// Copyright 2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/xtensa_api.h" #include "freertos/semphr.h" #include "freertos/timers.h" #include "esp_log.h" #include "soc/rtc.h" #include "rtc_io.h" #include "adc.h" #include "dac.h" #include "sys/lock.h" #include "driver/gpio.h" #include "adc1_i2s_private.h" #include "hal/adc_types.h" #include "hal/adc_hal.h" #include "hal/dac_hal.h" #define ADC_MAX_MEAS_NUM_DEFAULT (255) #define ADC_MEAS_NUM_LIM_DEFAULT (1) #define DIG_ADC_OUTPUT_FORMAT_DEFUALT (ADC_DIG_FORMAT_12BIT) #define DIG_ADC_ATTEN_DEFUALT (ADC_ATTEN_DB_11) #define DIG_ADC_BIT_WIDTH_DEFUALT (ADC_WIDTH_BIT_12) #define ADC_CHECK_RET(fun_ret) ({ \ if (fun_ret != ESP_OK) { \ ESP_LOGE(ADC_TAG,"%s:%d\n",__FUNCTION__,__LINE__); \ return ESP_FAIL; \ } \ }) static const char *ADC_TAG = "ADC"; #define ADC_CHECK(a, str, ret_val) ({ \ if (!(a)) { \ ESP_LOGE(ADC_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \ return (ret_val); \ } \ }) #define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel]) #define ADC_CHANNEL_CHECK(periph, channel) ADC_CHECK(channel < SOC_ADC_CHANNEL_NUM(periph), "ADC"#periph" channel error", ESP_ERR_INVALID_ARG) extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished. #define ADC_ENTER_CRITICAL() portENTER_CRITICAL(&rtc_spinlock) #define ADC_EXIT_CRITICAL() portEXIT_CRITICAL(&rtc_spinlock) /* In ADC2, there're two locks used for different cases: 1. lock shared with app and WIFI: when wifi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed. 2. lock shared between tasks: when several tasks sharing the ADC2, we want to guarantee all the requests will be handled. Since conversions are short (about 31us), app returns the lock very soon, we use a spinlock to stand there waiting to do conversions one by one. adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock. */ // This gets incremented when adc_power_acquire() is called, and decremented when // adc_power_release() is called. ADC is powered down when the value reaches zero. // Should be modified within critical section (ADC_ENTER/EXIT_CRITICAL). static int s_adc_power_on_cnt; static void adc_power_on_internal(void); static void adc_power_off_internal(void); //prevent ADC2 being used by wifi and other tasks at the same time. static _lock_t adc2_wifi_lock; //prevent ADC2 being used by tasks (regardless of WIFI) static portMUX_TYPE adc2_spinlock = portMUX_INITIALIZER_UNLOCKED; //prevent ADC1 being used by I2S dma and other tasks at the same time. static _lock_t adc1_i2s_lock; /*--------------------------------------------------------------- ADC Common ---------------------------------------------------------------*/ void adc_power_acquire(void) { ADC_ENTER_CRITICAL(); s_adc_power_on_cnt++; if (s_adc_power_on_cnt == 1) { adc_power_on_internal(); } ADC_EXIT_CRITICAL(); } void adc_power_release(void) { ADC_ENTER_CRITICAL(); s_adc_power_on_cnt--; /* Sanity check */ if (s_adc_power_on_cnt < 0) { ADC_EXIT_CRITICAL(); ESP_LOGE(ADC_TAG, "%s called, but s_adc_power_on_cnt == 0", __func__); abort(); } else if (s_adc_power_on_cnt == 0) { adc_power_off_internal(); } ADC_EXIT_CRITICAL(); } static void adc_power_on_internal(void) { ADC_ENTER_CRITICAL(); /* Set the power always on to increase precision. */ adc_hal_set_power_manage(ADC_POWER_SW_ON); ADC_EXIT_CRITICAL(); } void adc_power_on(void) __attribute__((alias("adc_power_on_internal"))); static void adc_power_off_internal(void) { ADC_ENTER_CRITICAL(); adc_hal_set_power_manage(ADC_POWER_SW_OFF); ADC_EXIT_CRITICAL(); } void adc_power_off(void) __attribute__((alias("adc_power_off_internal"))); esp_err_t adc_set_clk_div(uint8_t clk_div) { ADC_ENTER_CRITICAL(); adc_hal_set_clk_div(clk_div); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_set_i2s_data_source(adc_i2s_source_t src) { ADC_CHECK(src < ADC_I2S_DATA_SRC_MAX, "ADC i2s data source error", ESP_ERR_INVALID_ARG); ADC_ENTER_CRITICAL(); adc_hal_dig_set_data_source(src); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_gpio_init(adc_unit_t adc_unit, adc_channel_t channel) { gpio_num_t gpio_num = 0; if (adc_unit & ADC_UNIT_1) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); gpio_num = ADC_GET_IO_NUM(ADC_NUM_1, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } if (adc_unit & ADC_UNIT_2) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); gpio_num = ADC_GET_IO_NUM(ADC_NUM_2, channel); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); } return ESP_OK; } esp_err_t adc_set_data_inv(adc_unit_t adc_unit, bool inv_en) { ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_output_invert(ADC_NUM_1, inv_en); } if (adc_unit & ADC_UNIT_2) { adc_hal_output_invert(ADC_NUM_1, inv_en); } ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc_set_data_width(adc_unit_t adc_unit, adc_bits_width_t bits) { ADC_CHECK(bits < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG); ADC_ENTER_CRITICAL(); if (adc_unit & ADC_UNIT_1) { adc_hal_rtc_set_output_format(ADC_NUM_1, bits); } if (adc_unit & ADC_UNIT_2) { adc_hal_rtc_set_output_format(ADC_NUM_2, bits); adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT); } ADC_EXIT_CRITICAL(); return ESP_OK; } /* this function should be called in the critical section. */ static int adc_convert(adc_ll_num_t adc_n, int channel) { return adc_hal_convert(adc_n, channel); } /*------------------------------------------------------------------------------------- * ADC I2S *------------------------------------------------------------------------------------*/ esp_err_t adc_i2s_mode_init(adc_unit_t adc_unit, adc_channel_t channel) { if (adc_unit & ADC_UNIT_1) { ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_1)), "ADC1 not support DMA for now.", ESP_ERR_INVALID_ARG); ADC_CHANNEL_CHECK(ADC_NUM_1, channel); } if (adc_unit & ADC_UNIT_2) { ADC_CHECK((SOC_ADC_SUPPORT_DMA_MODE(ADC_NUM_2)), "ADC2 not support DMA for now.", ESP_ERR_INVALID_ARG); ADC_CHANNEL_CHECK(ADC_NUM_2, channel); } adc_ll_pattern_table_t adc1_pattern[1]; adc_ll_pattern_table_t adc2_pattern[1]; adc_hal_dig_config_t dig_cfg = { .conv_limit_en = ADC_MEAS_NUM_LIM_DEFAULT, .conv_limit_num = ADC_MAX_MEAS_NUM_DEFAULT, .clk_div = SOC_ADC_DIGI_SAR_CLK_DIV_DEFAULT, .format = DIG_ADC_OUTPUT_FORMAT_DEFUALT, .conv_mode = (adc_ll_convert_mode_t)adc_unit, }; if (adc_unit & ADC_UNIT_1) { adc1_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT; adc1_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT; adc1_pattern[0].channel = channel; dig_cfg.adc1_pattern_len = 1; dig_cfg.adc1_pattern = adc1_pattern; } if (adc_unit & ADC_UNIT_2) { adc2_pattern[0].atten = DIG_ADC_ATTEN_DEFUALT; adc2_pattern[0].bit_width = DIG_ADC_BIT_WIDTH_DEFUALT; adc2_pattern[0].channel = channel; dig_cfg.adc2_pattern_len = 1; dig_cfg.adc2_pattern = adc2_pattern; } adc_gpio_init(adc_unit, channel); ADC_ENTER_CRITICAL(); adc_hal_init(); adc_hal_dig_controller_config(&dig_cfg); ADC_EXIT_CRITICAL(); return ESP_OK; } /*------------------------------------------------------------------------------------- * ADC1 *------------------------------------------------------------------------------------*/ esp_err_t adc1_pad_get_io_num(adc1_channel_t channel, gpio_num_t *gpio_num) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); int io = ADC_GET_IO_NUM(ADC_NUM_1, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; } else { *gpio_num = (gpio_num_t)io; } return ESP_OK; } esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_1, channel); ADC_CHECK(atten < ADC_ATTEN_MAX, "ADC Atten Err", ESP_ERR_INVALID_ARG); adc_gpio_init(ADC_UNIT_1, channel); /* Workaround: Disable the synchronization operation function of ADC1 and DAC. If enabled(default), ADC RTC controller sampling will cause the DAC channel output voltage. */ dac_hal_rtc_sync_by_adc(false); adc_hal_set_atten(ADC_NUM_1, channel, atten); return ESP_OK; } esp_err_t adc1_config_width(adc_bits_width_t width_bit) { ADC_CHECK(width_bit < ADC_WIDTH_MAX, "ADC bit width error", ESP_ERR_INVALID_ARG); adc_hal_rtc_set_output_format(ADC_NUM_1, width_bit); adc_hal_output_invert(ADC_NUM_1, true); return ESP_OK; } esp_err_t adc1_i2s_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ _lock_acquire( &adc1_i2s_lock ); ESP_LOGD( ADC_TAG, "i2s mode takes adc1 lock." ); ADC_ENTER_CRITICAL(); adc_power_acquire(); adc_hal_set_power_manage(ADC_POWER_SW_ON); /* switch SARADC into DIG channel */ adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_DIG); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc1_adc_mode_acquire(void) { /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ _lock_acquire( &adc1_i2s_lock ); ADC_ENTER_CRITICAL(); adc_power_acquire(); /* switch SARADC into RTC channel. */ adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC); ADC_EXIT_CRITICAL(); return ESP_OK; } esp_err_t adc1_lock_release(void) { ADC_CHECK((uint32_t *)adc1_i2s_lock != NULL, "adc1 lock release called before acquire", ESP_ERR_INVALID_STATE ); /* Use locks to avoid digtal and RTC controller conflicts. for adc1, block until acquire the lock. */ _lock_release( &adc1_i2s_lock ); return ESP_OK; } int adc1_get_raw(adc1_channel_t channel) { uint16_t adc_value; ADC_CHANNEL_CHECK(ADC_NUM_1, channel); adc1_adc_mode_acquire(); adc_power_acquire(); ADC_ENTER_CRITICAL(); /* disable other peripherals. */ adc_hal_hall_disable(); /* currently the LNA is not open, close it by default. */ adc_hal_amp_disable(); /* set controller */ adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_RTC); /* start conversion */ adc_value = adc_convert(ADC_NUM_1, channel); ADC_EXIT_CRITICAL(); adc_power_release(); adc1_lock_release(); return adc_value; } int adc1_get_voltage(adc1_channel_t channel) //Deprecated. Use adc1_get_raw() instead { return adc1_get_raw(channel); } void adc1_ulp_enable(void) { adc_power_acquire(); ADC_ENTER_CRITICAL(); adc_hal_set_controller(ADC_NUM_1, ADC_CTRL_ULP); /* since most users do not need LNA and HALL with uLP, we disable them here open them in the uLP if needed. */ /* disable other peripherals. */ adc_hal_hall_disable(); adc_hal_amp_disable(); ADC_EXIT_CRITICAL(); } /*--------------------------------------------------------------- ADC2 ---------------------------------------------------------------*/ esp_err_t adc2_pad_get_io_num(adc2_channel_t channel, gpio_num_t *gpio_num) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); int io = ADC_GET_IO_NUM(ADC_NUM_2, channel); if (io < 0) { return ESP_ERR_INVALID_ARG; } else { *gpio_num = (gpio_num_t)io; } return ESP_OK; } esp_err_t adc2_wifi_acquire(void) { /* Wi-Fi module will use adc2. Use locks to avoid conflicts. */ _lock_acquire( &adc2_wifi_lock ); adc_power_acquire(); ESP_LOGD( ADC_TAG, "Wi-Fi takes adc2 lock." ); return ESP_OK; } esp_err_t adc2_wifi_release(void) { ADC_CHECK((uint32_t *)adc2_wifi_lock != NULL, "wifi release called before acquire", ESP_ERR_INVALID_STATE ); _lock_release( &adc2_wifi_lock ); ESP_LOGD( ADC_TAG, "Wi-Fi returns adc2 lock." ); return ESP_OK; } static esp_err_t adc2_pad_init(adc2_channel_t channel) { gpio_num_t gpio_num = 0; ADC_CHECK_RET(adc2_pad_get_io_num(channel, &gpio_num)); ADC_CHECK_RET(rtc_gpio_init(gpio_num)); ADC_CHECK_RET(rtc_gpio_set_direction(gpio_num, RTC_GPIO_MODE_DISABLED)); ADC_CHECK_RET(rtc_gpio_pulldown_dis(gpio_num)); ADC_CHECK_RET(rtc_gpio_pullup_dis(gpio_num)); return ESP_OK; } esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten) { ADC_CHANNEL_CHECK(ADC_NUM_2, channel); ADC_CHECK(atten <= ADC_ATTEN_11db, "ADC2 Atten Err", ESP_ERR_INVALID_ARG); adc2_pad_init(channel); portENTER_CRITICAL( &adc2_spinlock ); //lazy initialization //avoid collision with other tasks if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) { //try the lock, return if failed (wifi using). portEXIT_CRITICAL( &adc2_spinlock ); return ESP_ERR_TIMEOUT; } adc_hal_set_atten(ADC_NUM_2, channel, atten); _lock_release( &adc2_wifi_lock ); portEXIT_CRITICAL( &adc2_spinlock ); return ESP_OK; } static inline void adc2_config_width(adc_bits_width_t width_bit) { ADC_ENTER_CRITICAL(); adc_hal_rtc_set_output_format(ADC_NUM_2, width_bit); adc_hal_pwdet_set_cct(SOC_ADC_PWDET_CCT_DEFAULT); adc_hal_output_invert(ADC_NUM_2, true); ADC_EXIT_CRITICAL(); } static inline void adc2_dac_disable( adc2_channel_t channel) { if ( channel == ADC2_CHANNEL_8 ) { // the same as DAC channel 1 dac_output_disable(DAC_CHANNEL_1); } else if ( channel == ADC2_CHANNEL_9 ) { dac_output_disable(DAC_CHANNEL_2); } } //registers in critical section with adc1: //SENS_SAR_START_FORCE_REG, esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out) { uint16_t adc_value = 0; ADC_CHECK(channel < ADC2_CHANNEL_MAX, "ADC Channel Err", ESP_ERR_INVALID_ARG); //in critical section with whole rtc module adc_power_acquire(); //avoid collision with other tasks portENTER_CRITICAL(&adc2_spinlock); //lazy initialization //try the lock, return if failed (wifi using). if ( _lock_try_acquire( &adc2_wifi_lock ) == -1 ) { portEXIT_CRITICAL( &adc2_spinlock ); adc_power_release(); return ESP_ERR_TIMEOUT; } //disable other peripherals #ifdef CONFIG_ADC_DISABLE_DAC adc2_dac_disable(channel); #endif // set controller // in critical section with whole rtc module // because the PWDET use the same registers, place it here. adc2_config_width(width_bit); adc_hal_set_controller(ADC_NUM_2, ADC_CTRL_RTC); //start converting adc_value = adc_convert(ADC_NUM_2, channel); _lock_release( &adc2_wifi_lock ); portEXIT_CRITICAL(&adc2_spinlock); adc_power_release(); *raw_out = (int)adc_value; return ESP_OK; } esp_err_t adc2_vref_to_gpio(gpio_num_t gpio) { adc_power_acquire(); //Select power source of ADC if (adc_hal_vref_output(gpio) != true) { adc_power_release(); return ESP_ERR_INVALID_ARG; } else { //Configure RTC gpio rtc_gpio_init(gpio); rtc_gpio_set_direction(gpio, RTC_GPIO_MODE_DISABLED); rtc_gpio_pullup_dis(gpio); rtc_gpio_pulldown_dis(gpio); return ESP_OK; } } /*--------------------------------------------------------------- HALL SENSOR ---------------------------------------------------------------*/ static int hall_sensor_get_value(void) //hall sensor without LNA { int hall_value; adc_power_acquire(); ADC_ENTER_CRITICAL(); /* disable other peripherals. */ adc_hal_amp_disable(); adc_hal_hall_enable(); // set controller adc_hal_set_controller( ADC_NUM_1, ADC_CTRL_RTC ); hall_value = adc_hal_hall_convert(); ADC_EXIT_CRITICAL(); return hall_value; } int hall_sensor_read(void) { adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_0); adc_gpio_init(ADC_UNIT_1, ADC1_CHANNEL_3); adc1_config_channel_atten(ADC1_CHANNEL_0, ADC_ATTEN_DB_0); adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_0); return hall_sensor_get_value(); }