdl, usb_speed_t speed, device_t **dev_obj_ret) { esp_err_t ret; device_t *dev_obj = heap_caps_calloc(1, sizeof(device_t), MALLOC_CAP_DEFAULT); usb_device_desc_t *dev_desc = heap_caps_calloc(1, sizeof(usb_device_desc_t), MALLOC_CAP_DEFAULT); if (dev_obj == NULL || dev_desc == NULL) { ret = ESP_ERR_NO_MEM; goto err; } // Allocate a pipe for EP0. We set the pipe callback to NULL for now hcd_pipe_config_t pipe_config = { .callback = NULL, .callback_arg = NULL, .context = (void *)dev_obj, .ep_desc = NULL, // No endpoint descriptor means we're allocating a pipe for EP0 .dev_speed = speed, .dev_addr = 0, }; hcd_pipe_handle_t default_pipe_hdl; ret = hcd_pipe_alloc(port_hdl, &pipe_config, &default_pipe_hdl); if (ret != ESP_OK) { goto err; } // Initialize device object dev_obj->dynamic.state = USB_DEVICE_STATE_DEFAULT; dev_obj->constant.default_pipe = default_pipe_hdl; dev_obj->constant.port_hdl = port_hdl; // Note: dev_obj->constant.address is assigned later during enumeration dev_obj->constant.speed = speed; dev_obj->constant.desc = dev_desc; *dev_obj_ret = dev_obj; ret = ESP_OK; return ret; err: heap_caps_free(dev_desc); heap_caps_free(dev_obj); return ret; } static void device_free(device_t *dev_obj) { if (dev_obj == NULL) { return; } // Configuration might not have been allocated (in case of early enumeration failure) if (dev_obj->constant.config_desc) { heap_caps_free((usb_config_desc_t *)dev_obj->constant.config_desc); } // String descriptors might not have been allocated (in case of early enumeration failure) if (dev_obj->constant.str_desc_manu) { heap_caps_free((usb_str_desc_t *)dev_obj->constant.str_desc_manu); } if (dev_obj->constant.str_desc_product) { heap_caps_free((usb_str_desc_t *)dev_obj->constant.str_desc_product); } if (dev_obj->constant.str_desc_ser_num) { heap_caps_free((usb_str_desc_t *)dev_obj->constant.str_desc_ser_num); } heap_caps_free((usb_device_desc_t *)dev_obj->constant.desc); ESP_ERROR_CHECK(hcd_pipe_free(dev_obj->constant.default_pipe)); heap_caps_free(dev_obj); } // ---------------------------------------------------- Callbacks ------------------------------------------------------ static bool ep0_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr) { uint32_t action_flags; device_t *dev_obj = (device_t *)user_arg; switch (pipe_event) { case HCD_PIPE_EVENT_URB_DONE: // A control transfer completed on EP0's pipe . We need to dequeue it action_flags = DEV_ACTION_EP0_DEQUEUE; break; case HCD_PIPE_EVENT_ERROR_XFER: case HCD_PIPE_EVENT_ERROR_URB_NOT_AVAIL: case HCD_PIPE_EVENT_ERROR_OVERFLOW: // EP0's pipe has encountered an error. We need to retire all URBs, dequeue them, then make the pipe active again action_flags = DEV_ACTION_EP0_FLUSH | DEV_ACTION_EP0_DEQUEUE | DEV_ACTION_EP0_CLEAR; if (in_isr) { ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address); } else { ESP_LOGE(USBH_TAG, "Dev %d EP 0 Error", dev_obj->constant.address); } break; case HCD_PIPE_EVENT_ERROR_STALL: // EP0's pipe encountered a "protocol stall". We just need to dequeue URBs then make the pipe active again action_flags = DEV_ACTION_EP0_DEQUEUE | DEV_ACTION_EP0_CLEAR; if (in_isr) { ESP_EARLY_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address); } else { ESP_LOGE(USBH_TAG, "Dev %d EP 0 STALL", dev_obj->constant.address); } break; default: action_flags = 0; break; } USBH_ENTER_CRITICAL_SAFE(); bool call_proc_req_cb = _dev_set_actions(dev_obj, action_flags); USBH_EXIT_CRITICAL_SAFE(); bool yield = false; if (call_proc_req_cb) { yield = p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, in_isr, p_usbh_obj->constant.proc_req_cb_arg); } return yield; } static bool epN_pipe_callback(hcd_pipe_handle_t pipe_hdl, hcd_pipe_event_t pipe_event, void *user_arg, bool in_isr) { endpoint_t *ep_obj = (endpoint_t *)user_arg; return ep_obj->constant.ep_cb((usbh_ep_handle_t)ep_obj, (usbh_ep_event_t)pipe_event, ep_obj->constant.ep_cb_arg, in_isr); } // -------------------------------------------------- Event Related ---------------------------------------------------- static bool _dev_set_actions(device_t *dev_obj, uint32_t action_flags) { if (action_flags == 0) { return false; } bool call_proc_req_cb; // Check if device is already on the callback list if (!dev_obj->dynamic.flags.in_pending_list) { // Move device form idle device list to callback device list TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry); TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry); dev_obj->dynamic.action_flags |= action_flags; dev_obj->dynamic.flags.in_pending_list = 1; call_proc_req_cb = true; } else { call_proc_req_cb = false; } return call_proc_req_cb; } static inline void handle_epn_halt_flush(device_t *dev_obj) { // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); // Halt then flush all non-default EPs for (int i = 0; i < NUM_NON_DEFAULT_EP; i++) { if (dev_obj->mux_protected.endpoints[i] != NULL) { ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.endpoints[i]->constant.pipe_hdl, HCD_PIPE_CMD_HALT)); ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->mux_protected.endpoints[i]->constant.pipe_hdl, HCD_PIPE_CMD_FLUSH)); } } xSemaphoreGive(p_usbh_obj->constant.mux_lock); } static inline void handle_ep0_flush(device_t *dev_obj) { ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_HALT)); ESP_ERROR_CHECK(hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_FLUSH)); } static inline void handle_ep0_dequeue(device_t *dev_obj) { // Empty URBs from EP0's pipe and call the control transfer callback ESP_LOGD(USBH_TAG, "Default pipe device %d", dev_obj->constant.address); int num_urbs = 0; urb_t *urb = hcd_urb_dequeue(dev_obj->constant.default_pipe); while (urb != NULL) { num_urbs++; p_usbh_obj->constant.ctrl_xfer_cb((usb_device_handle_t)dev_obj, urb, p_usbh_obj->constant.ctrl_xfer_cb_arg); urb = hcd_urb_dequeue(dev_obj->constant.default_pipe); } USBH_ENTER_CRITICAL(); dev_obj->dynamic.num_ctrl_xfers_inflight -= num_urbs; USBH_EXIT_CRITICAL(); } static inline void handle_ep0_clear(device_t *dev_obj) { // We allow the pipe command to fail just in case the pipe becomes invalid mid command hcd_pipe_command(dev_obj->constant.default_pipe, HCD_PIPE_CMD_CLEAR); } static inline void handle_prop_gone_evt(device_t *dev_obj) { // Flush EP0's pipe. Then propagate a USBH_EVENT_DEV_GONE event ESP_LOGE(USBH_TAG, "Device %d gone", dev_obj->constant.address); p_usbh_obj->constant.event_cb((usb_device_handle_t)dev_obj, USBH_EVENT_DEV_GONE, p_usbh_obj->constant.event_cb_arg); } static void handle_free_and_recover(device_t *dev_obj, bool recover_port) { // Cache a copy of the port handle as we are about to free the device object bool all_free; hcd_port_handle_t port_hdl = dev_obj->constant.port_hdl; ESP_LOGD(USBH_TAG, "Freeing device %d", dev_obj->constant.address); // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); USBH_ENTER_CRITICAL(); // Remove the device object for it's containing list if (dev_obj->dynamic.flags.in_pending_list) { dev_obj->dynamic.flags.in_pending_list = 0; TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry); } else { TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry); } USBH_EXIT_CRITICAL(); p_usbh_obj->mux_protected.num_device--; all_free = (p_usbh_obj->mux_protected.num_device == 0); xSemaphoreGive(p_usbh_obj->constant.mux_lock); device_free(dev_obj); // If all devices have been freed, propagate a USBH_EVENT_DEV_ALL_FREE event if (all_free) { ESP_LOGD(USBH_TAG, "Device all free"); p_usbh_obj->constant.event_cb((usb_device_handle_t)NULL, USBH_EVENT_DEV_ALL_FREE, p_usbh_obj->constant.event_cb_arg); } // Check if we need to recover the device's port if (recover_port) { p_usbh_obj->constant.hub_req_cb(port_hdl, USBH_HUB_REQ_PORT_RECOVER, p_usbh_obj->constant.hub_req_cb_arg); } } static inline void handle_port_disable(device_t *dev_obj) { // Request that the HUB disables this device's port ESP_LOGD(USBH_TAG, "Disable device port %d", dev_obj->constant.address); p_usbh_obj->constant.hub_req_cb(dev_obj->constant.port_hdl, USBH_HUB_REQ_PORT_DISABLE, p_usbh_obj->constant.hub_req_cb_arg); } static inline void handle_prop_new_evt(device_t *dev_obj) { ESP_LOGD(USBH_TAG, "New device %d", dev_obj->constant.address); p_usbh_obj->constant.event_cb((usb_device_handle_t)dev_obj, USBH_EVENT_DEV_NEW, p_usbh_obj->constant.event_cb_arg); } // ------------------------------------------------- USBH Functions ---------------------------------------------------- esp_err_t usbh_install(const usbh_config_t *usbh_config) { USBH_CHECK(usbh_config != NULL, ESP_ERR_INVALID_ARG); USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(p_usbh_obj == NULL, ESP_ERR_INVALID_STATE); USBH_EXIT_CRITICAL(); esp_err_t ret; usbh_t *usbh_obj = heap_caps_calloc(1, sizeof(usbh_t), MALLOC_CAP_DEFAULT); SemaphoreHandle_t mux_lock = xSemaphoreCreateMutex(); if (usbh_obj == NULL || mux_lock == NULL) { ret = ESP_ERR_NO_MEM; goto err; } // Initialize USBH object TAILQ_INIT(&usbh_obj->dynamic.devs_idle_tailq); TAILQ_INIT(&usbh_obj->dynamic.devs_pending_tailq); usbh_obj->constant.proc_req_cb = usbh_config->proc_req_cb; usbh_obj->constant.proc_req_cb_arg = usbh_config->proc_req_cb_arg; usbh_obj->constant.event_cb = usbh_config->event_cb; usbh_obj->constant.event_cb_arg = usbh_config->event_cb_arg; usbh_obj->constant.ctrl_xfer_cb = usbh_config->ctrl_xfer_cb; usbh_obj->constant.ctrl_xfer_cb_arg = usbh_config->ctrl_xfer_cb_arg; usbh_obj->constant.mux_lock = mux_lock; // Assign USBH object pointer USBH_ENTER_CRITICAL(); if (p_usbh_obj != NULL) { USBH_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto err; } p_usbh_obj = usbh_obj; USBH_EXIT_CRITICAL(); ret = ESP_OK; return ret; err: if (mux_lock != NULL) { vSemaphoreDelete(mux_lock); } heap_caps_free(usbh_obj); return ret; } esp_err_t usbh_uninstall(void) { // Check that USBH is in a state to be uninstalled USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE); usbh_t *usbh_obj = p_usbh_obj; USBH_EXIT_CRITICAL(); esp_err_t ret; // We need to take the mux_lock to access mux_protected members xSemaphoreTake(usbh_obj->constant.mux_lock, portMAX_DELAY); if (p_usbh_obj->mux_protected.num_device > 0) { // There are still devices allocated. Can't uninstall right now. ret = ESP_ERR_INVALID_STATE; goto exit; } // Check again if we can uninstall USBH_ENTER_CRITICAL(); assert(p_usbh_obj == usbh_obj); p_usbh_obj = NULL; USBH_EXIT_CRITICAL(); xSemaphoreGive(usbh_obj->constant.mux_lock); // Free resources vSemaphoreDelete(usbh_obj->constant.mux_lock); heap_caps_free(usbh_obj); ret = ESP_OK; return ret; exit: xSemaphoreGive(p_usbh_obj->constant.mux_lock); return ret; } esp_err_t usbh_process(void) { USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE); // Keep processing until all device's with pending events have been handled while (!TAILQ_EMPTY(&p_usbh_obj->dynamic.devs_pending_tailq)) { // Move the device back into the idle device list, device_t *dev_obj = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq); TAILQ_REMOVE(&p_usbh_obj->dynamic.devs_pending_tailq, dev_obj, dynamic.tailq_entry); TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry); // Clear the device's flags uint32_t action_flags = dev_obj->dynamic.action_flags; dev_obj->dynamic.action_flags = 0; dev_obj->dynamic.flags.in_pending_list = 0; /* --------------------------------------------------------------------- Exit critical section to handle device action flags in their listed order --------------------------------------------------------------------- */ USBH_EXIT_CRITICAL(); ESP_LOGD(USBH_TAG, "Processing actions 0x%"PRIx32"", action_flags); // Sanity check. If the device is being freed, there must not be any other action flags set assert(!(action_flags & DEV_ACTION_FREE) || action_flags == DEV_ACTION_FREE); if (action_flags & DEV_ACTION_EPn_HALT_FLUSH) { handle_epn_halt_flush(dev_obj); } if (action_flags & DEV_ACTION_EP0_FLUSH) { handle_ep0_flush(dev_obj); } if (action_flags & DEV_ACTION_EP0_DEQUEUE) { handle_ep0_dequeue(dev_obj); } if (action_flags & DEV_ACTION_EP0_CLEAR) { handle_ep0_clear(dev_obj); } if (action_flags & DEV_ACTION_PROP_GONE_EVT) { handle_prop_gone_evt(dev_obj); } /* Note: We make these action flags mutually exclusive in case they happen in rapid succession. They are handled in the order of precedence For example - New device event is requested followed immediately by a disconnection - Port disable requested followed immediately by a disconnection */ if (action_flags & DEV_ACTION_FREE_AND_RECOVER) { handle_free_and_recover(dev_obj, true); } else if (action_flags & DEV_ACTION_FREE) { handle_free_and_recover(dev_obj, false); } else if (action_flags & DEV_ACTION_PORT_DISABLE) { handle_port_disable(dev_obj); } else if (action_flags & DEV_ACTION_PROP_NEW) { handle_prop_new_evt(dev_obj); } USBH_ENTER_CRITICAL(); /* --------------------------------------------------------------------- Re-enter critical sections. All device action flags should have been handled. --------------------------------------------------------------------- */ } USBH_EXIT_CRITICAL(); return ESP_OK; } esp_err_t usbh_num_devs(int *num_devs_ret) { USBH_CHECK(num_devs_ret != NULL, ESP_ERR_INVALID_ARG); xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); *num_devs_ret = p_usbh_obj->mux_protected.num_device; xSemaphoreGive(p_usbh_obj->constant.mux_lock); return ESP_OK; } // ------------------------------------------------ Device Functions --------------------------------------------------- // --------------------- Device Pool ----------------------- esp_err_t usbh_dev_addr_list_fill(int list_len, uint8_t *dev_addr_list, int *num_dev_ret) { USBH_CHECK(dev_addr_list != NULL && num_dev_ret != NULL, ESP_ERR_INVALID_ARG); USBH_ENTER_CRITICAL(); int num_filled = 0; device_t *dev_obj; // Fill list with devices from idle tailq TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) { if (num_filled < list_len) { dev_addr_list[num_filled] = dev_obj->constant.address; num_filled++; } else { break; } } // Fill list with devices from pending tailq TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) { if (num_filled < list_len) { dev_addr_list[num_filled] = dev_obj->constant.address; num_filled++; } else { break; } } USBH_EXIT_CRITICAL(); // Write back number of devices filled *num_dev_ret = num_filled; return ESP_OK; } esp_err_t usbh_dev_open(uint8_t dev_addr, usb_device_handle_t *dev_hdl) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); esp_err_t ret; USBH_ENTER_CRITICAL(); // Go through the device lists to find the device with the specified address device_t *found_dev_obj = NULL; device_t *dev_obj; TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_idle_tailq, dynamic.tailq_entry) { if (dev_obj->constant.address == dev_addr) { found_dev_obj = dev_obj; goto exit; } } TAILQ_FOREACH(dev_obj, &p_usbh_obj->dynamic.devs_pending_tailq, dynamic.tailq_entry) { if (dev_obj->constant.address == dev_addr) { found_dev_obj = dev_obj; goto exit; } } exit: if (found_dev_obj != NULL) { // The device is not in a state to be referenced if (dev_obj->dynamic.flags.is_gone || dev_obj->dynamic.flags.waiting_port_disable || dev_obj->dynamic.flags.waiting_free) { ret = ESP_ERR_INVALID_STATE; } else { dev_obj->dynamic.ref_count++; *dev_hdl = (usb_device_handle_t)found_dev_obj; ret = ESP_OK; } } else { ret = ESP_ERR_NOT_FOUND; } USBH_EXIT_CRITICAL(); return ret; } esp_err_t usbh_dev_close(usb_device_handle_t dev_hdl) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; USBH_ENTER_CRITICAL(); dev_obj->dynamic.ref_count--; bool call_proc_req_cb = false; if (dev_obj->dynamic.ref_count == 0) { // Sanity check. assert(dev_obj->dynamic.num_ctrl_xfers_inflight == 0); // There cannot be any control transfer in-flight assert(!dev_obj->dynamic.flags.waiting_free); // This can only be set when ref count reaches 0 if (dev_obj->dynamic.flags.is_gone) { // Device is already gone so it's port is already disabled. Trigger the USBH process to free the device dev_obj->dynamic.flags.waiting_free = 1; call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_FREE_AND_RECOVER); // Port error occurred so we need to recover it } else if (dev_obj->dynamic.flags.waiting_close) { // Device is still connected but is no longer needed. Trigger the USBH process to request device's port be disabled dev_obj->dynamic.flags.waiting_port_disable = 1; call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_PORT_DISABLE); } // Else, there's nothing to do. Leave the device allocated } USBH_EXIT_CRITICAL(); if (call_proc_req_cb) { p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg); } return ESP_OK; } esp_err_t usbh_dev_mark_all_free(void) { USBH_ENTER_CRITICAL(); /* Go through the device list and mark each device as waiting to be closed. If the device is not opened at all, we can disable it immediately. Note: We manually traverse the list because we need to add/remove items while traversing */ bool call_proc_req_cb = false; bool wait_for_free = false; for (int i = 0; i < 2; i++) { device_t *dev_obj_cur; device_t *dev_obj_next; // Go through pending list first as it's more efficient if (i == 0) { dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_pending_tailq); } else { dev_obj_cur = TAILQ_FIRST(&p_usbh_obj->dynamic.devs_idle_tailq); } while (dev_obj_cur != NULL) { assert(!dev_obj_cur->dynamic.flags.waiting_close); // Sanity check // Keep a copy of the next item first in case we remove the current item dev_obj_next = TAILQ_NEXT(dev_obj_cur, dynamic.tailq_entry); if (dev_obj_cur->dynamic.ref_count == 0 && !dev_obj_cur->dynamic.flags.is_gone) { // Device is not opened as is not gone, so we can disable it now dev_obj_cur->dynamic.flags.waiting_port_disable = 1; call_proc_req_cb |= _dev_set_actions(dev_obj_cur, DEV_ACTION_PORT_DISABLE); } else { // Device is still opened. Just mark it as waiting to be closed dev_obj_cur->dynamic.flags.waiting_close = 1; } wait_for_free = true; // As long as there is still a device, we need to wait for an event indicating it is freed dev_obj_cur = dev_obj_next; } } USBH_EXIT_CRITICAL(); if (call_proc_req_cb) { p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg); } return (wait_for_free) ? ESP_ERR_NOT_FINISHED : ESP_OK; } // ------------------- Single Device ---------------------- esp_err_t usbh_dev_get_addr(usb_device_handle_t dev_hdl, uint8_t *dev_addr) { USBH_CHECK(dev_hdl != NULL && dev_addr != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(dev_obj->constant.address > 0, ESP_ERR_INVALID_STATE); *dev_addr = dev_obj->constant.address; USBH_EXIT_CRITICAL(); return ESP_OK; } esp_err_t usbh_dev_get_info(usb_device_handle_t dev_hdl, usb_device_info_t *dev_info) { USBH_CHECK(dev_hdl != NULL && dev_info != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; esp_err_t ret; // Device must be configured, or not attached (if it suddenly disconnected) USBH_ENTER_CRITICAL(); if (!(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED || dev_obj->dynamic.state == USB_DEVICE_STATE_NOT_ATTACHED)) { USBH_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto exit; } // Critical section for the dynamic members dev_info->speed = dev_obj->constant.speed; dev_info->dev_addr = dev_obj->constant.address; dev_info->bMaxPacketSize0 = dev_obj->constant.desc->bMaxPacketSize0; USBH_EXIT_CRITICAL(); assert(dev_obj->constant.config_desc); dev_info->bConfigurationValue = dev_obj->constant.config_desc->bConfigurationValue; // String descriptors are allowed to be NULL as not all devices support them dev_info->str_desc_manufacturer = dev_obj->constant.str_desc_manu; dev_info->str_desc_product = dev_obj->constant.str_desc_product; dev_info->str_desc_serial_num = dev_obj->constant.str_desc_ser_num; ret = ESP_OK; exit: return ret; } esp_err_t usbh_dev_get_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t **dev_desc_ret) { USBH_CHECK(dev_hdl != NULL && dev_desc_ret != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE); USBH_EXIT_CRITICAL(); *dev_desc_ret = dev_obj->constant.desc; return ESP_OK; } esp_err_t usbh_dev_get_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t **config_desc_ret) { USBH_CHECK(dev_hdl != NULL && config_desc_ret != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; esp_err_t ret; // Device must be in the configured state USBH_ENTER_CRITICAL(); if (dev_obj->dynamic.state != USB_DEVICE_STATE_CONFIGURED) { USBH_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto exit; } USBH_EXIT_CRITICAL(); assert(dev_obj->constant.config_desc); *config_desc_ret = dev_obj->constant.config_desc; ret = ESP_OK; exit: return ret; } esp_err_t usbh_dev_submit_ctrl_urb(usb_device_handle_t dev_hdl, urb_t *urb) { USBH_CHECK(dev_hdl != NULL && urb != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; USBH_CHECK(urb_check_args(urb), ESP_ERR_INVALID_ARG); bool xfer_is_in = ((usb_setup_packet_t *)urb->transfer.data_buffer)->bmRequestType & USB_BM_REQUEST_TYPE_DIR_IN; USBH_CHECK(transfer_check_usb_compliance(&(urb->transfer), USB_TRANSFER_TYPE_CTRL, dev_obj->constant.desc->bMaxPacketSize0, xfer_is_in), ESP_ERR_INVALID_ARG); USBH_ENTER_CRITICAL(); USBH_CHECK_FROM_CRIT(dev_obj->dynamic.state == USB_DEVICE_STATE_CONFIGURED, ESP_ERR_INVALID_STATE); // Increment the control transfer count first dev_obj->dynamic.num_ctrl_xfers_inflight++; USBH_EXIT_CRITICAL(); esp_err_t ret; if (hcd_pipe_get_state(dev_obj->constant.default_pipe) != HCD_PIPE_STATE_ACTIVE) { ret = ESP_ERR_INVALID_STATE; goto hcd_err; } ret = hcd_urb_enqueue(dev_obj->constant.default_pipe, urb); if (ret != ESP_OK) { goto hcd_err; } ret = ESP_OK; return ret; hcd_err: USBH_ENTER_CRITICAL(); dev_obj->dynamic.num_ctrl_xfers_inflight--; USBH_EXIT_CRITICAL(); return ret; } // ----------------------------------------------- Interface Functions ------------------------------------------------- esp_err_t usbh_ep_alloc(usb_device_handle_t dev_hdl, usbh_ep_config_t *ep_config, usbh_ep_handle_t *ep_hdl_ret) { USBH_CHECK(dev_hdl != NULL && ep_config != NULL && ep_hdl_ret != NULL, ESP_ERR_INVALID_ARG); uint8_t bEndpointAddress = ep_config->bEndpointAddress; USBH_CHECK(check_ep_addr(bEndpointAddress), ESP_ERR_INVALID_ARG); esp_err_t ret; device_t *dev_obj = (device_t *)dev_hdl; endpoint_t *ep_obj; // Find the endpoint descriptor from the device's current configuration descriptor const usb_ep_desc_t *ep_desc = usb_parse_endpoint_descriptor_by_address(dev_obj->constant.config_desc, ep_config->bInterfaceNumber, ep_config->bAlternateSetting, ep_config->bEndpointAddress, NULL); if (ep_desc == NULL) { return ESP_ERR_NOT_FOUND; } // Allocate the endpoint object ret = endpoint_alloc(dev_obj, ep_desc, ep_config, &ep_obj); if (ret != ESP_OK) { goto alloc_err; } // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); USBH_ENTER_CRITICAL(); // Check the device's state before we assign the a pipe to the allocated endpoint if (dev_obj->dynamic.state != USB_DEVICE_STATE_CONFIGURED) { USBH_EXIT_CRITICAL(); ret = ESP_ERR_INVALID_STATE; goto dev_state_err; } USBH_EXIT_CRITICAL(); // Check if the endpoint has already been allocated if (get_ep_from_addr(dev_obj, bEndpointAddress) == NULL) { set_ep_from_addr(dev_obj, bEndpointAddress, ep_obj); // Write back the endpoint handle *ep_hdl_ret = (usbh_ep_handle_t)ep_obj; ret = ESP_OK; } else { // Endpoint is already allocated ret = ESP_ERR_INVALID_STATE; } dev_state_err: xSemaphoreGive(p_usbh_obj->constant.mux_lock); // If the endpoint was not assigned, free it if (ret != ESP_OK) { endpoint_free(ep_obj); } alloc_err: return ret; } esp_err_t usbh_ep_free(usbh_ep_handle_t ep_hdl) { USBH_CHECK(ep_hdl != NULL, ESP_ERR_INVALID_ARG); esp_err_t ret; endpoint_t *ep_obj = (endpoint_t *)ep_hdl; device_t *dev_obj = (device_t *)ep_obj->constant.dev; uint8_t bEndpointAddress = ep_obj->constant.ep_desc->bEndpointAddress; // Todo: Check that the EP's underlying pipe is halted before allowing the EP to be freed (IDF-7273) // Check that the the EP's underlying pipe has no more in-flight URBs if (hcd_pipe_get_num_urbs(ep_obj->constant.pipe_hdl) != 0) { ret = ESP_ERR_INVALID_STATE; goto exit; } // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); // Check if the endpoint was allocated on this device if (ep_obj == get_ep_from_addr(dev_obj, bEndpointAddress)) { // Clear the endpoint from the device's endpoint object list set_ep_from_addr(dev_obj, bEndpointAddress, NULL); ret = ESP_OK; } else { ret = ESP_ERR_NOT_FOUND; } xSemaphoreGive(p_usbh_obj->constant.mux_lock); // Finally, we free the endpoint object if (ret == ESP_OK) { endpoint_free(ep_obj); } exit: return ret; } esp_err_t usbh_ep_get_handle(usb_device_handle_t dev_hdl, uint8_t bEndpointAddress, usbh_ep_handle_t *ep_hdl_ret) { USBH_CHECK(dev_hdl != NULL && ep_hdl_ret != NULL, ESP_ERR_INVALID_ARG); USBH_CHECK(check_ep_addr(bEndpointAddress), ESP_ERR_INVALID_ARG); esp_err_t ret; device_t *dev_obj = (device_t *)dev_hdl; endpoint_t *ep_obj; // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); ep_obj = get_ep_from_addr(dev_obj, bEndpointAddress); xSemaphoreGive(p_usbh_obj->constant.mux_lock); if (ep_obj) { *ep_hdl_ret = (usbh_ep_handle_t)ep_obj; ret = ESP_OK; } else { ret = ESP_ERR_NOT_FOUND; } return ret; } esp_err_t usbh_ep_enqueue_urb(usbh_ep_handle_t ep_hdl, urb_t *urb) { USBH_CHECK(ep_hdl != NULL && urb != NULL, ESP_ERR_INVALID_ARG); USBH_CHECK(urb_check_args(urb), ESP_ERR_INVALID_ARG); endpoint_t *ep_obj = (endpoint_t *)ep_hdl; USBH_CHECK(transfer_check_usb_compliance(&(urb->transfer), USB_EP_DESC_GET_XFERTYPE(ep_obj->constant.ep_desc), USB_EP_DESC_GET_MPS(ep_obj->constant.ep_desc), USB_EP_DESC_GET_EP_DIR(ep_obj->constant.ep_desc)), ESP_ERR_INVALID_ARG); // Check that the EP's underlying pipe is in the active state before submitting the URB if (hcd_pipe_get_state(ep_obj->constant.pipe_hdl) != HCD_PIPE_STATE_ACTIVE) { return ESP_ERR_INVALID_STATE; } // Enqueue the URB to the EP's underlying pipe return hcd_urb_enqueue(ep_obj->constant.pipe_hdl, urb); } esp_err_t usbh_ep_dequeue_urb(usbh_ep_handle_t ep_hdl, urb_t **urb_ret) { USBH_CHECK(ep_hdl != NULL && urb_ret != NULL, ESP_ERR_INVALID_ARG); endpoint_t *ep_obj = (endpoint_t *)ep_hdl; // Enqueue the URB to the EP's underlying pipe *urb_ret = hcd_urb_dequeue(ep_obj->constant.pipe_hdl); return ESP_OK; } esp_err_t usbh_ep_command(usbh_ep_handle_t ep_hdl, usbh_ep_cmd_t command) { USBH_CHECK(ep_hdl != NULL, ESP_ERR_INVALID_ARG); endpoint_t *ep_obj = (endpoint_t *)ep_hdl; // Send the command to the EP's underlying pipe return hcd_pipe_command(ep_obj->constant.pipe_hdl, (hcd_pipe_cmd_t)command); } void *usbh_ep_get_context(usbh_ep_handle_t ep_hdl) { assert(ep_hdl); endpoint_t *ep_obj = (endpoint_t *)ep_hdl; return hcd_pipe_get_context(ep_obj->constant.pipe_hdl); } // -------------------------------------------------- Hub Functions ---------------------------------------------------- // ------------------- Device Related ---------------------- esp_err_t usbh_hub_is_installed(usbh_hub_req_cb_t hub_req_callback, void *callback_arg) { USBH_CHECK(hub_req_callback != NULL, ESP_ERR_INVALID_ARG); USBH_ENTER_CRITICAL(); // Check that USBH is already installed USBH_CHECK_FROM_CRIT(p_usbh_obj != NULL, ESP_ERR_INVALID_STATE); // Check that Hub has not be installed yet USBH_CHECK_FROM_CRIT(p_usbh_obj->constant.hub_req_cb == NULL, ESP_ERR_INVALID_STATE); p_usbh_obj->constant.hub_req_cb = hub_req_callback; p_usbh_obj->constant.hub_req_cb_arg = callback_arg; USBH_EXIT_CRITICAL(); return ESP_OK; } esp_err_t usbh_hub_add_dev(hcd_port_handle_t port_hdl, usb_speed_t dev_speed, usb_device_handle_t *new_dev_hdl, hcd_pipe_handle_t *default_pipe_hdl) { // Note: Parent device handle can be NULL if it's connected to the root hub USBH_CHECK(new_dev_hdl != NULL, ESP_ERR_INVALID_ARG); esp_err_t ret; device_t *dev_obj; ret = device_alloc(port_hdl, dev_speed, &dev_obj); if (ret != ESP_OK) { return ret; } // Write-back device handle *new_dev_hdl = (usb_device_handle_t)dev_obj; *default_pipe_hdl = dev_obj->constant.default_pipe; ret = ESP_OK; return ret; } esp_err_t usbh_hub_pass_event(usb_device_handle_t dev_hdl, usbh_hub_event_t hub_event) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; bool call_proc_req_cb; switch (hub_event) { case USBH_HUB_EVENT_PORT_ERROR: { USBH_ENTER_CRITICAL(); dev_obj->dynamic.flags.is_gone = 1; // Check if the device can be freed now if (dev_obj->dynamic.ref_count == 0) { dev_obj->dynamic.flags.waiting_free = 1; // Device is already waiting free so none of it's EP's will be in use. Can free immediately. call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_FREE_AND_RECOVER); // Port error occurred so we need to recover it } else { call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_EPn_HALT_FLUSH | DEV_ACTION_EP0_FLUSH | DEV_ACTION_EP0_DEQUEUE | DEV_ACTION_PROP_GONE_EVT); } USBH_EXIT_CRITICAL(); break; } case USBH_HUB_EVENT_PORT_DISABLED: { USBH_ENTER_CRITICAL(); assert(dev_obj->dynamic.ref_count == 0); // At this stage, the device should have been closed by all users dev_obj->dynamic.flags.waiting_free = 1; call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_FREE); USBH_EXIT_CRITICAL(); break; } default: return ESP_ERR_INVALID_ARG; } if (call_proc_req_cb) { p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg); } return ESP_OK; } // ----------------- Enumeration Related ------------------- esp_err_t usbh_hub_enum_fill_dev_addr(usb_device_handle_t dev_hdl, uint8_t dev_addr) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; USBH_ENTER_CRITICAL(); dev_obj->dynamic.state = USB_DEVICE_STATE_ADDRESS; USBH_EXIT_CRITICAL(); // We can modify the info members outside the critical section dev_obj->constant.address = dev_addr; return ESP_OK; } esp_err_t usbh_hub_enum_fill_dev_desc(usb_device_handle_t dev_hdl, const usb_device_desc_t *device_desc) { USBH_CHECK(dev_hdl != NULL && device_desc != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; // We can modify the info members outside the critical section memcpy((usb_device_desc_t *)dev_obj->constant.desc, device_desc, sizeof(usb_device_desc_t)); return ESP_OK; } esp_err_t usbh_hub_enum_fill_config_desc(usb_device_handle_t dev_hdl, const usb_config_desc_t *config_desc_full) { USBH_CHECK(dev_hdl != NULL && config_desc_full != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; // Allocate memory to store the configuration descriptor usb_config_desc_t *config_desc = heap_caps_malloc(config_desc_full->wTotalLength, MALLOC_CAP_DEFAULT); // Buffer to copy over full configuration descriptor (wTotalLength) if (config_desc == NULL) { return ESP_ERR_NO_MEM; } // Copy the configuration descriptor memcpy(config_desc, config_desc_full, config_desc_full->wTotalLength); // Assign the config desc to the device object assert(dev_obj->constant.config_desc == NULL); dev_obj->constant.config_desc = config_desc; return ESP_OK; } esp_err_t usbh_hub_enum_fill_str_desc(usb_device_handle_t dev_hdl, const usb_str_desc_t *str_desc, int select) { USBH_CHECK(dev_hdl != NULL && str_desc != NULL && (select >= 0 && select < 3), ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; // Allocate memory to store the manufacturer string descriptor usb_str_desc_t *str_desc_fill = heap_caps_malloc(str_desc->bLength, MALLOC_CAP_DEFAULT); if (str_desc_fill == NULL) { return ESP_ERR_NO_MEM; } // Copy the string descriptor memcpy(str_desc_fill, str_desc, str_desc->bLength); // Assign filled string descriptor to the device object switch (select) { case 0: assert(dev_obj->constant.str_desc_manu == NULL); dev_obj->constant.str_desc_manu = str_desc_fill; break; case 1: assert(dev_obj->constant.str_desc_product == NULL); dev_obj->constant.str_desc_product = str_desc_fill; break; default: // 2 assert(dev_obj->constant.str_desc_ser_num == NULL); dev_obj->constant.str_desc_ser_num = str_desc_fill; break; } return ESP_OK; } esp_err_t usbh_hub_enum_done(usb_device_handle_t dev_hdl) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; // We need to take the mux_lock to access mux_protected members xSemaphoreTake(p_usbh_obj->constant.mux_lock, portMAX_DELAY); USBH_ENTER_CRITICAL(); dev_obj->dynamic.state = USB_DEVICE_STATE_CONFIGURED; // Add the device to list of devices, then trigger a device event TAILQ_INSERT_TAIL(&p_usbh_obj->dynamic.devs_idle_tailq, dev_obj, dynamic.tailq_entry); // Add it to the idle device list first bool call_proc_req_cb = _dev_set_actions(dev_obj, DEV_ACTION_PROP_NEW); USBH_EXIT_CRITICAL(); p_usbh_obj->mux_protected.num_device++; xSemaphoreGive(p_usbh_obj->constant.mux_lock); // Update the EP0's underlying pipe's callback ESP_ERROR_CHECK(hcd_pipe_update_callback(dev_obj->constant.default_pipe, ep0_pipe_callback, (void *)dev_obj)); // Call the processing request callback if (call_proc_req_cb) { p_usbh_obj->constant.proc_req_cb(USB_PROC_REQ_SOURCE_USBH, false, p_usbh_obj->constant.proc_req_cb_arg); } return ESP_OK; } esp_err_t usbh_hub_enum_failed(usb_device_handle_t dev_hdl) { USBH_CHECK(dev_hdl != NULL, ESP_ERR_INVALID_ARG); device_t *dev_obj = (device_t *)dev_hdl; device_free(dev_obj); return ESP_OK; }