/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Unlicense OR CC0-1.0 */ /* Tests for the capabilities-based memory allocator. */ #include #include #include "unity.h" #include "esp_attr.h" #include "esp_heap_caps.h" #include "spi_flash_mmap.h" #include "esp_memory_utils.h" #include "esp_private/spi_flash_os.h" #include #include #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE TEST_CASE("Capabilities allocator test", "[heap]") { char *m1, *m2[10]; int x; size_t free8start, free32start, free8, free32; /* It's important we printf() something before we take the empty heap sizes, as the first printf() in a task allocates heap resources... */ printf("Testing capabilities allocator...\n"); free8start = heap_caps_get_free_size(MALLOC_CAP_8BIT); free32start = heap_caps_get_free_size(MALLOC_CAP_32BIT); printf("Free 8bit-capable memory (start): %dK, 32-bit capable memory %dK\n", free8start, free32start); TEST_ASSERT(free32start >= free8start); printf("Allocating 10K of 8-bit capable RAM\n"); m1= heap_caps_malloc(10*1024, MALLOC_CAP_8BIT); printf("--> %p\n", m1); free8 = heap_caps_get_free_size(MALLOC_CAP_8BIT); free32 = heap_caps_get_free_size(MALLOC_CAP_32BIT); printf("Free 8bit-capable memory (both reduced): %dK, 32-bit capable memory %dK\n", free8, free32); //Both should have gone down by 10K; 8bit capable ram is also 32-bit capable TEST_ASSERT(free8<=(free8start-10*1024)); TEST_ASSERT(free32<=(free32start-10*1024)); //Assume we got DRAM back TEST_ASSERT((((int)m1)&0xFF000000)==0x3F000000); free(m1); //The goal here is to allocate from IRAM. Since there is no external IRAM (yet) //the following gives size of IRAM-only (not D/IRAM) memory. size_t free_iram = heap_caps_get_free_size(MALLOC_CAP_INTERNAL) - heap_caps_get_free_size(MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); size_t alloc32 = MIN(free_iram / 2, 10*1024) & (~3); if(free_iram) { printf("Freeing; allocating %u bytes of 32K-capable RAM\n", alloc32); m1 = heap_caps_malloc(alloc32, MALLOC_CAP_32BIT); printf("--> %p\n", m1); //Check that we got IRAM back TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000); free8 = heap_caps_get_free_size(MALLOC_CAP_8BIT); free32 = heap_caps_get_free_size(MALLOC_CAP_32BIT); printf("Free 8bit-capable memory (after 32-bit): %dK, 32-bit capable memory %dK\n", free8, free32); //Only 32-bit should have gone down by alloc32: 32-bit isn't necessarily 8bit capable TEST_ASSERT(free32<=(free32start-alloc32)); TEST_ASSERT(free8==free8start); free(m1); } else { printf("This platform has no 32-bit only capable RAM, jumping to next test \n"); } printf("Allocating impossible caps\n"); m1= heap_caps_malloc(10*1024, MALLOC_CAP_8BIT|MALLOC_CAP_EXEC); printf("--> %p\n", m1); TEST_ASSERT(m1==NULL); if(free_iram) { printf("Testing changeover iram -> dram"); // priorities will exhaust IRAM first, then start allocating from DRAM for (x=0; x<10; x++) { m2[x]= heap_caps_malloc(alloc32, MALLOC_CAP_32BIT); printf("--> %p\n", m2[x]); } TEST_ASSERT((((int)m2[0])&0xFF000000)==0x40000000); TEST_ASSERT((((int)m2[9])&0xFF000000)==0x3F000000); } else { printf("This platform has no IRAM-only so changeover will never occur, jumping to next test\n"); } printf("Test if allocating executable code still gives IRAM, even with dedicated IRAM region depleted\n"); if(free_iram) { // (the allocation should come from D/IRAM) free_iram = heap_caps_get_free_size(MALLOC_CAP_EXEC); m1= heap_caps_malloc(MIN(free_iram / 2, 10*1024), MALLOC_CAP_EXEC); printf("--> %p\n", m1); TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000); for (x=0; x<10; x++) free(m2[x]); } else { // (the allocation should come from D/IRAM) free_iram = heap_caps_get_free_size(MALLOC_CAP_EXEC); m1= heap_caps_malloc(MIN(free_iram / 2, 10*1024), MALLOC_CAP_EXEC); printf("--> %p\n", m1); TEST_ASSERT((((int)m1)&0xFF000000)==0x40000000); } free(m1); printf("Done.\n"); } #endif // CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #ifdef CONFIG_ESP32_IRAM_AS_8BIT_ACCESSIBLE_MEMORY TEST_CASE("IRAM_8BIT capability test", "[heap]") { uint8_t *ptr; size_t free_size, free_size32, largest_free_size; /* need to print something as first printf allocates some heap */ printf("IRAM_8BIT capability test\n"); free_size = heap_caps_get_free_size(MALLOC_CAP_IRAM_8BIT); free_size32 = heap_caps_get_free_size(MALLOC_CAP_32BIT); largest_free_size = heap_caps_get_largest_free_block(MALLOC_CAP_IRAM_8BIT); ptr = heap_caps_malloc(largest_free_size, MALLOC_CAP_IRAM_8BIT); TEST_ASSERT((((int)ptr)&0xFF000000)==0x40000000); /* As the heap allocator may present an overhead for allocated blocks, * we need to check that the free heap size is now smaller or equal to the former free size. */ TEST_ASSERT(heap_caps_get_free_size(MALLOC_CAP_IRAM_8BIT) <= (free_size - heap_caps_get_allocated_size(ptr))); TEST_ASSERT(heap_caps_get_free_size(MALLOC_CAP_32BIT) <= (free_size32 - heap_caps_get_allocated_size(ptr))); free(ptr); } #endif TEST_CASE("heap_caps metadata test", "[heap]") { /* need to print something as first printf allocates some heap */ printf("heap_caps metadata test\n"); heap_caps_print_heap_info(MALLOC_CAP_8BIT); multi_heap_info_t original; heap_caps_get_info(&original, MALLOC_CAP_8BIT); void *b = heap_caps_malloc(original.largest_free_block, MALLOC_CAP_8BIT); TEST_ASSERT_NOT_NULL(b); printf("After allocating %d bytes:\n", original.largest_free_block); heap_caps_print_heap_info(MALLOC_CAP_8BIT); multi_heap_info_t after; heap_caps_get_info(&after, MALLOC_CAP_8BIT); TEST_ASSERT(after.largest_free_block <= original.largest_free_block); TEST_ASSERT(after.total_free_bytes <= original.total_free_bytes); free(b); heap_caps_get_info(&after, MALLOC_CAP_8BIT); printf("\n\n After test, heap status:\n"); heap_caps_print_heap_info(MALLOC_CAP_8BIT); /* Allow some leeway here, because LWIP sometimes allocates up to 144 bytes in the background as part of timer management. */ TEST_ASSERT_INT32_WITHIN(200, after.total_free_bytes, original.total_free_bytes); TEST_ASSERT_INT32_WITHIN(200, after.largest_free_block, original.largest_free_block); TEST_ASSERT(after.minimum_free_bytes < original.total_free_bytes); } /* Small function runs from IRAM to check that malloc/free/realloc all work OK when cache is disabled... */ #ifndef CONFIG_ESP_SYSTEM_MEMPROT_FEATURE static IRAM_ATTR __attribute__((noinline)) bool iram_malloc_test(void) { spi_flash_guard_get()->start(); // Disables flash cache bool result = true; void *x = heap_caps_malloc(64, MALLOC_CAP_EXEC); result = result && (x != NULL); void *y = heap_caps_realloc(x, 32, MALLOC_CAP_EXEC); result = result && (y != NULL); heap_caps_free(y); spi_flash_guard_get()->end(); // Re-enables flash cache return result; } TEST_CASE("heap_caps_xxx functions work with flash cache disabled", "[heap]") { TEST_ASSERT( iram_malloc_test() ); } #endif // CONFIG_ESP_SYSTEM_MEMPROT_FEATURE #ifdef CONFIG_HEAP_ABORT_WHEN_ALLOCATION_FAILS TEST_CASE("When enabled, allocation operation failure generates an abort", "[heap][reset=abort,SW_CPU_RESET]") { const size_t stupid_allocation_size = (128 * 1024 * 1024); void *ptr = heap_caps_malloc(stupid_allocation_size, MALLOC_CAP_DEFAULT); (void)ptr; TEST_FAIL_MESSAGE("should not be reached"); } #endif static bool called_user_failed_hook = false; void heap_caps_alloc_failed_hook(size_t requested_size, uint32_t caps, const char *function_name) { printf("%s was called but failed to allocate %d bytes with 0x%lX capabilities. \n",function_name, requested_size, caps); called_user_failed_hook = true; } TEST_CASE("user provided alloc failed hook must be called when allocation fails", "[heap]") { TEST_ASSERT(heap_caps_register_failed_alloc_callback(heap_caps_alloc_failed_hook) == ESP_OK); const size_t stupid_allocation_size = (128 * 1024 * 1024); void *ptr = heap_caps_malloc(stupid_allocation_size, MALLOC_CAP_DEFAULT); TEST_ASSERT(called_user_failed_hook != false); called_user_failed_hook = false; ptr = heap_caps_realloc(ptr, stupid_allocation_size, MALLOC_CAP_DEFAULT); TEST_ASSERT(called_user_failed_hook != false); called_user_failed_hook = false; ptr = heap_caps_aligned_alloc(0x200, stupid_allocation_size, MALLOC_CAP_DEFAULT); TEST_ASSERT(called_user_failed_hook != false); (void)ptr; } TEST_CASE("allocation with invalid capability should also trigger the alloc failed hook", "[heap]") { const size_t allocation_size = 64; const uint32_t invalid_cap = MALLOC_CAP_INVALID; TEST_ASSERT(heap_caps_register_failed_alloc_callback(heap_caps_alloc_failed_hook) == ESP_OK); called_user_failed_hook = false; void *ptr = heap_caps_malloc(allocation_size, invalid_cap); TEST_ASSERT(called_user_failed_hook != false); called_user_failed_hook = false; ptr = heap_caps_realloc(ptr, allocation_size, invalid_cap); TEST_ASSERT(called_user_failed_hook != false); called_user_failed_hook = false; ptr = heap_caps_aligned_alloc(0x200, allocation_size, invalid_cap); TEST_ASSERT(called_user_failed_hook != false); (void)ptr; } #ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP /** * In MR 16031, the priority of RTC memory has been adjusted to the lowest. * RTC memory will not be consumed a lot during the startup process. */ TEST_CASE("RTC memory shoule be lowest priority and its free size should be big enough", "[heap]") { const size_t allocation_size = 1024 * 4; void *ptr = NULL; size_t free_size = 0; ptr = heap_caps_malloc(allocation_size, MALLOC_CAP_DEFAULT); TEST_ASSERT_NOT_NULL(ptr); TEST_ASSERT(!esp_ptr_in_rtc_dram_fast(ptr)); free_size = heap_caps_get_free_size(MALLOC_CAP_RTCRAM); TEST_ASSERT_GREATER_OR_EQUAL(1024 * 4, free_size); free(ptr); } #endif