/* * FreeRTOS Kernel V10.4.3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * */ /* Standard includes. */ #include #include /* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers. That should only be done when * task.h is included from an application file. */ #define MPU_WRAPPERS_INCLUDED_FROM_API_FILE /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "timers.h" #include "stack_macros.h" #ifdef ESP_PLATFORM #define taskCRITICAL_MUX &xTaskQueueMutex #undef taskENTER_CRITICAL #undef taskEXIT_CRITICAL #undef taskENTER_CRITICAL_ISR #undef taskEXIT_CRITICAL_ISR #define taskENTER_CRITICAL( ) portENTER_CRITICAL( taskCRITICAL_MUX ) #define taskEXIT_CRITICAL( ) portEXIT_CRITICAL( taskCRITICAL_MUX ) #define taskENTER_CRITICAL_ISR( ) portENTER_CRITICAL_ISR( taskCRITICAL_MUX ) #define taskEXIT_CRITICAL_ISR( ) portEXIT_CRITICAL_ISR( taskCRITICAL_MUX ) #undef _REENT_INIT_PTR #define _REENT_INIT_PTR esp_reent_init #endif /* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined * for the header files above, but not in this file, in order to generate the * correct privileged Vs unprivileged linkage and placement. */ #undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */ /* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting * functions but without including stdio.h here. */ #if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) /* At the bottom of this file are two optional functions that can be used * to generate human readable text from the raw data generated by the * uxTaskGetSystemState() function. Note the formatting functions are provided * for convenience only, and are NOT considered part of the kernel. */ #include #endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */ #if ( configUSE_PREEMPTION == 0 ) /* If the cooperative scheduler is being used then a yield should not be * performed just because a higher priority task has been woken. */ #define taskYIELD_IF_USING_PREEMPTION() #else #define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API() #endif /* Values that can be assigned to the ucNotifyState member of the TCB. */ #define taskNOT_WAITING_NOTIFICATION ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */ #define taskWAITING_NOTIFICATION ( ( uint8_t ) 1 ) #define taskNOTIFICATION_RECEIVED ( ( uint8_t ) 2 ) /* * The value used to fill the stack of a task when the task is created. This * is used purely for checking the high water mark for tasks. */ #define tskSTACK_FILL_BYTE ( 0xa5U ) /* Bits used to record how a task's stack and TCB were allocated. */ #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 0 ) #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( ( uint8_t ) 1 ) #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( ( uint8_t ) 2 ) /* If any of the following are set then task stacks are filled with a known * value so the high water mark can be determined. If none of the following are * set then don't fill the stack so there is no unnecessary dependency on memset. */ #if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 1 #else #define tskSET_NEW_STACKS_TO_KNOWN_VALUE 0 #endif /* * Macros used by vListTask to indicate which state a task is in. */ #define tskRUNNING_CHAR ( 'X' ) #define tskBLOCKED_CHAR ( 'B' ) #define tskREADY_CHAR ( 'R' ) #define tskDELETED_CHAR ( 'D' ) #define tskSUSPENDED_CHAR ( 'S' ) /* * Some kernel aware debuggers require the data the debugger needs access to to * be global, rather than file scope. */ #ifdef portREMOVE_STATIC_QUALIFIER #define static #endif /* The name allocated to the Idle task. This can be overridden by defining * configIDLE_TASK_NAME in FreeRTOSConfig.h. */ #ifndef configIDLE_TASK_NAME #define configIDLE_TASK_NAME "IDLE" #endif #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is * performed in a generic way that is not optimised to any particular * microcontroller architecture. */ /* uxTopReadyPriority holds the priority of the highest priority ready * state task. */ #define taskRECORD_READY_PRIORITY( uxPriority ) \ { \ if( ( uxPriority ) > uxTopReadyPriority ) \ { \ uxTopReadyPriority = ( uxPriority ); \ } \ } /* taskRECORD_READY_PRIORITY */ /*-----------------------------------------------------------*/ #ifdef ESP_PLATFORM #define taskSELECT_HIGHEST_PRIORITY_TASK() taskSelectHighestPriorityTaskSMP() #else //ESP_PLATFORM #define taskSELECT_HIGHEST_PRIORITY_TASK() \ { \ UBaseType_t uxTopPriority = uxTopReadyPriority; \ \ /* Find the highest priority queue that contains ready tasks. */ \ while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \ { \ configASSERT( uxTopPriority ); \ --uxTopPriority; \ } \ \ /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \ * the same priority get an equal share of the processor time. */ \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[xPortGetCoreID()], &( pxReadyTasksLists[ uxTopPriority ] ) ); \ uxTopReadyPriority = uxTopPriority; \ } /* taskSELECT_HIGHEST_PRIORITY_TASK */ #endif //ESP_PLATFORM /*-----------------------------------------------------------*/ /* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as * they are only required when a port optimised method of task selection is * being used. */ #define taskRESET_READY_PRIORITY( uxPriority ) #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority ) #else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is * performed in a way that is tailored to the particular microcontroller * architecture being used. */ /* A port optimised version is provided. Call the port defined macros. */ #define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority ) /*-----------------------------------------------------------*/ #define taskSELECT_HIGHEST_PRIORITY_TASK() \ { \ UBaseType_t uxTopPriority; \ \ /* Find the highest priority list that contains ready tasks. */ \ portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \ configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \ listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB[xPortGetCoreID()], &( pxReadyTasksLists[ uxTopPriority ] ) ); \ } /* taskSELECT_HIGHEST_PRIORITY_TASK() */ /*-----------------------------------------------------------*/ /* A port optimised version is provided, call it only if the TCB being reset * is being referenced from a ready list. If it is referenced from a delayed * or suspended list then it won't be in a ready list. */ #define taskRESET_READY_PRIORITY( uxPriority ) \ { \ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \ { \ portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \ } \ } #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ /*-----------------------------------------------------------*/ /* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick * count overflows. */ #define taskSWITCH_DELAYED_LISTS() \ { \ List_t * pxTemp; \ \ /* The delayed tasks list should be empty when the lists are switched. */ \ configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \ \ pxTemp = pxDelayedTaskList; \ pxDelayedTaskList = pxOverflowDelayedTaskList; \ pxOverflowDelayedTaskList = pxTemp; \ xNumOfOverflows++; \ prvResetNextTaskUnblockTime(); \ } /*-----------------------------------------------------------*/ /* * Place the task represented by pxTCB into the appropriate ready list for * the task. It is inserted at the end of the list. */ #define prvAddTaskToReadyList( pxTCB ) \ traceMOVED_TASK_TO_READY_STATE( pxTCB ); \ taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \ vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \ tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB ) /*-----------------------------------------------------------*/ #define tskCAN_RUN_HERE( cpuid ) ( cpuid==xPortGetCoreID() || cpuid==tskNO_AFFINITY ) /* * Several functions take a TaskHandle_t parameter that can optionally be NULL, * where NULL is used to indicate that the handle of the currently executing * task should be used in place of the parameter. This macro simply checks to * see if the parameter is NULL and returns a pointer to the appropriate TCB. */ #if configNUM_CORES > 1 /* In SMP, we need to disable interrupts if getting the current task handle outside a critical section. Calling xTaskGetCurrentTaskHandle() ensures this. */ #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? xTaskGetCurrentTaskHandle() : ( (TaskHandle_t)pxHandle ) ) #else #define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? (TaskHandle_t) pxCurrentTCB[0] : ( (TaskHandle_t)pxHandle ) ) #endif /* The item value of the event list item is normally used to hold the priority * of the task to which it belongs (coded to allow it to be held in reverse * priority order). However, it is occasionally borrowed for other purposes. It * is important its value is not updated due to a task priority change while it is * being used for another purpose. The following bit definition is used to inform * the scheduler that the value should not be changed - in which case it is the * responsibility of whichever module is using the value to ensure it gets set back * to its original value when it is released. */ #if ( configUSE_16_BIT_TICKS == 1 ) #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U #else #define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL #endif /* * Task control block. A task control block (TCB) is allocated for each task, * and stores task state information, including a pointer to the task's context * (the task's run time environment, including register values) */ typedef struct tskTaskControlBlock /* The old naming convention is used to prevent breaking kernel aware debuggers. */ { volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */ #if ( portUSING_MPU_WRAPPERS == 1 ) xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */ #endif ListItem_t xStateListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */ ListItem_t xEventListItem; /*< Used to reference a task from an event list. */ UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */ StackType_t * pxStack; /*< Points to the start of the stack. */ char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ BaseType_t xCoreID; /*< Core this task is pinned to */ #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) ) StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */ #endif #if ( portCRITICAL_NESTING_IN_TCB == 1 ) UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */ #endif #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */ UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */ #endif #if ( configUSE_MUTEXES == 1 ) UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */ UBaseType_t uxMutexesHeld; #endif #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t pxTaskTag; #endif #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) TlsDeleteCallbackFunction_t pvThreadLocalStoragePointersDelCallback[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ]; #endif #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */ #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) /* Allocate a Newlib reent structure that is specific to this task. * Note Newlib support has been included by popular demand, but is not * used by the FreeRTOS maintainers themselves. FreeRTOS is not * responsible for resulting newlib operation. User must be familiar with * newlib and must provide system-wide implementations of the necessary * stubs. Be warned that (at the time of writing) the current newlib design * implements a system-wide malloc() that must be provided with locks. * * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ struct _reent xNewLib_reent; #endif #if ( configUSE_TASK_NOTIFICATIONS == 1 ) volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ]; #endif /* See the comments in FreeRTOS.h with the definition of * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */ #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ uint8_t ucStaticallyAllocated; /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */ #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) uint8_t ucDelayAborted; #endif #if ( configUSE_POSIX_ERRNO == 1 ) int iTaskErrno; #endif } tskTCB; /* The old tskTCB name is maintained above then typedefed to the new TCB_t name * below to enable the use of older kernel aware debuggers. */ typedef tskTCB TCB_t; /*lint -save -e956 A manual analysis and inspection has been used to determine * which static variables must be declared volatile. */ PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[configNUM_CORES] = {NULL}; /* Lists for ready and blocked tasks. -------------------- * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but * doing so breaks some kernel aware debuggers and debuggers that rely on removing * the static qualifier. */ PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */ PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */ PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */ PRIVILEGED_DATA static List_t xPendingReadyList[ configNUM_CORES ]; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */ #ifdef ESP_PLATFORM PRIVILEGED_DATA static portMUX_TYPE xTaskQueueMutex = portMUX_INITIALIZER_UNLOCKED; #endif // ESP_PLATFORM #if ( INCLUDE_vTaskDelete == 1 ) PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */ PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U; #endif #if ( INCLUDE_vTaskSuspend == 1 ) PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */ #endif /* Global POSIX errno. Its value is changed upon context switching to match * the errno of the currently running task. */ #if ( configUSE_POSIX_ERRNO == 1 ) int FreeRTOS_errno = 0; #endif /* Other file private variables. --------------------------------*/ PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY; PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE; PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U; PRIVILEGED_DATA static volatile BaseType_t xYieldPending[configNUM_CORES] = {pdFALSE}; PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0; PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U; PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */ PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[configNUM_CORES] = {NULL}; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */ /* Context switches are held pending while the scheduler is suspended. Also, * interrupts must not manipulate the xStateListItem of a TCB, or any of the * lists the xStateListItem can be referenced from, if the scheduler is suspended. * If an interrupt needs to unblock a task while the scheduler is suspended then it * moves the task's event list item into the xPendingReadyList, ready for the * kernel to move the task from the pending ready list into the real ready list * when the scheduler is unsuspended. The pending ready list itself can only be * accessed from a critical section. */ PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[configNUM_CORES] = {( UBaseType_t ) pdFALSE}; #if ( configGENERATE_RUN_TIME_STATS == 1 ) /* Do not move these variables to function scope as doing so prevents the * code working with debuggers that need to remove the static qualifier. */ PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime[configNUM_CORES] = {0U}; /*< Holds the value of a timer/counter the last time a task was switched in. */ PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */ #endif // per-CPU flags indicating that we are doing context switch, it is used by apptrace and sysview modules // in order to avoid calls of vPortYield from traceTASK_SWITCHED_IN/OUT when waiting // for locks to be free or for host to read full trace buffer PRIVILEGED_DATA static volatile BaseType_t xSwitchingContext[ configNUM_CORES ] = { pdFALSE }; /*lint -restore */ /*-----------------------------------------------------------*/ /* Callback function prototypes. --------------------------*/ #if( configCHECK_FOR_STACK_OVERFLOW > 0 ) extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ); #endif #if( configUSE_TICK_HOOK > 0 ) extern void vApplicationTickHook( void ); /*lint !e526 Symbol not defined as it is an application callback. */ #endif #if( configSUPPORT_STATIC_ALLOCATION == 1 ) extern void vApplicationGetIdleTaskMemory( StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize ); /*lint !e526 Symbol not defined as it is an application callback. */ #endif /* File private functions. --------------------------------*/ /** * Utility task that simply returns pdTRUE if the task referenced by xTask is * currently in the Suspended state, or pdFALSE if the task referenced by xTask * is in any other state. */ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION; #endif /* INCLUDE_vTaskSuspend */ /* * Utility to ready all the lists used by the scheduler. This is called * automatically upon the creation of the first task. */ static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION; /* * The idle task, which as all tasks is implemented as a never ending loop. * The idle task is automatically created and added to the ready lists upon * creation of the first user task. * * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION; /* * Utility to free all memory allocated by the scheduler to hold a TCB, * including the stack pointed to by the TCB. * * This does not free memory allocated by the task itself (i.e. memory * allocated by calls to pvPortMalloc from within the tasks application code). */ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION; #endif /* Function to call the Thread Local Storage Pointer Deletion Callbacks. Will be * called during task deletion before prvDeleteTCB is called. */ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) static void prvDeleteTLS( TCB_t *pxTCB ); #endif /* * Used only by the idle task. This checks to see if anything has been placed * in the list of tasks waiting to be deleted. If so the task is cleaned up * and its TCB deleted. */ static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION; /* * The currently executing task is entering the Blocked state. Add the task to * either the current or the overflow delayed task list. */ static void prvAddCurrentTaskToDelayedList( const portBASE_TYPE xCoreID, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION; /* * Fills an TaskStatus_t structure with information on each task that is * referenced from the pxList list (which may be a ready list, a delayed list, * a suspended list, etc.). * * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM * NORMAL APPLICATION CODE. */ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) PRIVILEGED_FUNCTION; #endif /* * Searches pxList for a task with name pcNameToQuery - returning a handle to * the task if it is found, or NULL if the task is not found. */ #if ( INCLUDE_xTaskGetHandle == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) PRIVILEGED_FUNCTION; #endif /* * When a task is created, the stack of the task is filled with a known value. * This function determines the 'high water mark' of the task stack by * determining how much of the stack remains at the original preset value. */ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION; #endif /* * Return the amount of time, in ticks, that will pass before the kernel will * next move a task from the Blocked state to the Running state. * * This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user * defined low power mode implementations require configUSE_TICKLESS_IDLE to be * set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION; #endif /* * Set xNextTaskUnblockTime to the time at which the next Blocked state task * will exit the Blocked state. */ static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION; #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) /* * Helper function used to pad task names with spaces when printing out * human readable tables of task information. */ static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) PRIVILEGED_FUNCTION; #endif /* * Called after a Task_t structure has been allocated either statically or * dynamically to fill in the structure's members. */ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions, BaseType_t xCoreID ) PRIVILEGED_FUNCTION; /* * Called after a new task has been created and initialised to place the task * under the control of the scheduler. */ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB, TaskFunction_t pxTaskCode, BaseType_t xCoreID ) PRIVILEGED_FUNCTION; /* * freertos_tasks_c_additions_init() should only be called if the user definable * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro * called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION; #endif /* * This routine tries to send an interrupt to another core if needed to make it execute a task * of higher priority. We try to figure out if needed first by inspecting the pxTCB of the * other CPU first. Specifically for Xtensa, we can do this because pxTCB is an atomic pointer. It * is possible that it is inaccurate because the other CPU just did a task switch, but in that case * at most a superfluous interrupt is generated. */ void taskYIELD_OTHER_CORE( BaseType_t xCoreID, UBaseType_t uxPriority ) { BaseType_t i; if (xCoreID != tskNO_AFFINITY) { if ( pxCurrentTCB[ xCoreID ]->uxPriority < uxPriority ) { // NOLINT(clang-analyzer-core.NullDereference) IDF-685 vPortYieldOtherCore( xCoreID ); } } else { /* The task has no affinity. See if we can find a CPU to put it on.*/ for (i=0; iuxPriority < uxPriority) { vPortYieldOtherCore( i ); break; } } } } /*-----------------------------------------------------------*/ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) TaskHandle_t xTaskCreateStaticPinnedToCore( TaskFunction_t pvTaskCode, const char * const pcName, const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, StackType_t * const pxStackBuffer, StaticTask_t * const pxTaskBuffer, const BaseType_t xCoreID ) { TCB_t *pxNewTCB; TaskHandle_t xReturn; configASSERT( portVALID_TCB_MEM(pxTaskBuffer) ); configASSERT( portVALID_STACK_MEM(pxStackBuffer) ); configASSERT( (xCoreID>=0 && xCoreIDpxStack = ( StackType_t * ) pxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ { /* Tasks can be created statically or dynamically, so note this * task was created statically in case the task is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pvTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL, xCoreID ); prvAddNewTaskToReadyList( pxNewTCB, pvTaskCode, xCoreID ); } else { xReturn = NULL; } return xReturn; } #endif /* SUPPORT_STATIC_ALLOCATION */ /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; configASSERT( pxTaskDefinition->puxStackBuffer != NULL ); configASSERT( pxTaskDefinition->pxTaskBuffer != NULL ); if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) ) { /* Allocate space for the TCB. Where the memory comes from depends * on the implementation of the port malloc function and whether or * not static allocation is being used. */ pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer; /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note this * task was created statically in case the task is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions, tskNO_AFFINITY ); prvAddNewTaskToReadyList( pxNewTCB, pxTaskDefinition->pvTaskCode, tskNO_AFFINITY); xReturn = pdPASS; } return xReturn; } #endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ /*-----------------------------------------------------------*/ #if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t * pxCreatedTask ) { TCB_t * pxNewTCB; BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; configASSERT( pxTaskDefinition->puxStackBuffer ); if( pxTaskDefinition->puxStackBuffer != NULL ) { /* Allocate space for the TCB. Where the memory comes from depends * on the implementation of the port malloc function and whether or * not static allocation is being used. */ pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer; #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) { /* Tasks can be created statically or dynamically, so note * this task had a statically allocated stack in case it is * later deleted. The TCB was allocated dynamically. */ pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pxTaskDefinition->pvTaskCode, pxTaskDefinition->pcName, ( uint32_t ) pxTaskDefinition->usStackDepth, pxTaskDefinition->pvParameters, pxTaskDefinition->uxPriority, pxCreatedTask, pxNewTCB, pxTaskDefinition->xRegions, tskNO_AFFINITY ); prvAddNewTaskToReadyList( pxNewTCB, pxTaskDefinition->pvTaskCode, tskNO_AFFINITY); xReturn = pdPASS; } } return xReturn; } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ #if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) BaseType_t xTaskCreatePinnedToCore( TaskFunction_t pvTaskCode, const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ const uint32_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pvCreatedTask, const BaseType_t xCoreID) { TCB_t * pxNewTCB; BaseType_t xReturn; /* If the stack grows down then allocate the stack then the TCB so the stack * does not grow into the TCB. Likewise if the stack grows up then allocate * the TCB then the stack. */ #if ( portSTACK_GROWTH > 0 ) { /* Allocate space for the TCB. Where the memory comes from depends on * the implementation of the port malloc function and whether or not static * allocation is being used. */ pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) ); if( pxNewTCB != NULL ) { /* Allocate space for the stack used by the task being created. * The base of the stack memory stored in the TCB so the task can * be deleted later if required. */ pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ if( pxNewTCB->pxStack == NULL ) { /* Could not allocate the stack. Delete the allocated TCB. */ vPortFree( pxNewTCB ); pxNewTCB = NULL; } } } #else /* portSTACK_GROWTH */ { StackType_t * pxStack; /* Allocate space for the stack used by the task being created. */ pxStack = pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */ if( pxStack != NULL ) { /* Allocate space for the TCB. */ pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */ if( pxNewTCB != NULL ) { /* Store the stack location in the TCB. */ pxNewTCB->pxStack = pxStack; } else { /* The stack cannot be used as the TCB was not created. Free * it again. */ vPortFree( pxStack ); } } else { pxNewTCB = NULL; } } #endif /* portSTACK_GROWTH */ if( pxNewTCB != NULL ) { #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */ { /* Tasks can be created statically or dynamically, so note this * task was created dynamically in case it is later deleted. */ pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB; } #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */ prvInitialiseNewTask( pvTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pvCreatedTask, pxNewTCB, NULL, xCoreID ); prvAddNewTaskToReadyList( pxNewTCB, pvTaskCode, xCoreID); xReturn = pdPASS; } else { xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY; } return xReturn; } #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ /*-----------------------------------------------------------*/ static void prvInitialiseNewTask( TaskFunction_t pxTaskCode, const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ const uint32_t ulStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, TCB_t * pxNewTCB, const MemoryRegion_t * const xRegions, BaseType_t xCoreID ) { StackType_t * pxTopOfStack; UBaseType_t x; #if (configNUM_CORES < 2) xCoreID = 0; #endif #if ( portUSING_MPU_WRAPPERS == 1 ) /* Should the task be created in privileged mode? */ BaseType_t xRunPrivileged; if( ( uxPriority & portPRIVILEGE_BIT ) != 0U ) { xRunPrivileged = pdTRUE; } else { xRunPrivileged = pdFALSE; } uxPriority &= ~portPRIVILEGE_BIT; #endif /* portUSING_MPU_WRAPPERS == 1 */ /* Avoid dependency on memset() if it is not required. */ #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 ) { /* Fill the stack with a known value to assist debugging. */ ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) ); } #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */ #if( configUSE_TRACE_FACILITY == 1 ) { /* Zero the uxTaskNumber TCB member to avoid random value from dynamically allocated TCBs */ pxNewTCB->uxTaskNumber = 0; } #endif /* ( configUSE_TRACE_FACILITY == 1 ) */ /* Calculate the top of stack address. This depends on whether the stack * grows from high memory to low (as per the 80x86) or vice versa. * portSTACK_GROWTH is used to make the result positive or negative as required * by the port. */ #if ( portSTACK_GROWTH < 0 ) { pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] ); pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. Checked by assert(). */ /* Check the alignment of the calculated top of stack is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); #if ( configRECORD_STACK_HIGH_ADDRESS == 1 ) { /* Also record the stack's high address, which may assist * debugging. */ pxNewTCB->pxEndOfStack = pxTopOfStack; } #endif /* configRECORD_STACK_HIGH_ADDRESS */ } #else /* portSTACK_GROWTH */ { pxTopOfStack = pxNewTCB->pxStack; /* Check the alignment of the stack buffer is correct. */ configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) ); /* The other extreme of the stack space is required if stack checking is * performed. */ pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 ); } #endif /* portSTACK_GROWTH */ /* Store the task name in the TCB. */ if( pcName != NULL ) { for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { pxNewTCB->pcTaskName[ x ] = pcName[ x ]; /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than * configMAX_TASK_NAME_LEN characters just in case the memory after the * string is not accessible (extremely unlikely). */ if( pcName[ x ] == ( char ) 0x00 ) { break; } else { mtCOVERAGE_TEST_MARKER(); } } /* Ensure the name string is terminated in the case that the string length * was greater or equal to configMAX_TASK_NAME_LEN. */ pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0'; } else { /* The task has not been given a name, so just ensure there is a NULL * terminator when it is read out. */ pxNewTCB->pcTaskName[ 0 ] = 0x00; } /* This is used as an array index so must ensure it's not too large. First * remove the privilege bit if one is present. */ if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } pxNewTCB->uxPriority = uxPriority; pxNewTCB->xCoreID = xCoreID; #if ( configUSE_MUTEXES == 1 ) { pxNewTCB->uxBasePriority = uxPriority; pxNewTCB->uxMutexesHeld = 0; } #endif /* configUSE_MUTEXES */ vListInitialiseItem( &( pxNewTCB->xStateListItem ) ); vListInitialiseItem( &( pxNewTCB->xEventListItem ) ); /* Set the pxNewTCB as a link back from the ListItem_t. This is so we can get * back to the containing TCB from a generic item in a list. */ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB ); /* Event lists are always in priority order. */ listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB ); #if ( portCRITICAL_NESTING_IN_TCB == 1 ) { pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U; } #endif /* portCRITICAL_NESTING_IN_TCB */ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) { pxNewTCB->pxTaskTag = NULL; } #endif /* configUSE_APPLICATION_TASK_TAG */ #if ( configGENERATE_RUN_TIME_STATS == 1 ) { pxNewTCB->ulRunTimeCounter = 0UL; } #endif /* configGENERATE_RUN_TIME_STATS */ #if ( portUSING_MPU_WRAPPERS == 1 ) { vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth ); } #else { /* Avoid compiler warning about unreferenced parameter. */ ( void ) xRegions; } #endif #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) { for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ ) { pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL; #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1) pxNewTCB->pvThreadLocalStoragePointersDelCallback[ x ] = NULL; #endif } } #endif #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) ); memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) ); } #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Initialise this task's Newlib reent structure. */ _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) ); } #endif #if ( INCLUDE_xTaskAbortDelay == 1 ) { pxNewTCB->ucDelayAborted = pdFALSE; } #endif /* Initialize the TCB stack to look as if the task was already running, * but had been interrupted by the scheduler. The return address is set * to the start of the task function. Once the stack has been initialised * the top of stack variable is updated. */ #if ( portUSING_MPU_WRAPPERS == 1 ) { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #else /* portUSING_MPU_WRAPPERS */ { /* If the port has capability to detect stack overflow, * pass the stack end address to the stack initialization * function as well. */ #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) { #if ( portSTACK_GROWTH < 0 ) { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters ); } #else /* portSTACK_GROWTH */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters ); } #endif /* portSTACK_GROWTH */ } #else /* portHAS_STACK_OVERFLOW_CHECKING */ { pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters ); } #endif /* portHAS_STACK_OVERFLOW_CHECKING */ } #endif /* portUSING_MPU_WRAPPERS */ if( pxCreatedTask != NULL ) { /* Pass the handle out in an anonymous way. The handle can be used to * change the created task's priority, delete the created task, etc.*/ *pxCreatedTask = ( TaskHandle_t ) pxNewTCB; } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB, TaskFunction_t pxTaskCode, BaseType_t xCoreID ) { TCB_t *curTCB, *tcb0, *tcb1; #if (configNUM_CORES < 2) xCoreID = 0; #endif /* Ensure interrupts don't access the task lists while the lists are being * updated. */ taskENTER_CRITICAL(); { uxCurrentNumberOfTasks++; if ( xCoreID == tskNO_AFFINITY ) { if ( configNUM_CORES == 1 ) { xCoreID = 0; } else { // if the task has no affinity, put it on either core if nothing is currently scheduled there. Failing that, // put it on the core where it will preempt the lowest priority running task. If neither of these are true, // queue it on the currently running core. tcb0 = pxCurrentTCB[0]; tcb1 = pxCurrentTCB[1]; if ( tcb0 == NULL ) { xCoreID = 0; } else if ( tcb1 == NULL ) { xCoreID = 1; } else if ( tcb0->uxPriority < pxNewTCB->uxPriority && tcb0->uxPriority < tcb1->uxPriority ) { xCoreID = 0; } else if ( tcb1->uxPriority < pxNewTCB->uxPriority ) { xCoreID = 1; } else { xCoreID = xPortGetCoreID(); // Both CPU have higher priority tasks running on them, so this won't run yet } } } if( pxCurrentTCB[xCoreID] == NULL ) { /* There are no other tasks, or all the other tasks are in * the suspended state - make this the current task. */ pxCurrentTCB[xCoreID] = pxNewTCB; if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 ) { /* This is the first task to be created so do the preliminary * initialisation required. We will not recover if this call * fails, but we will report the failure. */ prvInitialiseTaskLists(); } else { mtCOVERAGE_TEST_MARKER(); } } else { /* If the scheduler is not already running, make this task the * current task if it is the highest priority task to be created * so far. */ if( xSchedulerRunning == pdFALSE ) { if( pxCurrentTCB[xCoreID] == NULL || pxCurrentTCB[xCoreID]->uxPriority <= pxNewTCB->uxPriority ) { pxCurrentTCB[xCoreID] = pxNewTCB; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } uxTaskNumber++; #if ( configUSE_TRACE_FACILITY == 1 ) { /* Add a counter into the TCB for tracing only. */ pxNewTCB->uxTCBNumber = uxTaskNumber; } #endif /* configUSE_TRACE_FACILITY */ traceTASK_CREATE( pxNewTCB ); prvAddTaskToReadyList( pxNewTCB ); portSETUP_TCB( pxNewTCB ); } taskEXIT_CRITICAL(); if( xSchedulerRunning != pdFALSE ) { /* If the created task is of a higher priority than the current task * then it should run now. */ taskENTER_CRITICAL(); curTCB = pxCurrentTCB[ xCoreID ]; if( curTCB == NULL || curTCB->uxPriority < pxNewTCB->uxPriority ) { if( xCoreID == xPortGetCoreID() ) { taskYIELD_IF_USING_PREEMPTION(); } else { taskYIELD_OTHER_CORE(xCoreID, pxNewTCB->uxPriority); } } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL(); } else { mtCOVERAGE_TEST_MARKER(); } } /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelete == 1 ) void vTaskDelete( TaskHandle_t xTaskToDelete ) { TCB_t * pxTCB; TCB_t * curTCB; BaseType_t core; BaseType_t xFreeNow = 0; taskENTER_CRITICAL(); { core = xPortGetCoreID(); curTCB = pxCurrentTCB[core]; /* If null is passed in here then it is the calling task that is * being deleted. */ pxTCB = prvGetTCBFromHandle( xTaskToDelete ); /* Remove task from the ready/delayed list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Increment the uxTaskNumber also so kernel aware debuggers can * detect that the task lists need re-generating. This is done before * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will * not return. */ uxTaskNumber++; if( pxTCB == curTCB || /* in SMP, we also can't immediately delete the task active on the other core */ (configNUM_CORES > 1 && pxTCB == pxCurrentTCB[ !core ]) || /* ... and we can't delete a non-running task pinned to the other core, as FPU cleanup has to happen on the same core */ (configNUM_CORES > 1 && pxTCB->xCoreID == (!core)) ) { /* A task is deleting itself. This cannot complete within the * task itself, as a context switch to another task is required. * Place the task in the termination list. The idle task will * check the termination list and free up any memory allocated by * the scheduler for the TCB and stack of the deleted task. */ vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) ); /* Increment the ucTasksDeleted variable so the idle task knows * there is a task that has been deleted and that it should therefore * check the xTasksWaitingTermination list. */ ++uxDeletedTasksWaitingCleanUp; /* The pre-delete hook is primarily for the Windows simulator, * in which Windows specific clean up operations are performed, * after which it is not possible to yield away from this task - * hence xYieldPending is used to latch that a context switch is * required. */ portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[core] ); if (configNUM_CORES > 1 && pxTCB == pxCurrentTCB[ !core ]) { /* SMP case of deleting a task running on a different core. Same issue as a task deleting itself, but we need to send a yield to this task now before we release xTaskQueueMutex. Specifically there is a case where the other core may already be spinning on xTaskQueueMutex waiting to go into a blocked state. A check is added in prvAddCurrentTaskToDelayedList() to prevent it from removing itself from xTasksWaitingTermination list in this case (instead it will immediately release xTaskQueueMutex again and be yielded before the FreeRTOS function returns.) */ vPortYieldOtherCore( !core ); } } else { --uxCurrentNumberOfTasks; xFreeNow = pdTRUE; /* Reset the next expected unblock time in case it referred to * the task that has just been deleted. */ prvResetNextTaskUnblockTime(); } traceTASK_DELETE( pxTCB ); } taskEXIT_CRITICAL(); if(xFreeNow == pdTRUE) { #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) prvDeleteTLS( pxTCB ); #endif prvDeleteTCB( pxTCB ); } /* Force a reschedule if it is the currently running task that has just * been deleted. */ if( xSchedulerRunning != pdFALSE ) { if( pxTCB == curTCB ) { configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED ); portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskDelayUntil == 1 ) #ifdef ESP_PLATFORM // backward binary compatibility - remove later #undef vTaskDelayUntil void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) { xTaskDelayUntil(pxPreviousWakeTime, xTimeIncrement); } #endif // ESP_PLATFORM BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) { TickType_t xTimeToWake; #ifdef ESP_PLATFORM BaseType_t xShouldDelay = pdFALSE; #else BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE; #endif // ESP_PLATFORM configASSERT( pxPreviousWakeTime ); configASSERT( ( xTimeIncrement > 0U ) ); configASSERT( uxSchedulerSuspended[xPortGetCoreID()] == 0 ); #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount; /* Generate the tick time at which the task wants to wake. */ xTimeToWake = *pxPreviousWakeTime + xTimeIncrement; if( xConstTickCount < *pxPreviousWakeTime ) { /* The tick count has overflowed since this function was * lasted called. In this case the only time we should ever * actually delay is if the wake time has also overflowed, * and the wake time is greater than the tick time. When this * is the case it is as if neither time had overflowed. */ if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The tick time has not overflowed. In this case we will * delay if either the wake time has overflowed, and/or the * tick time is less than the wake time. */ if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) ) { xShouldDelay = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } /* Update the wake time ready for the next call. */ *pxPreviousWakeTime = xTimeToWake; if( xShouldDelay != pdFALSE ) { traceTASK_DELAY_UNTIL(); /* prvAddCurrentTaskToDelayedList() needs the block time, not * the time to wake, so subtract the current tick count. */ prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake - xConstTickCount ); } else { mtCOVERAGE_TEST_MARKER(); } } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else xAlreadyYielded = xTaskResumeAll(); #endif // ESP_PLATFORM /* Force a reschedule if xTaskResumeAll has not already done so, we may * have put ourselves to sleep. */ #ifdef ESP_PLATFORM portYIELD_WITHIN_API(); #else if( xAlreadyYielded == pdFALSE ) { portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } #endif // ESP_PLATFORM return xShouldDelay; } #endif /* INCLUDE_xTaskDelayUntil */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskDelay == 1 ) void vTaskDelay( const TickType_t xTicksToDelay ) { /* A delay time of zero just forces a reschedule. */ if( xTicksToDelay > ( TickType_t ) 0U ) { configASSERT( uxSchedulerSuspended[xPortGetCoreID()] == 0 ); #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { traceTASK_DELAY(); /* A task that is removed from the event list while the * scheduler is suspended will not get placed in the ready * list or removed from the blocked list until the scheduler * is resumed. * * This task cannot be in an event list as it is the currently * executing task. */ prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToDelay ); } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else xAlreadyYielded = xTaskResumeAll(); #endif // ESP_PLATFORM } else { mtCOVERAGE_TEST_MARKER(); } /* Force a reschedule, we may have put ourselves to sleep. */ portYIELD_WITHIN_API(); } #endif /* INCLUDE_vTaskDelay */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) ) eTaskState eTaskGetState( TaskHandle_t xTask ) { eTaskState eReturn; List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList; const TCB_t * const pxTCB = xTask; configASSERT( pxTCB ); taskENTER_CRITICAL(); //Need critical section incase either core context switches in between if( pxTCB == pxCurrentTCB[xPortGetCoreID()]) { /* The task calling this function is querying its own state. */ eReturn = eRunning; } #if (configNUM_CORES > 1) else if (pxTCB == pxCurrentTCB[!xPortGetCoreID()]) { /* The task calling this function is querying its own state. */ eReturn = eRunning; } #endif else { pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) ); pxDelayedList = pxDelayedTaskList; pxOverflowedDelayedList = pxOverflowDelayedTaskList; if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) ) { /* The task being queried is referenced from one of the Blocked * lists. */ eReturn = eBlocked; } #if ( INCLUDE_vTaskSuspend == 1 ) else if( pxStateList == &xSuspendedTaskList ) { /* The task being queried is referenced from the suspended * list. Is it genuinely suspended or is it blocked * indefinitely? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ) { #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; /* The task does not appear on the event list item of * and of the RTOS objects, but could still be in the * blocked state if it is waiting on its notification * rather than waiting on an object. If not, is * suspended. */ eReturn = eSuspended; for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { eReturn = eBlocked; break; } } } #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ { eReturn = eSuspended; } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } else { eReturn = eBlocked; } } #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */ #if ( INCLUDE_vTaskDelete == 1 ) else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) ) { /* The task being queried is referenced from the deleted * tasks list, or it is not referenced from any lists at * all. */ eReturn = eDeleted; } #endif else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */ { /* If the task is not in any other state, it must be in the * Ready (including pending ready) state. */ eReturn = eReady; } } taskEXIT_CRITICAL(); return eReturn; } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ #endif /* INCLUDE_eTaskGetState */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; taskENTER_CRITICAL(); { /* If null is passed in here then it is the priority of the task * that called uxTaskPriorityGet() that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } taskEXIT_CRITICAL(); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskPriorityGet == 1 ) UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask ) { TCB_t const * pxTCB; UBaseType_t uxReturn; /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); portENTER_CRITICAL_ISR(&xTaskQueueMutex ); { /* If null is passed in here then it is the priority of the calling * task that is being queried. */ pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = pxTCB->uxPriority; } portEXIT_CRITICAL_ISR(&xTaskQueueMutex); return uxReturn; } #endif /* INCLUDE_uxTaskPriorityGet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskPrioritySet == 1 ) void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) { TCB_t * pxTCB; UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry; BaseType_t xYieldRequired = pdFALSE; configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) ); /* Ensure the new priority is valid. */ if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES ) { uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U; } else { mtCOVERAGE_TEST_MARKER(); } taskENTER_CRITICAL(); { /* If null is passed in here then it is the priority of the calling * task that is being changed. */ pxTCB = prvGetTCBFromHandle( xTask ); traceTASK_PRIORITY_SET( pxTCB, uxNewPriority ); #if ( configUSE_MUTEXES == 1 ) { uxCurrentBasePriority = pxTCB->uxBasePriority; } #else { uxCurrentBasePriority = pxTCB->uxPriority; } #endif if( uxCurrentBasePriority != uxNewPriority ) { /* The priority change may have readied a task of higher * priority than the calling task. */ if( uxNewPriority > uxCurrentBasePriority ) { if( pxTCB != pxCurrentTCB[xPortGetCoreID()] ) { /* The priority of a task other than the currently * running task is being raised. Is the priority being * raised above that of the running task? */ if ( tskCAN_RUN_HERE(pxTCB->xCoreID) && uxNewPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { xYieldRequired = pdTRUE; } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, uxNewPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The priority of the running task is being raised, * but the running task must already be the highest * priority task able to run so no yield is required. */ } } else if( pxTCB == pxCurrentTCB[xPortGetCoreID()] ) { /* Setting the priority of the running task down means * there may now be another task of higher priority that * is ready to execute. */ xYieldRequired = pdTRUE; } else if( pxTCB != pxCurrentTCB[xPortGetCoreID()] ) { /* The priority of a task other than the currently * running task is being raised. Is the priority being * raised above that of the running task? */ if( uxNewPriority >= pxCurrentTCB[xPortGetCoreID()]->uxPriority ) { xYieldRequired = pdTRUE; } else if ( pxTCB->xCoreID != xPortGetCoreID() ) //Need to check if not currently running on other core { taskYIELD_OTHER_CORE( pxTCB->xCoreID, uxNewPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } else { /* Setting the priority of any other task down does not * require a yield as the running task must be above the * new priority of the task being modified. */ } /* Remember the ready list the task might be referenced from * before its uxPriority member is changed so the * taskRESET_READY_PRIORITY() macro can function correctly. */ uxPriorityUsedOnEntry = pxTCB->uxPriority; #if ( configUSE_MUTEXES == 1 ) { /* Only change the priority being used if the task is not * currently using an inherited priority. */ if( pxTCB->uxBasePriority == pxTCB->uxPriority ) { pxTCB->uxPriority = uxNewPriority; } else { mtCOVERAGE_TEST_MARKER(); } /* The base priority gets set whatever. */ pxTCB->uxBasePriority = uxNewPriority; } #else /* if ( configUSE_MUTEXES == 1 ) */ { pxTCB->uxPriority = uxNewPriority; } #endif /* if ( configUSE_MUTEXES == 1 ) */ /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the task is in the blocked or suspended list we need do * nothing more than change its priority variable. However, if * the task is in a ready list it needs to be removed and placed * in the list appropriate to its new priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* The task is currently in its ready list - remove before * adding it to its new ready list. As we are in a critical * section we can do this even if the scheduler is suspended. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } if( xYieldRequired != pdFALSE ) { taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } /* Remove compiler warning about unused variables when the port * optimised task selection is not being used. */ ( void ) uxPriorityUsedOnEntry; } } taskEXIT_CRITICAL(); } #endif /* INCLUDE_vTaskPrioritySet */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskSuspend( TaskHandle_t xTaskToSuspend ) { TCB_t * pxTCB; TCB_t * curTCB; taskENTER_CRITICAL(); { /* If null is passed in here then it is the running task that is * being suspended. */ pxTCB = prvGetTCBFromHandle( xTaskToSuspend ); traceTASK_SUSPEND( pxTCB ); /* Remove task from the ready/delayed list and place in the * suspended list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Is the task waiting on an event also? */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ); curTCB = pxCurrentTCB[ xPortGetCoreID() ]; #if ( configUSE_TASK_NOTIFICATIONS == 1 ) { BaseType_t x; for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ ) { if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION ) { /* The task was blocked to wait for a notification, but is * now suspended, so no notification was received. */ pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION; } } } #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */ } taskEXIT_CRITICAL(); if( xSchedulerRunning != pdFALSE ) { /* Reset the next expected unblock time in case it referred to the * task that is now in the Suspended state. */ taskENTER_CRITICAL(); { prvResetNextTaskUnblockTime(); } taskEXIT_CRITICAL(); } else { mtCOVERAGE_TEST_MARKER(); } if( pxTCB == curTCB ) { if( xSchedulerRunning != pdFALSE ) { /* The current task has just been suspended. */ taskENTER_CRITICAL(); BaseType_t suspended = uxSchedulerSuspended[xPortGetCoreID()]; taskEXIT_CRITICAL(); configASSERT( suspended == 0 ); (void)suspended; portYIELD_WITHIN_API(); } else { /* The scheduler is not running, but the task that was pointed * to by pxCurrentTCB has just been suspended and pxCurrentTCB * must be adjusted to point to a different task. */ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */ { /* No other tasks are ready, so set pxCurrentTCB back to * NULL so when the next task is created pxCurrentTCB will * be set to point to it no matter what its relative priority * is. */ taskENTER_CRITICAL(); pxCurrentTCB[ xPortGetCoreID() ] = NULL; taskEXIT_CRITICAL(); } else { vTaskSwitchContext(); } } } else { if( xSchedulerRunning != pdFALSE ) { /* A task other than the currently running task was suspended, * reset the next expected unblock time in case it referred to the * task that is now in the Suspended state. */ taskENTER_CRITICAL(); { prvResetNextTaskUnblockTime(); } taskEXIT_CRITICAL(); } else { mtCOVERAGE_TEST_MARKER(); } } } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) { BaseType_t xReturn = pdFALSE; const TCB_t * const pxTCB = xTask; /* Accesses xPendingReadyList so must be called from a critical * section. */ /* It does not make sense to check if the calling task is suspended. */ configASSERT( xTask ); /* Is the task being resumed actually in the suspended list? */ if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE ) { /* Has the task already been resumed from within an ISR? */ if( listIS_CONTAINED_WITHIN( &xPendingReadyList[xPortGetCoreID()], &( pxTCB->xEventListItem )) == pdFALSE && listIS_CONTAINED_WITHIN( &xPendingReadyList[!xPortGetCoreID()], &( pxTCB->xEventListItem )) == pdFALSE ) { /* Is it in the suspended list because it is in the Suspended * state, or because is is blocked with no timeout? */ if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961. The cast is only redundant when NULL is used. */ { xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } return xReturn; } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */ #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( INCLUDE_vTaskSuspend == 1 ) void vTaskResume( TaskHandle_t xTaskToResume ) { TCB_t * const pxTCB = xTaskToResume; /* It does not make sense to resume the calling task. */ configASSERT( xTaskToResume ); taskENTER_CRITICAL(); /* The parameter cannot be NULL as it is impossible to resume the * currently executing task. */ if( ( pxTCB != pxCurrentTCB[xPortGetCoreID()] ) && ( pxTCB != NULL ) ) { { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME( pxTCB ); /* The ready list can be accessed even if the scheduler is * suspended because this is inside a critical section. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* We may have just resumed a higher priority task. */ if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* This yield may not cause the task just resumed to run, * but will leave the lists in the correct state for the * next yield. */ taskYIELD_IF_USING_PREEMPTION(); } else if( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL(); } #endif /* INCLUDE_vTaskSuspend */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) { BaseType_t xYieldRequired = pdFALSE; TCB_t * const pxTCB = xTaskToResume; configASSERT( xTaskToResume ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ //portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); taskENTER_CRITICAL_ISR(); { if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE ) { traceTASK_RESUME_FROM_ISR( pxTCB ); /* Check the ready lists can be accessed. */ if( uxSchedulerSuspended[xPortGetCoreID()] == ( UBaseType_t ) pdFALSE ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); if( tskCAN_RUN_HERE( pxTCB->xCoreID ) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { xYieldRequired = pdTRUE; } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority); } else { mtCOVERAGE_TEST_MARKER(); } } else { /* The delayed or ready lists cannot be accessed so the task * is held in the pending ready list until the scheduler is * unsuspended. */ vListInsertEnd( &( xPendingReadyList[xPortGetCoreID()] ), &( pxTCB->xEventListItem ) ); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL_ISR(); return xYieldRequired; } #endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */ /*-----------------------------------------------------------*/ void vTaskStartScheduler( void ) { BaseType_t xReturn; #ifdef ESP_PLATFORM /* Create an IDLE task for each core */ for(BaseType_t xCoreID = 0; xCoreID < configNUM_CORES; xCoreID++) #endif //ESP_PLATFORM /* Add the idle task at the lowest priority. */ #if ( configSUPPORT_STATIC_ALLOCATION == 1 ) { StaticTask_t * pxIdleTaskTCBBuffer = NULL; StackType_t * pxIdleTaskStackBuffer = NULL; uint32_t ulIdleTaskStackSize; /* The Idle task is created using user provided RAM - obtain the address of the RAM then create the idle task. */ vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize ); xIdleTaskHandle[ xCoreID ] = xTaskCreateStaticPinnedToCore( prvIdleTask, configIDLE_TASK_NAME, ulIdleTaskStackSize, ( void * ) NULL, /*lint !e961. The cast is not redundant for all compilers. */ portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ pxIdleTaskStackBuffer, pxIdleTaskTCBBuffer, xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ if( xIdleTaskHandle[ xCoreID ] != NULL ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } } #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */ { /* The Idle task is being created using dynamically allocated RAM. */ xReturn = xTaskCreatePinnedToCore( prvIdleTask, configIDLE_TASK_NAME, configIDLE_TASK_STACK_SIZE, ( void * ) NULL, portPRIVILEGE_BIT, /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */ &xIdleTaskHandle[ xCoreID ], xCoreID ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */ if( xIdleTaskHandle[ xCoreID ] != NULL ) { xReturn = pdPASS; } else { xReturn = pdFAIL; } } #endif /* configSUPPORT_STATIC_ALLOCATION */ #if ( configUSE_TIMERS == 1 ) { if( xReturn == pdPASS ) { xReturn = xTimerCreateTimerTask(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TIMERS */ if( xReturn == pdPASS ) { /* freertos_tasks_c_additions_init() should only be called if the user * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is * the only macro called by the function. */ #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT { freertos_tasks_c_additions_init(); } #endif /* Interrupts are turned off here, to ensure a tick does not occur * before or during the call to xPortStartScheduler(). The stacks of * the created tasks contain a status word with interrupts switched on * so interrupts will automatically get re-enabled when the first task * starts to run. */ portDISABLE_INTERRUPTS(); #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Switch Newlib's _impure_ptr variable to point to the _reent * structure specific to the task that will run first. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ // _impure_ptr = &( pxCurrentTCB[xPortGetCoreID()]->xNewLib_reent ); } #endif /* configUSE_NEWLIB_REENTRANT */ xNextTaskUnblockTime = portMAX_DELAY; xSchedulerRunning = pdTRUE; xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT; /* If configGENERATE_RUN_TIME_STATS is defined then the following * macro must be defined to configure the timer/counter used to generate * the run time counter time base. NOTE: If configGENERATE_RUN_TIME_STATS * is set to 0 and the following line fails to build then ensure you do not * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your * FreeRTOSConfig.h file. */ portCONFIGURE_TIMER_FOR_RUN_TIME_STATS(); traceTASK_SWITCHED_IN(); /* Setting up the timer tick is hardware specific and thus in the * portable interface. */ if( xPortStartScheduler() != pdFALSE ) { /* Should not reach here as if the scheduler is running the * function will not return. */ } else { /* Should only reach here if a task calls xTaskEndScheduler(). */ } } else { /* This line will only be reached if the kernel could not be started, * because there was not enough FreeRTOS heap to create the idle task * or the timer task. */ configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ); } /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0, * meaning xIdleTaskHandle is not used anywhere else. */ ( void ) xIdleTaskHandle[0]; } /*-----------------------------------------------------------*/ void vTaskEndScheduler( void ) { /* Stop the scheduler interrupts and call the portable scheduler end * routine so the original ISRs can be restored if necessary. The port * layer must ensure interrupts enable bit is left in the correct state. */ portDISABLE_INTERRUPTS(); xSchedulerRunning = pdFALSE; vPortEndScheduler(); } /*----------------------------------------------------------*/ #if ( configUSE_NEWLIB_REENTRANT == 1 ) //Return global reent struct if FreeRTOS isn't running, struct _reent* __getreent(void) { //No lock needed because if this changes, we won't be running anymore. TCB_t *currTask=xTaskGetCurrentTaskHandle(); if (currTask==NULL) { //No task running. Return global struct. return _GLOBAL_REENT; } else { //We have a task; return its reentrant struct. return &currTask->xNewLib_reent; } } #endif void vTaskSuspendAll( void ) { /* A critical section is not required as the variable is of type * BaseType_t. Please read Richard Barry's reply in the following link to a * post in the FreeRTOS support forum before reporting this as a bug! - * https://goo.gl/wu4acr */ unsigned state; state = portSET_INTERRUPT_MASK_FROM_ISR(); ++uxSchedulerSuspended[ xPortGetCoreID() ]; portCLEAR_INTERRUPT_MASK_FROM_ISR(state); } /*----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) #if ( configNUM_CORES > 1 ) static BaseType_t xHaveReadyTasks( void ) { for (int i = tskIDLE_PRIORITY + 1; i < configMAX_PRIORITIES; ++i) { if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ i ] ) ) > 0 ) { return pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } return pdFALSE; } #endif // configNUM_CORES > 1 static TickType_t prvGetExpectedIdleTime( void ) { TickType_t xReturn; taskENTER_CRITICAL(); if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY ) { xReturn = 0; } #if configNUM_CORES > 1 /* This function is called from Idle task; in single core case this * means that no higher priority tasks are ready to run, and we can * enter sleep. In SMP case, there might be ready tasks waiting for * the other CPU, so need to check all ready lists. */ else if( xHaveReadyTasks() ) { xReturn = 0; } #endif // configNUM_CORES > 1 else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > configNUM_CORES ) { /* There are other idle priority tasks in the ready state. If * time slicing is used then the very next tick interrupt must be * processed. */ xReturn = 0; } else { xReturn = xNextTaskUnblockTime - xTickCount; } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskResumeAll( void ) { TCB_t *pxTCB = NULL; BaseType_t xAlreadyYielded = pdFALSE; TickType_t xTicksToNextUnblockTime; /* If uxSchedulerSuspended[xPortGetCoreID()] is zero then this function does not match a * previous call to taskENTER_CRITICAL(). */ configASSERT( uxSchedulerSuspended[xPortGetCoreID()] ); /* It is possible that an ISR caused a task to be removed from an event * list while the scheduler was suspended. If this was the case then the * removed task will have been added to the xPendingReadyList. Once the * scheduler has been resumed it is safe to move all the pending ready * tasks from this list into their appropriate ready list. */ taskENTER_CRITICAL(); { --uxSchedulerSuspended[xPortGetCoreID()]; if( uxSchedulerSuspended[xPortGetCoreID()] == ( UBaseType_t ) pdFALSE ) { if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U ) { /* Move any readied tasks from the pending list into the * appropriate ready list. */ while( listLIST_IS_EMPTY( &xPendingReadyList[xPortGetCoreID()] ) == pdFALSE ) { pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[xPortGetCoreID()] ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* If the moved task has a priority higher than the current * task then a yield must be performed. */ if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { xYieldPending[xPortGetCoreID()] = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } if( pxTCB != NULL ) { /* A task was unblocked while the scheduler was suspended, * which may have prevented the next unblock time from being * re-calculated, in which case re-calculate it now. Mainly * important for low power tickless implementations, where * this can prevent an unnecessary exit from low power * state. */ prvResetNextTaskUnblockTime(); } /* If any ticks occurred while the scheduler was suspended then * they should be processed now. This ensures the tick count does * not slip, and that any delayed tasks are resumed at the correct * time. */ while( xPendedTicks > ( TickType_t ) 0 ) { /* Calculate how far into the future the next task will * leave the Blocked state because its timeout expired. If * there are no tasks due to leave the blocked state between * the time now and the time at which the tick count overflows * then xNextTaskUnblockTime will the tick overflow time. * This means xNextTaskUnblockTime can never be less than * xTickCount, and the following can therefore not * underflow. */ configASSERT( xNextTaskUnblockTime >= xTickCount ); xTicksToNextUnblockTime = xNextTaskUnblockTime - xTickCount; /* Don't want to move the tick count more than the number of ticks that are pending, so cap if necessary. */ if( xTicksToNextUnblockTime > xPendedTicks ) { xTicksToNextUnblockTime = xPendedTicks; } if( xTicksToNextUnblockTime == 0 ) { /* xTicksToNextUnblockTime could be zero if the tick * count is about to overflow and xTicksToNetUnblockTime * holds the time at which the tick count will overflow * (rather than the time at which the next task will * unblock). Set to 1 otherwise xPendedTicks won't be * decremented below. */ xTicksToNextUnblockTime = ( TickType_t ) 1; } else if( xTicksToNextUnblockTime > ( TickType_t ) 1) { /* Move the tick count one short of the next unblock * time, then call xTaskIncrementTick() to move the tick * count up to the next unblock time to unblock the task, * if any. This will also swap the blocked task and * overflow blocked task lists if necessary. */ xTickCount += ( xTicksToNextUnblockTime - ( TickType_t ) 1 ); } xYieldPending[xPortGetCoreID()] |= xTaskIncrementTick(); /* Adjust for the number of ticks just added to xTickCount and go around the loop again if xTicksToCatchUp is still greater than 0. */ xPendedTicks -= xTicksToNextUnblockTime; } if( xYieldPending[xPortGetCoreID()] != pdFALSE ) { #if ( configUSE_PREEMPTION != 0 ) { xAlreadyYielded = pdTRUE; } #endif taskYIELD_IF_USING_PREEMPTION(); } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); return xAlreadyYielded; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCount( void ) { TickType_t xTicks; xTicks = xTickCount; return xTicks; } /*-----------------------------------------------------------*/ TickType_t xTaskGetTickCountFromISR( void ) { TickType_t xReturn; UBaseType_t uxSavedInterruptStatus; /* RTOS ports that support interrupt nesting have the concept of a maximum * system call (or maximum API call) interrupt priority. Interrupts that are * above the maximum system call priority are kept permanently enabled, even * when the RTOS kernel is in a critical section, but cannot make any calls to * FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has been * assigned a priority above the configured maximum system call priority. * Only FreeRTOS functions that end in FromISR can be called from interrupts * that have been assigned a priority at or (logically) below the maximum * system call interrupt priority. FreeRTOS maintains a separate interrupt * safe API to ensure interrupt entry is as fast and as simple as possible. * More information (albeit Cortex-M specific) is provided on the following * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR(); { xReturn = xTickCount; } portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus ); return xReturn; } /*-----------------------------------------------------------*/ UBaseType_t uxTaskGetNumberOfTasks( void ) { /* A critical section is not required because the variables are of type * BaseType_t. */ return uxCurrentNumberOfTasks; } /*-----------------------------------------------------------*/ char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ { TCB_t * pxTCB; /* If null is passed in here then the name of the calling task is being * queried. */ pxTCB = prvGetTCBFromHandle( xTaskToQuery ); configASSERT( pxTCB ); return &( pxTCB->pcTaskName[ 0 ] ); } /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList, const char pcNameToQuery[] ) { TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL; UBaseType_t x; char cNextChar; BaseType_t xBreakLoop; /* This function is called with the scheduler suspended. */ if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ do { listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ /* Check each character in the name looking for a match or * mismatch. */ xBreakLoop = pdFALSE; for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ ) { cNextChar = pxNextTCB->pcTaskName[ x ]; if( cNextChar != pcNameToQuery[ x ] ) { /* Characters didn't match. */ xBreakLoop = pdTRUE; } else if( cNextChar == ( char ) 0x00 ) { /* Both strings terminated, a match must have been * found. */ pxReturn = pxNextTCB; xBreakLoop = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } if( xBreakLoop != pdFALSE ) { break; } } if( pxReturn != NULL ) { /* The handle has been found. */ break; } } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return pxReturn; } #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetHandle == 1 ) TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */ { UBaseType_t uxQueue = configMAX_PRIORITIES; TCB_t * pxTCB; /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */ configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN ); #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { /* Search the ready lists. */ do { uxQueue--; pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery ); if( pxTCB != NULL ) { /* Found the handle. */ break; } } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ /* Search the delayed lists. */ if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery ); } if( pxTCB == NULL ) { pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery ); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( pxTCB == NULL ) { /* Search the suspended list. */ pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery ); } } #endif #if ( INCLUDE_vTaskDelete == 1 ) { if( pxTCB == NULL ) { /* Search the deleted list. */ pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery ); } } #endif } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else ( void ) xTaskResumeAll(); #endif // ESP_PLATFORM return pxTCB; } #endif /* INCLUDE_xTaskGetHandle */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime ) { UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES; #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { /* Is there a space in the array for each task in the system? */ if( uxArraySize >= uxCurrentNumberOfTasks ) { /* Fill in an TaskStatus_t structure with information on each * task in the Ready state. */ do { uxQueue--; uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady ); } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ /* Fill in an TaskStatus_t structure with information on each * task in the Blocked state. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked ); uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked ); #if ( INCLUDE_vTaskDelete == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task that has been deleted but not yet cleaned up. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted ); } #endif #if ( INCLUDE_vTaskSuspend == 1 ) { /* Fill in an TaskStatus_t structure with information on * each task in the Suspended state. */ uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended ); } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { if( pulTotalRunTime != NULL ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) ); #else *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); #endif } } #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ { if( pulTotalRunTime != NULL ) { *pulTotalRunTime = 0; } } #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */ } else { mtCOVERAGE_TEST_MARKER(); } } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else ( void ) xTaskResumeAll(); #endif // ESP_PLATFORM return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) TaskHandle_t xTaskGetIdleTaskHandle( void ) { /* If xTaskGetIdleTaskHandle() is called before the scheduler has been * started, then xIdleTaskHandle will be NULL. */ configASSERT( ( xIdleTaskHandle[xPortGetCoreID()] != NULL ) ); return xIdleTaskHandle[xPortGetCoreID()]; } TaskHandle_t xTaskGetIdleTaskHandleForCPU( UBaseType_t cpuid ) { configASSERT( cpuid < configNUM_CORES ); configASSERT( ( xIdleTaskHandle[cpuid] != NULL ) ); return xIdleTaskHandle[cpuid]; } #endif /* INCLUDE_xTaskGetIdleTaskHandle */ /*----------------------------------------------------------*/ /* This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure vTaskStepTick() is available when user defined low power mode * implementations require configUSE_TICKLESS_IDLE to be set to a value other than * 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) void vTaskStepTick( const TickType_t xTicksToJump ) { /* Correct the tick count value after a period during which the tick * was suppressed. Note this does *not* call the tick hook function for * each stepped tick. */ taskENTER_CRITICAL(); configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime ); xTickCount += xTicksToJump; traceINCREASE_TICK_COUNT( xTicksToJump ); taskEXIT_CRITICAL(); } #endif /* configUSE_TICKLESS_IDLE */ /*----------------------------------------------------------*/ BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ) { #ifdef ESP_PLATFORM BaseType_t xYieldRequired = pdFALSE; #else BaseType_t xYieldOccurred; #endif // ESP_PLATFORM /* Must not be called with the scheduler suspended as the implementation * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */ configASSERT( uxSchedulerSuspended[xPortGetCoreID()] == 0 ); /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occuring when * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */ #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM xPendedTicks += xTicksToCatchUp; #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); return xYieldRequired; #else xYieldOccurred = xTaskResumeAll(); return xYieldOccurred; #endif // ESP_PLATFORM } /*----------------------------------------------------------*/ #if ( INCLUDE_xTaskAbortDelay == 1 ) BaseType_t xTaskAbortDelay( TaskHandle_t xTask ) { TCB_t * pxTCB = xTask; BaseType_t xReturn; configASSERT( pxTCB ); #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { /* A task can only be prematurely removed from the Blocked state if * it is actually in the Blocked state. */ if( eTaskGetState( xTask ) == eBlocked ) { xReturn = pdPASS; /* Remove the reference to the task from the blocked list. An * interrupt won't touch the xStateListItem because the * scheduler is suspended. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove it from * the event list too. Interrupts can touch the event list item, * even though the scheduler is suspended, so a critical section * is used. */ taskENTER_CRITICAL(); { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); /* This lets the task know it was forcibly removed from the * blocked state so it should not re-evaluate its block time and * then block again. */ pxTCB->ucDelayAborted = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); /* Place the unblocked task into the appropriate ready list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate context * switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { /* Preemption is on, but a context switch should only be * performed if the unblocked task has a priority that is * equal to or higher than the currently executing task. */ if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* Pend the yield to be performed when the scheduler * is unsuspended. */ xYieldPending[xPortGetCoreID()] = pdTRUE; } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ } else { xReturn = pdFAIL; } } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else ( void ) xTaskResumeAll(); #endif // ESP_PLATFORM return xReturn; } #endif /* INCLUDE_xTaskAbortDelay */ /*----------------------------------------------------------*/ BaseType_t xTaskIncrementTick( void ) { TCB_t * pxTCB; TickType_t xItemValue; BaseType_t xSwitchRequired = pdFALSE; /* Only allow core 0 increase the tick count in the case of xPortSysTickHandler processing. */ /* And allow core 0 and core 1 to unwind uxPendedTicks during xTaskResumeAll. */ if (xPortInIsrContext()) { #if ( configUSE_TICK_HOOK == 1 ) vApplicationTickHook(); #endif /* configUSE_TICK_HOOK */ #if ( CONFIG_FREERTOS_LEGACY_HOOKS == 1 ) esp_vApplicationTickHook(); #endif /* CONFIG_FREERTOS_LEGACY_HOOKS */ if (xPortGetCoreID() != 0 ) { return pdTRUE; } } /* Called by the portable layer each time a tick interrupt occurs. * Increments the tick then checks to see if the new tick value will cause any * tasks to be unblocked. */ traceTASK_INCREMENT_TICK( xTickCount ); if( uxSchedulerSuspended[xPortGetCoreID()] == ( UBaseType_t ) pdFALSE ) { taskENTER_CRITICAL_ISR(); /* Minor optimisation. The tick count cannot change in this * block. */ const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1; /* Increment the RTOS tick, switching the delayed and overflowed * delayed lists if it wraps to 0. */ xTickCount = xConstTickCount; if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */ { taskSWITCH_DELAYED_LISTS(); } else { mtCOVERAGE_TEST_MARKER(); } /* See if this tick has made a timeout expire. Tasks are stored in * the queue in the order of their wake time - meaning once one task * has been found whose block time has not expired there is no need to * look any further down the list. */ if( xConstTickCount >= xNextTaskUnblockTime ) { for( ; ; ) { if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The delayed list is empty. Set xNextTaskUnblockTime * to the maximum possible value so it is extremely * unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass * next time through. */ xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ break; } else { /* The delayed list is not empty, get the value of the * item at the head of the delayed list. This is the time * at which the task at the head of the delayed list must * be removed from the Blocked state. */ pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) ); if( xConstTickCount < xItemValue ) { /* It is not time to unblock this item yet, but the * item value is the time at which the task at the head * of the blocked list must be removed from the Blocked * state - so record the item value in * xNextTaskUnblockTime. */ xNextTaskUnblockTime = xItemValue; break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */ } else { mtCOVERAGE_TEST_MARKER(); } /* It is time to remove the item from the Blocked state. */ ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); /* Is the task waiting on an event also? If so remove * it from the event list. */ if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { ( void ) uxListRemove( &( pxTCB->xEventListItem ) ); } else { mtCOVERAGE_TEST_MARKER(); } /* Place the unblocked task into the appropriate ready * list. */ prvAddTaskToReadyList( pxTCB ); /* A task being unblocked cannot cause an immediate * context switch if preemption is turned off. */ #if ( configUSE_PREEMPTION == 1 ) { /* Preemption is on, but a context switch should * only be performed if the unblocked task has a * priority that is equal to or higher than the * currently executing task. */ if( pxTCB->uxPriority >= pxCurrentTCB[xPortGetCoreID()]->uxPriority ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ } } } /* Tasks of equal priority to the currently running task will share * processing time (time slice) if preemption is on, and the application * writer has not explicitly turned time slicing off. */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) { if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[xPortGetCoreID()]->uxPriority ] ) ) > ( UBaseType_t ) 1 ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */ taskEXIT_CRITICAL_ISR(); } else { ++xPendedTicks; } #if ( configUSE_PREEMPTION == 1 ) { if( xYieldPending[xPortGetCoreID()] != pdFALSE ) { xSwitchRequired = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_PREEMPTION */ return xSwitchRequired; } /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) { TCB_t * xTCB; /* If xTask is NULL then it is the task hook of the calling task that is * getting set. */ if( xTask == NULL ) { xTCB = ( TCB_t * ) pxCurrentTCB[xPortGetCoreID()]; } else { xTCB = xTask; } /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL(); { xTCB->pxTaskTag = pxHookFunction; } taskEXIT_CRITICAL(); } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ taskENTER_CRITICAL(); { xReturn = pxTCB->pxTaskTag; } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask ) { TCB_t * pxTCB; TaskHookFunction_t xReturn; UBaseType_t uxSavedInterruptStatus; /* If xTask is NULL then set the calling task's hook. */ pxTCB = prvGetTCBFromHandle( xTask ); /* Save the hook function in the TCB. A critical section is required as * the value can be accessed from an interrupt. */ portENTER_CRITICAL_ISR(&xTaskQueueMutex); { xReturn = pxTCB->pxTaskTag; } portEXIT_CRITICAL_ISR(&xTaskQueueMutex); return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #if ( configUSE_APPLICATION_TASK_TAG == 1 ) BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void * pvParameter ) { TCB_t * xTCB; BaseType_t xReturn; /* If xTask is NULL then we are calling our own task hook. */ if( xTask == NULL ) { xTCB = xTaskGetCurrentTaskHandle(); } else { xTCB = xTask; } if( xTCB->pxTaskTag != NULL ) { xReturn = xTCB->pxTaskTag( pvParameter ); } else { xReturn = pdFAIL; } return xReturn; } #endif /* configUSE_APPLICATION_TASK_TAG */ /*-----------------------------------------------------------*/ #ifdef ESP_PLATFORM #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) static void taskSelectHighestPriorityTaskSMP( void ) { /* This function is called from a critical section. So some optimizations are made */ BaseType_t uxCurPriority; BaseType_t xTaskScheduled = pdFALSE; BaseType_t xNewTopPrioritySet = pdFALSE; BaseType_t xCoreID = xPortGetCoreID(); /* Optimization: Read once */ /* Search for tasks, starting form the highest ready priority. If nothing is * found, we eventually default to the IDLE tasks at priority 0 */ for ( uxCurPriority = uxTopReadyPriority; uxCurPriority >= 0 && xTaskScheduled == pdFALSE; uxCurPriority-- ) { /* Check if current priority has one or more ready tasks. Skip if none */ if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurPriority ] ) ) ) { continue; } /* Save a copy of highest priority that has a ready state task */ if( xNewTopPrioritySet == pdFALSE ) { xNewTopPrioritySet = pdTRUE; uxTopReadyPriority = uxCurPriority; } /* We now search this priority's ready task list for a runnable task. * We always start searching from the head of the list, so we reset * pxIndex to point to the tail so that we start walking the list from * the first item */ pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd ); /* Get the first item on the list */ TCB_t * pxTCBCur; TCB_t * pxTCBFirst; listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) ); pxTCBFirst = pxTCBCur; do { /* Check if the current task is currently being executed. However, if * it's being executed by the current core, we can still schedule it. * Todo: Each task can store a xTaskRunState, instead of needing to * check each core */ UBaseType_t ux; for( ux = 0; ux < ( UBaseType_t )configNUM_CORES; ux++ ) { if ( ux == xCoreID ) { continue; } else if ( pxCurrentTCB[ux] == pxTCBCur ) { /* Current task is already being executed. Get the next task */ goto get_next_task; } } /* Check if the current task has a compatible affinity */ if ( ( pxTCBCur->xCoreID != xCoreID ) && ( pxTCBCur->xCoreID != tskNO_AFFINITY ) ) { goto get_next_task; } /* The current task is runnable. Schedule it */ pxCurrentTCB[ xCoreID ] = pxTCBCur; xTaskScheduled = pdTRUE; /* Move the current tasks list item to the back of the list in order * to implement best effort round robin. To do this, we need to reset * the pxIndex to point to the tail again. */ pxReadyTasksLists[ uxCurPriority ].pxIndex = ( ListItem_t * ) &( pxReadyTasksLists[ uxCurPriority ].xListEnd ); uxListRemove( &( pxTCBCur->xStateListItem ) ); vListInsertEnd( &( pxReadyTasksLists[ uxCurPriority ] ), &( pxTCBCur->xStateListItem ) ); break; get_next_task: /* The current task cannot be scheduled. Get the next task in the list */ listGET_OWNER_OF_NEXT_ENTRY( pxTCBCur, &( pxReadyTasksLists[ uxCurPriority ] ) ); } while( pxTCBCur != pxTCBFirst); /* Check to see if we've walked the entire list */ } assert( xTaskScheduled == pdTRUE ); /* At this point, a task MUST have been scheduled */ } #endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */ #endif //ESP_PLATFORM void vTaskSwitchContext( void ) { #ifdef ESP_PLATFORM /* vTaskSwitchContext is called either from: * - ISR dispatcher when return from an ISR (interrupts will already be disabled) * - vTaskSuspend() which is not in a critical section * Therefore, we enter a critical section ISR version to ensure safety */ taskENTER_CRITICAL_ISR(); #endif // ESP_PLATFORM if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) pdFALSE ) { /* The scheduler is currently suspended - do not allow a context * switch. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else { xYieldPending[ xPortGetCoreID() ] = pdFALSE; #ifdef ESP_PLATFORM xSwitchingContext[ xPortGetCoreID() ] = pdTRUE; #endif // ESP_PLATFORM traceTASK_SWITCHED_OUT(); #if ( configGENERATE_RUN_TIME_STATS == 1 ) { #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime ); #else ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE(); #endif /* Add the amount of time the task has been running to the * accumulated time so far. The time the task started running was * stored in ulTaskSwitchedInTime. Note that there is no overflow * protection here so count values are only valid until the timer * overflows. The guard against negative values is to protect * against suspect run time stat counter implementations - which * are provided by the application, not the kernel. */ if( ulTotalRunTime > ulTaskSwitchedInTime[ xPortGetCoreID() ] ) { pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xPortGetCoreID() ] ); } else { mtCOVERAGE_TEST_MARKER(); } ulTaskSwitchedInTime[ xPortGetCoreID() ] = ulTotalRunTime; } #endif /* configGENERATE_RUN_TIME_STATS */ /* Check for stack overflow, if configured. */ #ifdef ESP_PLATFORM taskFIRST_CHECK_FOR_STACK_OVERFLOW(); taskSECOND_CHECK_FOR_STACK_OVERFLOW(); #else taskCHECK_FOR_STACK_OVERFLOW(); /* Before the currently running task is switched out, save its errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { pxCurrentTCB->iTaskErrno = FreeRTOS_errno; } #endif #endif // ESP_PLATFORM /* Select a new task to run using either the generic C or port * optimised asm code. */ taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ traceTASK_SWITCHED_IN(); #ifdef ESP_PLATFORM xSwitchingContext[ xPortGetCoreID() ] = pdFALSE; #if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK vPortSetStackWatchpoint(pxCurrentTCB[xPortGetCoreID()]->pxStack); #endif #else /* After the new task is switched in, update the global errno. */ #if ( configUSE_POSIX_ERRNO == 1 ) { FreeRTOS_errno = pxCurrentTCB->iTaskErrno; } #endif #if ( configUSE_NEWLIB_REENTRANT == 1 ) { /* Switch Newlib's _impure_ptr variable to point to the _reent * structure specific to this task. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ _impure_ptr = &( pxCurrentTCB->xNewLib_reent ); } #endif /* configUSE_NEWLIB_REENTRANT */ #endif // ESP_PLATFORM } #ifdef ESP_PLATFORM /* Exit the critical section previously entered */ taskEXIT_CRITICAL_ISR(); #endif // ESP_PLATFORM } /*-----------------------------------------------------------*/ void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) { configASSERT( pxEventList ); taskENTER_CRITICAL(); /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */ /* Place the event list item of the TCB in the appropriate event list. * This is placed in the list in priority order so the highest priority task * is the first to be woken by the event. The queue that contains the event * list is locked, preventing simultaneous access from interrupts. */ vListInsert( pxEventList, &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToWait); taskEXIT_CRITICAL(); } /*-----------------------------------------------------------*/ void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) { configASSERT( pxEventList ); taskENTER_CRITICAL(); /* Store the item value in the event list item. It is safe to access the * event list item here as interrupts won't access the event list item of a * task that is not in the Blocked state. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Place the event list item of the TCB at the end of the appropriate event * list. It is safe to access the event list here because it is part of an * event group implementation - and interrupts don't access event groups * directly (instead they access them indirectly by pending function calls to * the task level). */ vListInsertEnd( pxEventList, &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ) ); prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToWait ); taskEXIT_CRITICAL(); } /*-----------------------------------------------------------*/ #if ( configUSE_TIMERS == 1 ) void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, TickType_t xTicksToWait, const BaseType_t xWaitIndefinitely ) { taskENTER_CRITICAL(); configASSERT( pxEventList ); /* This function should not be called by application code hence the * 'Restricted' in its name. It is not part of the public API. It is * designed for use by kernel code, and has special calling requirements - * it should be called with the scheduler suspended. */ /* Place the event list item of the TCB in the appropriate event list. * In this case it is assume that this is the only task that is going to * be waiting on this event list, so the faster vListInsertEnd() function * can be used in place of vListInsert. */ vListInsertEnd( pxEventList, &( pxCurrentTCB[xPortGetCoreID()]->xEventListItem ) ); /* If the task should block indefinitely then set the block time to a * value that will be recognised as an indefinite delay inside the * prvAddCurrentTaskToDelayedList() function. */ if( xWaitIndefinitely != pdFALSE ) { xTicksToWait = portMAX_DELAY; } traceTASK_DELAY_UNTIL( ); prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToWait ); taskEXIT_CRITICAL(); } #endif /* configUSE_TIMERS */ /*-----------------------------------------------------------*/ BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) { TCB_t * pxUnblockedTCB; BaseType_t xReturn; BaseType_t xTaskCanBeReady; UBaseType_t i, uxTargetCPU; taskENTER_CRITICAL_ISR(); /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be * called from a critical section within an ISR. */ /* The event list is sorted in priority order, so the first in the list can * be removed as it is known to be the highest priority. Remove the TCB from * the delayed list, and add it to the ready list. * * If an event is for a queue that is locked then this function will never * get called - the lock count on the queue will get modified instead. This * means exclusive access to the event list is guaranteed here. * * This function assumes that a check has already been made to ensure that * pxEventList is not empty. */ if ( ( listLIST_IS_EMPTY( pxEventList ) ) == pdFALSE ) { pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ configASSERT( pxUnblockedTCB ); ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) ); } else { taskEXIT_CRITICAL_ISR(); return pdFALSE; } xTaskCanBeReady = pdFALSE; if ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) { uxTargetCPU = xPortGetCoreID(); for (i = 0; i < configNUM_CORES; i++) { if ( uxSchedulerSuspended[ i ] == ( UBaseType_t ) pdFALSE ) { xTaskCanBeReady = pdTRUE; break; } } } else { uxTargetCPU = pxUnblockedTCB->xCoreID; xTaskCanBeReady = uxSchedulerSuspended[ uxTargetCPU ] == ( UBaseType_t ) pdFALSE; } if( xTaskCanBeReady ) { ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold this task * pending until the scheduler is resumed on this CPU. */ vListInsertEnd( &( xPendingReadyList[ uxTargetCPU ] ), &( pxUnblockedTCB->xEventListItem ) ); } if ( tskCAN_RUN_HERE(pxUnblockedTCB->xCoreID) && pxUnblockedTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* Return true if the task removed from the event list has a higher * priority than the calling task. This allows the calling task to know if * it should force a context switch now. */ xReturn = pdTRUE; /* Mark that a yield is pending in case the user is not using the * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else if ( pxUnblockedTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxUnblockedTCB->xCoreID, pxUnblockedTCB->uxPriority ); xReturn = pdFALSE; } else { xReturn = pdFALSE; } #if( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked on a kernel object then xNextTaskUnblockTime might be set to the blocked task's time out time. If the task is unblocked for a reason other than a timeout xNextTaskUnblockTime is normally left unchanged, because it is automatically reset to a new value when the tick count equals xNextTaskUnblockTime. However if tickless idling is used it might be more important to enter sleep mode at the earliest possible time - so reset xNextTaskUnblockTime here to ensure it is updated at the earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif taskEXIT_CRITICAL_ISR(); return xReturn; } /*-----------------------------------------------------------*/ void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) { TCB_t * pxUnblockedTCB; taskENTER_CRITICAL(); /* Store the new item value in the event list. */ listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE ); /* Remove the event list form the event flag. Interrupts do not access * event flags. */ pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem ); configASSERT( pxUnblockedTCB ); ( void ) uxListRemove( pxEventListItem ); /* Remove the task from the delayed list and add it to the ready list. The * scheduler is suspended so interrupts will not be accessing the ready * lists. */ ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) ); prvAddTaskToReadyList( pxUnblockedTCB ); if ( tskCAN_RUN_HERE(pxUnblockedTCB->xCoreID) && pxUnblockedTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* Mark that a yield is pending in case the user is not using the * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */ xYieldPending[ xPortGetCoreID() ] = pdTRUE; } else if ( pxUnblockedTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxUnblockedTCB->xCoreID, pxUnblockedTCB->uxPriority ); } taskEXIT_CRITICAL(); } /*-----------------------------------------------------------*/ void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) { configASSERT( pxTimeOut ); taskENTER_CRITICAL(); { pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; } taskEXIT_CRITICAL(); } /*-----------------------------------------------------------*/ void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ) { /* For internal use only as it does not use a critical section. */ pxTimeOut->xOverflowCount = xNumOfOverflows; pxTimeOut->xTimeOnEntering = xTickCount; } /*-----------------------------------------------------------*/ BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) { BaseType_t xReturn; configASSERT( pxTimeOut ); configASSERT( pxTicksToWait ); taskENTER_CRITICAL(); { /* Minor optimisation. The tick count cannot change in this block. */ const TickType_t xConstTickCount = xTickCount; const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering; #if ( INCLUDE_xTaskAbortDelay == 1 ) if( pxCurrentTCB[xPortGetCoreID()]->ucDelayAborted != ( uint8_t ) pdFALSE ) { /* The delay was aborted, which is not the same as a time out, * but has the same result. */ pxCurrentTCB[xPortGetCoreID()]->ucDelayAborted = pdFALSE; xReturn = pdTRUE; } else #endif #if ( INCLUDE_vTaskSuspend == 1 ) if( *pxTicksToWait == portMAX_DELAY ) { /* If INCLUDE_vTaskSuspend is set to 1 and the block time * specified is the maximum block time then the task should block * indefinitely, and therefore never time out. */ xReturn = pdFALSE; } else #endif if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */ { /* The tick count is greater than the time at which * vTaskSetTimeout() was called, but has also overflowed since * vTaskSetTimeOut() was called. It must have wrapped all the way * around and gone past again. This passed since vTaskSetTimeout() * was called. */ xReturn = pdTRUE; } else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */ { /* Not a genuine timeout. Adjust parameters for time remaining. */ *pxTicksToWait -= xElapsedTime; vTaskInternalSetTimeOutState( pxTimeOut ); xReturn = pdFALSE; } else { *pxTicksToWait = 0; xReturn = pdTRUE; } } taskEXIT_CRITICAL(); return xReturn; } /*-----------------------------------------------------------*/ void vTaskMissedYield( void ) { xYieldPending[xPortGetCoreID()] = pdTRUE; } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) { UBaseType_t uxReturn; TCB_t const * pxTCB; if( xTask != NULL ) { pxTCB = xTask; uxReturn = pxTCB->uxTaskNumber; } else { uxReturn = 0U; } return uxReturn; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) { TCB_t * pxTCB; if( xTask != NULL ) { pxTCB = xTask; pxTCB->uxTaskNumber = uxHandle; } } #endif /* configUSE_TRACE_FACILITY */ /* * ----------------------------------------------------------- * The Idle task. * ---------------------------------------------------------- * * The portTASK_FUNCTION() macro is used to allow port/compiler specific * language extensions. The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */ static portTASK_FUNCTION( prvIdleTask, pvParameters ) { /* Stop warnings. */ ( void ) pvParameters; /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE * SCHEDULER IS STARTED. **/ /* In case a task that has a secure context deletes itself, in which case * the idle task is responsible for deleting the task's secure context, if * any. */ portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE ); for( ; ; ) { /* See if any tasks have deleted themselves - if so then the idle task * is responsible for freeing the deleted task's TCB and stack. */ prvCheckTasksWaitingTermination(); #if ( configUSE_PREEMPTION == 0 ) { /* If we are not using preemption we keep forcing a task switch to * see if any other task has become available. If we are using * preemption we don't need to do this as any task becoming available * will automatically get the processor anyway. */ taskYIELD(); } #endif /* configUSE_PREEMPTION */ #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) { /* When using preemption tasks of equal priority will be * timesliced. If a task that is sharing the idle priority is ready * to run then the idle task should yield before the end of the * timeslice. * * A critical region is not required here as we are just reading from * the list, and an occasional incorrect value will not matter. If * the ready list at the idle priority contains more than one task * then a task other than the idle task is ready to execute. */ if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 ) { taskYIELD(); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */ #if ( configUSE_IDLE_HOOK == 1 ) { extern void vApplicationIdleHook( void ); /* Call the user defined function from within the idle task. This * allows the application designer to add background functionality * without the overhead of a separate task. * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES, * CALL A FUNCTION THAT MIGHT BLOCK. */ vApplicationIdleHook(); } #endif /* configUSE_IDLE_HOOK */ #if ( CONFIG_FREERTOS_LEGACY_HOOKS == 1 ) { /* Call the esp-idf hook system */ esp_vApplicationIdleHook(); } #endif /* CONFIG_FREERTOS_LEGACY_HOOKS */ /* This conditional compilation should use inequality to 0, not equality * to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when * user defined low power mode implementations require * configUSE_TICKLESS_IDLE to be set to a value other than 1. */ #if ( configUSE_TICKLESS_IDLE != 0 ) { TickType_t xExpectedIdleTime; /* It is not desirable to suspend then resume the scheduler on * each iteration of the idle task. Therefore, a preliminary * test of the expected idle time is performed without the * scheduler suspended. The result here is not necessarily * valid. */ xExpectedIdleTime = prvGetExpectedIdleTime(); if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { /* Now the scheduler is suspended, the expected idle * time can be sampled again, and this time its value can * be used. */ configASSERT( xNextTaskUnblockTime >= xTickCount ); xExpectedIdleTime = prvGetExpectedIdleTime(); /* Define the following macro to set xExpectedIdleTime to 0 * if the application does not want * portSUPPRESS_TICKS_AND_SLEEP() to be called. */ configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime ); if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP ) { traceLOW_POWER_IDLE_BEGIN(); portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ); traceLOW_POWER_IDLE_END(); } else { mtCOVERAGE_TEST_MARKER(); } } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else ( void ) xTaskResumeAll(); #endif // ESP_PLATFORM } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* configUSE_TICKLESS_IDLE */ } } /*-----------------------------------------------------------*/ #if ( configUSE_TICKLESS_IDLE != 0 ) eSleepModeStatus eTaskConfirmSleepModeStatus( void ) { /* The idle task exists in addition to the application tasks. */ const UBaseType_t uxNonApplicationTasks = 1; eSleepModeStatus eReturn = eStandardSleep; taskENTER_CRITICAL(); if( listCURRENT_LIST_LENGTH( &xPendingReadyList[xPortGetCoreID()] ) != 0 ) { /* A task was made ready while the scheduler was suspended. */ eReturn = eAbortSleep; } else if( xYieldPending[xPortGetCoreID()] != pdFALSE ) { /* A yield was pended while the scheduler was suspended. */ eReturn = eAbortSleep; } else { /* If all the tasks are in the suspended list (which might mean they * have an infinite block time rather than actually being suspended) * then it is safe to turn all clocks off and just wait for external * interrupts. */ if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) ) { eReturn = eNoTasksWaitingTimeout; } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); return eReturn; } #endif /* configUSE_TICKLESS_IDLE */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) #if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue , TlsDeleteCallbackFunction_t xDelCallback) { TCB_t *pxTCB; if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) { taskENTER_CRITICAL(); pxTCB = prvGetTCBFromHandle( xTaskToSet ); pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; pxTCB->pvThreadLocalStoragePointersDelCallback[ xIndex ] = xDelCallback; taskEXIT_CRITICAL(); } } void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue ) { vTaskSetThreadLocalStoragePointerAndDelCallback( xTaskToSet, xIndex, pvValue, (TlsDeleteCallbackFunction_t)NULL ); } #else void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void * pvValue ) { TCB_t * pxTCB; if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) { taskENTER_CRITICAL(); pxTCB = prvGetTCBFromHandle( xTaskToSet ); pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue; taskEXIT_CRITICAL(); } } #endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS */ #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 ) void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) { void * pvReturn = NULL; TCB_t * pxTCB; if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS ) { pxTCB = prvGetTCBFromHandle( xTaskToQuery ); pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ]; } else { pvReturn = NULL; } return pvReturn; } #endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */ /*-----------------------------------------------------------*/ #if ( portUSING_MPU_WRAPPERS == 1 ) void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions ) { TCB_t * pxTCB; /* If null is passed in here then we are modifying the MPU settings of * the calling task. */ pxTCB = prvGetTCBFromHandle( xTaskToModify ); vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 ); } #endif /* portUSING_MPU_WRAPPERS */ /*-----------------------------------------------------------*/ static void prvInitialiseTaskLists( void ) { UBaseType_t uxPriority; for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ ) { vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) ); } vListInitialise( &xDelayedTaskList1 ); vListInitialise( &xDelayedTaskList2 ); #if ( configNUM_CORES > 1 ) for(BaseType_t i = 0; i < configNUM_CORES; i++) { vListInitialise( &xPendingReadyList[ i ] ); } #else vListInitialise( &xPendingReadyList[xPortGetCoreID()] ); #endif #if ( INCLUDE_vTaskDelete == 1 ) { vListInitialise( &xTasksWaitingTermination ); } #endif /* INCLUDE_vTaskDelete */ #if ( INCLUDE_vTaskSuspend == 1 ) { vListInitialise( &xSuspendedTaskList ); } #endif /* INCLUDE_vTaskSuspend */ /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList * using list2. */ pxDelayedTaskList = &xDelayedTaskList1; pxOverflowDelayedTaskList = &xDelayedTaskList2; } /*-----------------------------------------------------------*/ static void prvCheckTasksWaitingTermination( void ) { /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/ #if ( INCLUDE_vTaskDelete == 1 ) { BaseType_t xListIsEmpty; BaseType_t core = xPortGetCoreID(); /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL() * being called too often in the idle task. */ while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U ) { TCB_t *pxTCB = NULL; taskENTER_CRITICAL(); { xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination ); if( xListIsEmpty == pdFALSE ) { /* We only want to kill tasks that ran on this core because e.g. _xt_coproc_release needs to be called on the core the process is pinned on, if any */ ListItem_t *target = listGET_HEAD_ENTRY(&xTasksWaitingTermination); for( ; target != listGET_END_MARKER(&xTasksWaitingTermination); target = listGET_NEXT(target) ){ //Walk the list TCB_t *tgt_tcb = ( TCB_t * )listGET_LIST_ITEM_OWNER(target); int affinity = tgt_tcb->xCoreID; //Self deleting tasks are added to Termination List before they switch context. Ensure they aren't still currently running if( pxCurrentTCB[core] == tgt_tcb || (configNUM_CORES > 1 && pxCurrentTCB[!core] == tgt_tcb) ){ continue; //Can't free memory of task that is still running } if(affinity == core || affinity == tskNO_AFFINITY){ //Find first item not pinned to other core pxTCB = tgt_tcb; break; } } if(pxTCB != NULL){ ( void ) uxListRemove( target ); //Remove list item from list --uxCurrentNumberOfTasks; --uxDeletedTasksWaitingCleanUp; } } } taskEXIT_CRITICAL(); //Need to call deletion callbacks outside critical section if (pxTCB != NULL) { //Call deletion callbacks and free TCB memory #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) prvDeleteTLS( pxTCB ); #endif prvDeleteTCB( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); break; //No TCB found that could be freed by this core, break out of loop } } } #endif /* INCLUDE_vTaskDelete */ } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) void vTaskGetInfo( TaskHandle_t xTask, TaskStatus_t * pxTaskStatus, BaseType_t xGetFreeStackSpace, eTaskState eState ) { TCB_t * pxTCB; /* xTask is NULL then get the state of the calling task. */ pxTCB = prvGetTCBFromHandle( xTask ); pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB; pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] ); pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority; pxTaskStatus->pxStackBase = pxTCB->pxStack; pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber; #if ( configTASKLIST_INCLUDE_COREID == 1 ) pxTaskStatus->xCoreID = pxTCB->xCoreID; #endif /* configTASKLIST_INCLUDE_COREID */ #if ( configUSE_MUTEXES == 1 ) { pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority; } #else { pxTaskStatus->uxBasePriority = 0; } #endif #if ( configGENERATE_RUN_TIME_STATS == 1 ) { pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter; } #else { pxTaskStatus->ulRunTimeCounter = 0; } #endif /* Obtaining the task state is a little fiddly, so is only done if the * value of eState passed into this function is eInvalid - otherwise the * state is just set to whatever is passed in. */ if( eState != eInvalid ) { if( pxTCB == pxCurrentTCB[xPortGetCoreID()] ) { pxTaskStatus->eCurrentState = eRunning; } else { pxTaskStatus->eCurrentState = eState; #if ( INCLUDE_vTaskSuspend == 1 ) { /* If the task is in the suspended list then there is a * chance it is actually just blocked indefinitely - so really * it should be reported as being in the Blocked state. */ if( eState == eSuspended ) { #ifdef ESP_PLATFORM // IDF-3755 taskENTER_CRITICAL(); #else vTaskSuspendAll(); #endif // ESP_PLATFORM { if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL ) { pxTaskStatus->eCurrentState = eBlocked; } } #ifdef ESP_PLATFORM // IDF-3755 taskEXIT_CRITICAL(); #else ( void ) xTaskResumeAll(); #endif // ESP_PLATFORM } } #endif /* INCLUDE_vTaskSuspend */ } } else { pxTaskStatus->eCurrentState = eTaskGetState( pxTCB ); } /* Obtaining the stack space takes some time, so the xGetFreeStackSpace * parameter is provided to allow it to be skipped. */ if( xGetFreeStackSpace != pdFALSE ) { #if ( portSTACK_GROWTH > 0 ) { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack ); } #else { pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack ); } #endif } else { pxTaskStatus->usStackHighWaterMark = 0; } } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ BaseType_t xTaskGetAffinity( TaskHandle_t xTask ) { TCB_t *pxTCB; pxTCB = prvGetTCBFromHandle( xTask ); return pxTCB->xCoreID; } /*-----------------------------------------------------------*/ #if ( configUSE_TRACE_FACILITY == 1 ) static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray, List_t * pxList, eTaskState eState ) { configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB; UBaseType_t uxTask = 0; if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 ) { listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ /* Populate an TaskStatus_t structure within the * pxTaskStatusArray array for each task that is referenced from * pxList. See the definition of TaskStatus_t in task.h for the * meaning of each TaskStatus_t structure member. */ do { listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState ); uxTask++; } while( pxNextTCB != pxFirstTCB ); } else { mtCOVERAGE_TEST_MARKER(); } return uxTask; } #endif /* configUSE_TRACE_FACILITY */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) { uint32_t ulCount = 0U; while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE ) { pucStackByte -= portSTACK_GROWTH; ulCount++; } ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */ return ( configSTACK_DEPTH_TYPE ) ulCount; } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the * same except for their return type. Using configSTACK_DEPTH_TYPE allows the * user to determine the return type. It gets around the problem of the value * overflowing on 8-bit types without breaking backward compatibility for * applications that expect an 8-bit return type. */ configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; configSTACK_DEPTH_TYPE uxReturn; /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are * the same except for their return type. Using configSTACK_DEPTH_TYPE * allows the user to determine the return type. It gets around the * problem of the value overflowing on 8-bit types without breaking * backward compatibility for applications that expect an 8-bit return * type. */ pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */ /*-----------------------------------------------------------*/ #if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) { TCB_t * pxTCB; uint8_t * pucEndOfStack; UBaseType_t uxReturn; pxTCB = prvGetTCBFromHandle( xTask ); #if portSTACK_GROWTH < 0 { pucEndOfStack = ( uint8_t * ) pxTCB->pxStack; } #else { pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack; } #endif uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack ); return uxReturn; } #endif /* INCLUDE_uxTaskGetStackHighWaterMark */ /*-----------------------------------------------------------*/ #if (INCLUDE_pxTaskGetStackStart == 1) uint8_t* pxTaskGetStackStart( TaskHandle_t xTask) { TCB_t *pxTCB; uint8_t* uxReturn; pxTCB = prvGetTCBFromHandle( xTask ); uxReturn = (uint8_t*)pxTCB->pxStack; return uxReturn; } #endif /* INCLUDE_pxTaskGetStackStart */ #if ( INCLUDE_vTaskDelete == 1 ) static void prvDeleteTCB( TCB_t * pxTCB ) { /* This call is required specifically for the TriCore port. It must be * above the vPortFree() calls. The call is also used by ports/demos that * want to allocate and clean RAM statically. */ portCLEAN_UP_TCB( pxTCB ); /* Free up the memory allocated by the scheduler for the task. It is up * to the task to free any memory allocated at the application level. * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html * for additional information. */ #if ( configUSE_NEWLIB_REENTRANT == 1 ) { _reclaim_reent( &( pxTCB->xNewLib_reent ) ); } #endif /* configUSE_NEWLIB_REENTRANT */ #if ( portUSING_MPU_WRAPPERS == 1 ) vPortReleaseTaskMPUSettings( &( pxTCB->xMPUSettings) ); #endif #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) ) { /* The task can only have been allocated dynamically - free both * the stack and TCB. */ vPortFree( pxTCB->pxStack ); vPortFree( pxTCB ); } #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */ { /* The task could have been allocated statically or dynamically, so * check what was statically allocated before trying to free the * memory. */ if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ) { /* Both the stack and TCB were allocated dynamically, so both * must be freed. */ vPortFree( pxTCB->pxStack ); vPortFree( pxTCB ); } else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY ) { /* Only the stack was statically allocated, so the TCB is the * only memory that must be freed. */ vPortFree( pxTCB ); } else { /* Neither the stack nor the TCB were allocated dynamically, so * nothing needs to be freed. */ configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB ); mtCOVERAGE_TEST_MARKER(); } } #endif /* configSUPPORT_DYNAMIC_ALLOCATION */ } #endif /* INCLUDE_vTaskDelete */ /*-----------------------------------------------------------*/ #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) static void prvDeleteTLS( TCB_t *pxTCB ) { configASSERT( pxTCB ); for( int x = 0; x < configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ ) { if (pxTCB->pvThreadLocalStoragePointersDelCallback[ x ] != NULL) //If del cb is set { pxTCB->pvThreadLocalStoragePointersDelCallback[ x ](x, pxTCB->pvThreadLocalStoragePointers[ x ]); //Call del cb } } } #endif /* ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) */ /*-----------------------------------------------------------*/ static void prvResetNextTaskUnblockTime( void ) { TCB_t * pxTCB; if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE ) { /* The new current delayed list is empty. Set xNextTaskUnblockTime to * the maximum possible value so it is extremely unlikely that the * if( xTickCount >= xNextTaskUnblockTime ) test will pass until * there is an item in the delayed list. */ xNextTaskUnblockTime = portMAX_DELAY; } else { /* The new current delayed list is not empty, get the value of * the item at the head of the delayed list. This is the time at * which the task at the head of the delayed list should be removed * from the Blocked state. */ ( pxTCB ) = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too. Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */ xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xStateListItem ) ); } } /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) || (configNUM_CORES > 1) ) TaskHandle_t xTaskGetCurrentTaskHandle( void ) { TaskHandle_t xReturn; unsigned state; state = portSET_INTERRUPT_MASK_FROM_ISR(); xReturn = pxCurrentTCB[ xPortGetCoreID() ]; portCLEAR_INTERRUPT_MASK_FROM_ISR(state); return xReturn; } TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t cpuid ) { TaskHandle_t xReturn=NULL; //Xtensa-specific: the pxCurrentPCB pointer is atomic so we shouldn't need a lock. if (cpuid < configNUM_CORES) { xReturn = pxCurrentTCB[ cpuid ]; } return xReturn; } #endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) BaseType_t xTaskGetSchedulerState( void ) { BaseType_t xReturn; if( xSchedulerRunning == pdFALSE ) { xReturn = taskSCHEDULER_NOT_STARTED; } else { if( uxSchedulerSuspended[xPortGetCoreID()] == ( UBaseType_t ) pdFALSE ) { xReturn = taskSCHEDULER_RUNNING; } else { xReturn = taskSCHEDULER_SUSPENDED; } } return xReturn; } #endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxMutexHolderTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; taskENTER_CRITICAL(); /* If the mutex was given back by an interrupt while the queue was * locked then the mutex holder might now be NULL. _RB_ Is this still * needed as interrupts can no longer use mutexes? */ if( pxMutexHolder != NULL ) { /* If the holder of the mutex has a priority below the priority of * the task attempting to obtain the mutex then it will temporarily * inherit the priority of the task attempting to obtain the mutex. */ if( pxMutexHolderTCB->uxPriority < pxCurrentTCB[xPortGetCoreID()]->uxPriority ) { /* Adjust the mutex holder state to account for its new * priority. Only reset the event list item value if the value is * not being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[xPortGetCoreID()]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the task being modified is in the ready state it will need * to be moved into a new list. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Inherit the priority before being moved into the new list. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB[xPortGetCoreID()]->uxPriority; prvAddTaskToReadyList( pxMutexHolderTCB ); } else { /* Just inherit the priority. */ pxMutexHolderTCB->uxPriority = pxCurrentTCB[xPortGetCoreID()]->uxPriority; } traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB[xPortGetCoreID()]->uxPriority ); /* Inheritance occurred. */ xReturn = pdTRUE; } else { if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB[xPortGetCoreID()]->uxPriority ) { /* The base priority of the mutex holder is lower than the * priority of the task attempting to take the mutex, but the * current priority of the mutex holder is not lower than the * priority of the task attempting to take the mutex. * Therefore the mutex holder must have already inherited a * priority, but inheritance would have occurred if that had * not been the case. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) { TCB_t * const pxTCB = pxMutexHolder; BaseType_t xReturn = pdFALSE; taskENTER_CRITICAL(); if( pxMutexHolder != NULL ) { /* A task can only have an inherited priority if it holds the mutex. * If the mutex is held by a task then it cannot be given from an * interrupt, and if a mutex is given by the holding task then it must * be the running state task. */ configASSERT( pxTCB == pxCurrentTCB[xPortGetCoreID()] ); configASSERT( pxTCB->uxMutexesHeld ); ( pxTCB->uxMutexesHeld )--; /* Has the holder of the mutex inherited the priority of another * task? */ if( pxTCB->uxPriority != pxTCB->uxBasePriority ) { /* Only disinherit if no other mutexes are held. */ if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 ) { /* A task can only have an inherited priority if it holds * the mutex. If the mutex is held by a task then it cannot be * given from an interrupt, and if a mutex is given by the * holding task then it must be the running state task. Remove * the holding task from the ready list. */ if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { taskRESET_READY_PRIORITY( pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } /* Disinherit the priority before adding the task into the * new ready list. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); pxTCB->uxPriority = pxTCB->uxBasePriority; /* Reset the event list item value. It cannot be in use for * any other purpose if this task is running, and it must be * running to give back the mutex. */ listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ prvAddTaskToReadyList( pxTCB ); /* Return true to indicate that a context switch is required. * This is only actually required in the corner case whereby * multiple mutexes were held and the mutexes were given back * in an order different to that in which they were taken. * If a context switch did not occur when the first mutex was * returned, even if a task was waiting on it, then a context * switch should occur when the last mutex is returned whether * a task is waiting on it or not. */ xReturn = pdTRUE; } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder, UBaseType_t uxHighestPriorityWaitingTask ) { TCB_t * const pxTCB = pxMutexHolder; UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse; const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1; taskENTER_CRITICAL(); if( pxMutexHolder != NULL ) { /* If pxMutexHolder is not NULL then the holder must hold at least * one mutex. */ configASSERT( pxTCB->uxMutexesHeld ); /* Determine the priority to which the priority of the task that * holds the mutex should be set. This will be the greater of the * holding task's base priority and the priority of the highest * priority task that is waiting to obtain the mutex. */ if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask ) { uxPriorityToUse = uxHighestPriorityWaitingTask; } else { uxPriorityToUse = pxTCB->uxBasePriority; } /* Does the priority need to change? */ if( pxTCB->uxPriority != uxPriorityToUse ) { /* Only disinherit if no other mutexes are held. This is a * simplification in the priority inheritance implementation. If * the task that holds the mutex is also holding other mutexes then * the other mutexes may have caused the priority inheritance. */ if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld ) { /* If a task has timed out because it already holds the * mutex it was trying to obtain then it cannot of inherited * its own priority. */ configASSERT( pxTCB != pxCurrentTCB[xPortGetCoreID()] ); /* Disinherit the priority, remembering the previous * priority to facilitate determining the subject task's * state. */ traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority ); uxPriorityUsedOnEntry = pxTCB->uxPriority; pxTCB->uxPriority = uxPriorityToUse; /* Only reset the event list item value if the value is not * being used for anything else. */ if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL ) { listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ } else { mtCOVERAGE_TEST_MARKER(); } /* If the running task is not the task that holds the mutex * then the task that holds the mutex could be in either the * Ready, Blocked or Suspended states. Only remove the task * from its current state list if it is in the Ready state as * the task's priority is going to change and there is one * Ready list per priority. */ if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE ) { if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* It is known that the task is in its ready list so * there is no need to check again and the port level * reset macro can be called directly. */ portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority ); } else { mtCOVERAGE_TEST_MARKER(); } prvAddTaskToReadyList( pxTCB ); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } taskEXIT_CRITICAL(); } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( portCRITICAL_NESTING_IN_TCB == 1 ) void vTaskEnterCritical( void ) { portDISABLE_INTERRUPTS(); if( xSchedulerRunning != pdFALSE ) { ( pxCurrentTCB[xPortGetCoreID()]->uxCriticalNesting )++; /* This is not the interrupt safe version of the enter critical * function so assert() if it is being called from an interrupt * context. Only API functions that end in "FromISR" can be used in an * interrupt. Only assert if the critical nesting count is 1 to * protect against recursive calls if the assert function also uses a * critical section. */ if( pxCurrentTCB[xPortGetCoreID()]->uxCriticalNesting == 1 ) { portASSERT_IF_IN_ISR(); } } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* portCRITICAL_NESTING_IN_TCB */ /*-----------------------------------------------------------*/ #if ( portCRITICAL_NESTING_IN_TCB == 1 ) void vTaskExitCritical( void ) { if( xSchedulerRunning != pdFALSE ) { if( pxCurrentTCB[xPortGetCoreID()]->uxCriticalNesting > 0U ) { ( pxCurrentTCB[xPortGetCoreID()]->uxCriticalNesting )--; if( pxCurrentTCB[xPortGetCoreID()]->uxCriticalNesting == 0U ) { portENABLE_INTERRUPTS(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* portCRITICAL_NESTING_IN_TCB */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) static char * prvWriteNameToBuffer( char * pcBuffer, const char * pcTaskName ) { size_t x; /* Start by copying the entire string. */ strcpy( pcBuffer, pcTaskName ); /* Pad the end of the string with spaces to ensure columns line up when * printed out. */ for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ ) { pcBuffer[ x ] = ' '; } /* Terminate. */ pcBuffer[ x ] = ( char ) 0x00; /* Return the new end of string. */ return &( pcBuffer[ x ] ); } #endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */ /*-----------------------------------------------------------*/ #if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) void vTaskList( char * pcWriteBuffer ) { TaskStatus_t * pxTaskStatusArray; UBaseType_t uxArraySize, x; char cStatus; /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskList() calls uxTaskGetSystemState(), then formats part of the * uxTaskGetSystemState() output into a human readable table that * displays task names, states and stack usage. * * vTaskList() has a dependency on the sprintf() C library function that * might bloat the code size, use a lot of stack, and provide different * results on different platforms. An alternative, tiny, third party, * and limited functionality implementation of sprintf() is provided in * many of the FreeRTOS/Demo sub-directories in a file called * printf-stdarg.c (note printf-stdarg.c does not provide a full * snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskList(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! if * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL ); /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { switch( pxTaskStatusArray[ x ].eCurrentState ) { case eRunning: cStatus = tskRUNNING_CHAR; break; case eReady: cStatus = tskREADY_CHAR; break; case eBlocked: cStatus = tskBLOCKED_CHAR; break; case eSuspended: cStatus = tskSUSPENDED_CHAR; break; case eDeleted: cStatus = tskDELETED_CHAR; break; case eInvalid: /* Fall through. */ default: /* Should not get here, but it is included * to prevent static checking errors. */ cStatus = ( char ) 0x00; break; } /* Write the task name to the string, padding with spaces so it * can be printed in tabular form more easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); /* Write the rest of the string. */ #if configTASKLIST_INCLUDE_COREID sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%hd\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) pxTaskStatusArray[ x ].xCoreID ); #else sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ #endif pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */ /*----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) void vTaskGetRunTimeStats( char * pcWriteBuffer ) { TaskStatus_t * pxTaskStatusArray; UBaseType_t uxArraySize, x; uint32_t ulTotalTime, ulStatsAsPercentage; #if ( configUSE_TRACE_FACILITY != 1 ) { #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats(). } #endif /* * PLEASE NOTE: * * This function is provided for convenience only, and is used by many * of the demo applications. Do not consider it to be part of the * scheduler. * * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part * of the uxTaskGetSystemState() output into a human readable table that * displays the amount of time each task has spent in the Running state * in both absolute and percentage terms. * * vTaskGetRunTimeStats() has a dependency on the sprintf() C library * function that might bloat the code size, use a lot of stack, and * provide different results on different platforms. An alternative, * tiny, third party, and limited functionality implementation of * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in * a file called printf-stdarg.c (note printf-stdarg.c does not provide * a full snprintf() implementation!). * * It is recommended that production systems call uxTaskGetSystemState() * directly to get access to raw stats data, rather than indirectly * through a call to vTaskGetRunTimeStats(). */ /* Make sure the write buffer does not contain a string. */ *pcWriteBuffer = ( char ) 0x00; /* Take a snapshot of the number of tasks in case it changes while this * function is executing. */ uxArraySize = uxCurrentNumberOfTasks; /* Allocate an array index for each task. NOTE! If * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will * equate to NULL. */ pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */ if( pxTaskStatusArray != NULL ) { /* Generate the (binary) data. */ uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime ); /* For percentage calculations. */ ulTotalTime /= 100UL; /* Avoid divide by zero errors. */ if( ulTotalTime > 0UL ) { /* Create a human readable table from the binary data. */ for( x = 0; x < uxArraySize; x++ ) { /* What percentage of the total run time has the task used? * This will always be rounded down to the nearest integer. * ulTotalRunTimeDiv100 has already been divided by 100. */ ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime; /* Write the task name to the string, padding with * spaces so it can be printed in tabular form more * easily. */ pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName ); if( ulStatsAsPercentage > 0UL ) { #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage ); } #else { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ } #endif } else { /* If the percentage is zero here then the task has * consumed less than 1% of the total run time. */ #ifdef portLU_PRINTF_SPECIFIER_REQUIRED { sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter ); } #else { /* sizeof( int ) == sizeof( long ) so a smaller * printf() library can be used. */ sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */ } #endif } pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */ } } else { mtCOVERAGE_TEST_MARKER(); } /* Free the array again. NOTE! If configSUPPORT_DYNAMIC_ALLOCATION * is 0 then vPortFree() will be #defined to nothing. */ vPortFree( pxTaskStatusArray ); } else { mtCOVERAGE_TEST_MARKER(); } } #endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */ /*-----------------------------------------------------------*/ TickType_t uxTaskResetEventItemValue( void ) { TickType_t uxReturn; taskENTER_CRITICAL(); uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) ); /* Reset the event list item to its normal value - so it can be used with * queues and semaphores. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */ taskEXIT_CRITICAL(); return uxReturn; } /*-----------------------------------------------------------*/ #if ( configUSE_MUTEXES == 1 ) void *pvTaskIncrementMutexHeldCount( void ) { TCB_t * curTCB; /* If xSemaphoreCreateMutex() is called before any tasks have been created * then pxCurrentTCB will be NULL. */ taskENTER_CRITICAL(); if( pxCurrentTCB[ xPortGetCoreID() ] != NULL ) { ( pxCurrentTCB[ xPortGetCoreID() ]->uxMutexesHeld )++; } curTCB = pxCurrentTCB[ xPortGetCoreID() ]; taskEXIT_CRITICAL(); return curTCB; } #endif /* configUSE_MUTEXES */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) #ifdef ESP_PLATFORM // IDF-3851 // included here for backward binary compatibility #undef ulTaskNotifyTake uint32_t ulTaskNotifyTake(BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) { return ulTaskGenericNotifyTake(tskDEFAULT_INDEX_TO_NOTIFY, xClearCountOnExit, xTicksToWait); } #endif // ESP-PLATFORM uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait, BaseType_t xClearCountOnExit, TickType_t xTicksToWait ) { uint32_t ulReturn; configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL(); { /* Only block if the notification count is not already non-zero. */ if( pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ] == 0UL ) { /* Mark this task as waiting for a notification. */ pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToWait ); traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait ); /* All ports are written to allow a yield in a critical * section (some will yield immediately, others wait until the * critical section exits) - but it is not something that * application code should ever do. */ portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); taskENTER_CRITICAL(); { traceTASK_NOTIFY_TAKE( uxIndexToWait ); ulReturn = pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ]; if( ulReturn != 0UL ) { if( xClearCountOnExit != pdFALSE ) { pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ] = 0UL; } else { pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1; } } else { mtCOVERAGE_TEST_MARKER(); } pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL(); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) #ifdef ESP_PLATFORM // IDF-3851 // included for backward compatibility #undef xTaskNotifyWait BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t * pulNotificationValue, TickType_t xTicksToWait ) { return xTaskGenericNotifyWait(tskDEFAULT_INDEX_TO_NOTIFY, ulBitsToClearOnEntry, ulBitsToClearOnExit, pulNotificationValue, xTicksToWait); } #endif // ESP-PLATFORM BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait, uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t * pulNotificationValue, TickType_t xTicksToWait ) { BaseType_t xReturn; configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES ); taskENTER_CRITICAL(); { /* Only block if a notification is not already pending. */ if( pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED ) { /* Clear bits in the task's notification value as bits may get * set by the notifying task or interrupt. This can be used to * clear the value to zero. */ pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry; /* Mark this task as waiting for a notification. */ pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION; if( xTicksToWait > ( TickType_t ) 0 ) { prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTicksToWait); traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait ); /* All ports are written to allow a yield in a critical * section (some will yield immediately, others wait until the * critical section exits) - but it is not something that * application code should ever do. */ portYIELD_WITHIN_API(); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); taskENTER_CRITICAL(); { traceTASK_NOTIFY_WAIT( uxIndexToWait ); if( pulNotificationValue != NULL ) { /* Output the current notification value, which may or may not * have changed. */ *pulNotificationValue = pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ]; } /* If ucNotifyValue is set then either the task never entered the * blocked state (because a notification was already pending) or the * task unblocked because of a notification. Otherwise the task * unblocked because of a timeout. */ if( pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED ) { /* A notification was not received. */ xReturn = pdFALSE; } else { /* A notification was already pending or a notification was * received while the task was waiting. */ pxCurrentTCB[xPortGetCoreID()]->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit; xReturn = pdTRUE; } pxCurrentTCB[xPortGetCoreID()]->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION; } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue ) { TCB_t * pxTCB; BaseType_t xReturn = pdPASS; uint8_t ucOriginalNotifyState; configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); configASSERT( xTaskToNotify ); pxTCB = xTaskToNotify; taskENTER_CRITICAL(); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL ); break; } traceTASK_NOTIFY( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); #if ( configUSE_TICKLESS_IDLE != 0 ) { /* If a task is blocked waiting for a notification then * xNextTaskUnblockTime might be set to the blocked task's time * out time. If the task is unblocked for a reason other than * a timeout xNextTaskUnblockTime is normally left unchanged, * because it will automatically get reset to a new value when * the tick count equals xNextTaskUnblockTime. However if * tickless idling is used it might be more important to enter * sleep mode at the earliest possible time - so reset * xNextTaskUnblockTime here to ensure it is updated at the * earliest possible time. */ prvResetNextTaskUnblockTime(); } #endif if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ portYIELD_WITHIN_API(); } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE(pxTCB->xCoreID, pxTCB->uxPriority); } else { mtCOVERAGE_TEST_MARKER(); } } else { mtCOVERAGE_TEST_MARKER(); } } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, uint32_t ulValue, eNotifyAction eAction, uint32_t * pulPreviousNotificationValue, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; BaseType_t xReturn = pdPASS; configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; taskENTER_CRITICAL_ISR(); { if( pulPreviousNotificationValue != NULL ) { *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ]; } ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; switch( eAction ) { case eSetBits: pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue; break; case eIncrement: ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; break; case eSetValueWithOverwrite: pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; break; case eSetValueWithoutOverwrite: if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED ) { pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue; } else { /* The value could not be written to the task. */ xReturn = pdFAIL; } break; case eNoAction: /* The task is being notified without its notify value being * updated. */ break; default: /* Should not get here if all enums are handled. * Artificially force an assert by testing a value the * compiler can't assume is const. */ configASSERT( pxTCB->ulNotifiedValue[ uxIndexToNotify ] == ~0UL ); break; } traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( uxSchedulerSuspended[xPortGetCoreID()] == ( UBaseType_t ) pdFALSE ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[xPortGetCoreID()] ), &( pxTCB->xEventListItem ) ); } if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } } taskEXIT_CRITICAL_ISR(); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify, UBaseType_t uxIndexToNotify, BaseType_t * pxHigherPriorityTaskWoken ) { TCB_t * pxTCB; uint8_t ucOriginalNotifyState; configASSERT( xTaskToNotify ); configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* RTOS ports that support interrupt nesting have the concept of a * maximum system call (or maximum API call) interrupt priority. * Interrupts that are above the maximum system call priority are keep * permanently enabled, even when the RTOS kernel is in a critical section, * but cannot make any calls to FreeRTOS API functions. If configASSERT() * is defined in FreeRTOSConfig.h then * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion * failure if a FreeRTOS API function is called from an interrupt that has * been assigned a priority above the configured maximum system call * priority. Only FreeRTOS functions that end in FromISR can be called * from interrupts that have been assigned a priority at or (logically) * below the maximum system call interrupt priority. FreeRTOS maintains a * separate interrupt safe API to ensure interrupt entry is as fast and as * simple as possible. More information (albeit Cortex-M specific) is * provided on the following link: * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */ portASSERT_IF_INTERRUPT_PRIORITY_INVALID(); pxTCB = xTaskToNotify; taskENTER_CRITICAL_ISR(); { ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ]; pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED; /* 'Giving' is equivalent to incrementing a count in a counting * semaphore. */ ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++; traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify ); /* If the task is in the blocked state specifically to wait for a * notification then unblock it now. */ if( ucOriginalNotifyState == taskWAITING_NOTIFICATION ) { /* The task should not have been on an event list. */ configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL ); if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE ) { ( void ) uxListRemove( &( pxTCB->xStateListItem ) ); prvAddTaskToReadyList( pxTCB ); } else { /* The delayed and ready lists cannot be accessed, so hold * this task pending until the scheduler is resumed. */ vListInsertEnd( &( xPendingReadyList[xPortGetCoreID()] ), &( pxTCB->xEventListItem ) ); } if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) { /* The notified task has a priority above the currently * executing task so a yield is required. */ if( pxHigherPriorityTaskWoken != NULL ) { *pxHigherPriorityTaskWoken = pdTRUE; } } else if ( pxTCB->xCoreID != xPortGetCoreID() ) { taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority ); } else { mtCOVERAGE_TEST_MARKER(); } } } taskEXIT_CRITICAL_ISR(); } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear ) { TCB_t * pxTCB; BaseType_t xReturn; configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES ); /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL(); { if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED ) { pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION; xReturn = pdPASS; } else { xReturn = pdFAIL; } } taskEXIT_CRITICAL(); return xReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( configUSE_TASK_NOTIFICATIONS == 1 ) uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask, UBaseType_t uxIndexToClear, uint32_t ulBitsToClear ) { TCB_t * pxTCB; uint32_t ulReturn; /* If null is passed in here then it is the calling task that is having * its notification state cleared. */ pxTCB = prvGetTCBFromHandle( xTask ); taskENTER_CRITICAL(); { /* Return the notification as it was before the bits were cleared, * then clear the bit mask. */ ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ]; pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear; } taskEXIT_CRITICAL(); return ulReturn; } #endif /* configUSE_TASK_NOTIFICATIONS */ /*-----------------------------------------------------------*/ #if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) uint32_t ulTaskGetIdleRunTimeCounter( void ) { taskENTER_CRITICAL(); tskTCB *pxTCB = (tskTCB *)xIdleTaskHandle[xPortGetCoreID()]; taskEXIT_CRITICAL(); return pxTCB->ulRunTimeCounter; } #endif /*-----------------------------------------------------------*/ static void prvAddCurrentTaskToDelayedList( const portBASE_TYPE xCoreID, const TickType_t xTicksToWait ) { TickType_t xTimeToWake; const TickType_t xConstTickCount = xTickCount; if (configNUM_CORES > 1 && listIS_CONTAINED_WITHIN(&xTasksWaitingTermination, &( pxCurrentTCB[xCoreID]->xStateListItem))) { /* vTaskDelete() has been called to delete this task. This would have happened from the other core while this task was spinning on xTaskQueueMutex, so don't move the running task to the delayed list - as soon as this core re-enables interrupts this task will be suspended permanently */ return; } #if ( INCLUDE_xTaskAbortDelay == 1 ) { /* About to enter a delayed list, so ensure the ucDelayAborted flag is * reset to pdFALSE so it can be detected as having been set to pdTRUE * when the task leaves the Blocked state. */ pxCurrentTCB[xCoreID]->ucDelayAborted = pdFALSE; } #endif /* Remove the task from the ready list before adding it to the blocked list * as the same list item is used for both lists. */ if( uxListRemove( &( pxCurrentTCB[xCoreID]->xStateListItem ) ) == ( UBaseType_t ) 0 ) { /* The current task must be in a ready list, so there is no need to * check, and the port reset macro can be called directly. */ portRESET_READY_PRIORITY( pxCurrentTCB[xCoreID]->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB[xPortGetCoreID()] cannot change as it is the calling task. pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */ } else { mtCOVERAGE_TEST_MARKER(); } #if ( INCLUDE_vTaskSuspend == 1 ) { if( ( xTicksToWait == portMAX_DELAY ) ) { /* Add the task to the suspended task list instead of a delayed task * list to ensure it is not woken by a timing event. It will block * indefinitely. */ vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[xCoreID]->xStateListItem ) ); } else { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the * kernel will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[xCoreID]->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { /* Wake time has overflowed. Place this item in the overflow * list. */ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[xCoreID]->xStateListItem ) ); } else { /* The wake time has not overflowed, so the current block list * is used. */ vListInsert( pxDelayedTaskList, &( pxCurrentTCB[xCoreID]->xStateListItem ) ); /* If the task entering the blocked state was placed at the * head of the list of blocked tasks then xNextTaskUnblockTime * needs to be updated too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } } } #else /* INCLUDE_vTaskSuspend */ { /* Calculate the time at which the task should be woken if the event * does not occur. This may overflow but this doesn't matter, the kernel * will manage it correctly. */ xTimeToWake = xConstTickCount + xTicksToWait; /* The list item will be inserted in wake time order. */ listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[xCoreID]->xStateListItem ), xTimeToWake ); if( xTimeToWake < xConstTickCount ) { /* Wake time has overflowed. Place this item in the overflow list. */ vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[xCoreID]->xStateListItem ) ); } else { /* The wake time has not overflowed, so the current block list is used. */ vListInsert( pxDelayedTaskList, &( pxCurrentTCB[xCoreID]->xStateListItem ) ); /* If the task entering the blocked state was placed at the head of the * list of blocked tasks then xNextTaskUnblockTime needs to be updated * too. */ if( xTimeToWake < xNextTaskUnblockTime ) { xNextTaskUnblockTime = xTimeToWake; } else { mtCOVERAGE_TEST_MARKER(); } } } #endif /* INCLUDE_vTaskSuspend */ } /* Code below here allows additional code to be inserted into this source file, * especially where access to file scope functions and data is needed (for example * when performing module tests). */ #ifdef FREERTOS_MODULE_TEST #include "tasks_test_access_functions.h" #endif #if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) #include "freertos_tasks_c_additions.h" #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT static void freertos_tasks_c_additions_init( void ) { FREERTOS_TASKS_C_ADDITIONS_INIT(); } #endif #endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */ /* If timers.c is not referenced anywhere, don't create the timer task to save RAM */ BaseType_t __attribute__((weak)) xTimerCreateTimerTask( void ) { return pdPASS; }