/* * SPDX-FileCopyrightText: 2019-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include "utils/includes.h" #include "common.h" #include "eloop.h" #include "rsn_supp/wpa.h" #include "utils/common.h" #include "common/eapol_common.h" #include "utils/wpa_debug.h" #include "common/ieee802_11_defs.h" #include "crypto/dh_group5.h" #include "wps/wps_i.h" #include "wps/wps_dev_attr.h" #include "eap_peer/eap_defs.h" #include "eap_peer/eap_common.h" #include "esp_wifi_driver.h" #include "esp_event.h" #include "esp_wifi.h" #include "esp_err.h" #include "esp_private/wifi.h" #include "esp_wps_i.h" #include "esp_wps.h" #include "eap_common/eap_wsc_common.h" #include "esp_wpas_glue.h" const char *wps_model_number = CONFIG_IDF_TARGET; void *s_wps_api_lock = NULL; /* Used in WPS public API only, never be freed */ void *s_wps_api_sem = NULL; /* Sync semaphore used between WPS publi API caller task and WPS task */ bool s_wps_enabled = false; #ifdef USE_WPS_TASK struct wps_rx_param { u8 sa[ETH_ALEN]; u8 *buf; int len; STAILQ_ENTRY(wps_rx_param) bqentry; }; static STAILQ_HEAD(,wps_rx_param) s_wps_rxq; typedef struct { void *arg; int ret; /* return value */ } wps_ioctl_param_t; static void *s_wps_task_hdl = NULL; static void *s_wps_queue = NULL; static void *s_wps_data_lock = NULL; static void *s_wps_task_create_sem = NULL; static uint8_t s_wps_sig_cnt[SIG_WPS_NUM] = {0}; #endif void wifi_wps_scan_done(void *arg, ETS_STATUS status); void wifi_wps_scan(void *data, void *user_ctx); int wifi_station_wps_start(void); int wps_sm_rx_eapol_internal(u8 *src_addr, u8 *buf, u32 len); void wifi_wps_start_internal(void); int wifi_wps_enable_internal(const esp_wps_config_t *config); int wifi_wps_disable_internal(void); void wifi_station_wps_timeout_internal(void); void wifi_station_wps_msg_timeout_internal(void); void wifi_station_wps_success_internal(void); void wifi_wps_scan_internal(void); void wifi_station_wps_eapol_start_handle_internal(void); void wps_add_discard_ap(u8 *bssid); void wifi_station_wps_msg_timeout(void *data, void *user_ctx); void wifi_station_wps_eapol_start_handle(void *data, void *user_ctx); void wifi_station_wps_success(void *data, void *user_ctx); void wifi_station_wps_timeout(void *data, void *user_ctx); struct wps_sm *gWpsSm = NULL; static wps_factory_information_t *s_factory_info = NULL; static void wps_rxq_init(void) { DATA_MUTEX_TAKE(); STAILQ_INIT(&s_wps_rxq); DATA_MUTEX_GIVE(); } static void wps_rxq_enqueue(struct wps_rx_param *param) { DATA_MUTEX_TAKE(); STAILQ_INSERT_TAIL(&s_wps_rxq,param, bqentry); DATA_MUTEX_GIVE(); } static struct wps_rx_param * wps_rxq_dequeue(void) { struct wps_rx_param *param = NULL; DATA_MUTEX_TAKE(); if ((param = STAILQ_FIRST(&s_wps_rxq)) != NULL) { STAILQ_REMOVE_HEAD(&s_wps_rxq, bqentry); STAILQ_NEXT(param,bqentry) = NULL; } DATA_MUTEX_GIVE(); return param; } static void wps_rxq_deinit(void) { struct wps_rx_param *param = NULL; DATA_MUTEX_TAKE(); while ((param = STAILQ_FIRST(&s_wps_rxq)) != NULL) { STAILQ_REMOVE_HEAD(&s_wps_rxq, bqentry); STAILQ_NEXT(param,bqentry) = NULL; os_free(param->buf); os_free(param); } DATA_MUTEX_GIVE(); } #ifdef USE_WPS_TASK void wps_task(void *pvParameters ) { ETSEvent *e; wps_ioctl_param_t *param; bool del_task = false; os_semphr_give(s_wps_task_create_sem); wpa_printf(MSG_DEBUG, "wps_Task enter"); for (;;) { if ( TRUE == os_queue_recv(s_wps_queue, &e, OS_BLOCK) ) { if ( (e->sig >= SIG_WPS_ENABLE) && (e->sig < SIG_WPS_NUM) ) { DATA_MUTEX_TAKE(); if (s_wps_sig_cnt[e->sig]) { s_wps_sig_cnt[e->sig]--; } else { wpa_printf(MSG_ERROR, "wpsT: invalid sig cnt, sig=%" PRId32 " cnt=%d", e->sig, s_wps_sig_cnt[e->sig]); } DATA_MUTEX_GIVE(); } wpa_printf(MSG_DEBUG, "wpsT: rx sig=%" PRId32 "", e->sig); switch (e->sig) { case SIG_WPS_ENABLE: case SIG_WPS_DISABLE: case SIG_WPS_START: param = (wps_ioctl_param_t *)e->par; if (!param) { wpa_printf(MSG_ERROR, "wpsT: invalid param sig=%" PRId32 "", e->sig); os_semphr_give(s_wps_api_sem); break; } if (e->sig == SIG_WPS_ENABLE) { param->ret = wifi_wps_enable_internal((esp_wps_config_t *)(param->arg)); } else if (e->sig == SIG_WPS_DISABLE) { param->ret = wifi_wps_disable_internal(); del_task = true; s_wps_task_hdl = NULL; } else { param->ret = wifi_station_wps_start(); } os_semphr_give(s_wps_api_sem); break; case SIG_WPS_RX: { struct wps_rx_param *param = NULL; while ((param = wps_rxq_dequeue()) != NULL) { wps_sm_rx_eapol_internal(param->sa, param->buf, param->len); os_free(param->buf); os_free(param); } break; } case SIG_WPS_TIMER_TIMEOUT: wifi_station_wps_timeout_internal(); break; case SIG_WPS_TIMER_MSG_TIMEOUT: wifi_station_wps_msg_timeout_internal(); break; case SIG_WPS_TIMER_SUCCESS_CB: wifi_station_wps_success_internal(); break; case SIG_WPS_TIMER_SCAN: wifi_wps_scan_internal(); break; case SIG_WPS_TIMER_EAPOL_START: wifi_station_wps_eapol_start_handle_internal(); break; default: wpa_printf(MSG_ERROR, "wpsT: invalid sig=%" PRId32 "", e->sig); break; } os_free(e); if (del_task) { wpa_printf(MSG_DEBUG, "wpsT: delete task"); break; } } } os_task_delete(NULL); } /* wps_post() is thread-safe * */ int wps_post(uint32_t sig, uint32_t par) { wpa_printf(MSG_DEBUG, "wps post: sig=%" PRId32 " cnt=%d", sig, s_wps_sig_cnt[sig]); DATA_MUTEX_TAKE(); if (s_wps_sig_cnt[sig]) { wpa_printf(MSG_DEBUG, "wps post: sig=%" PRId32 " processing", sig); DATA_MUTEX_GIVE(); return ESP_OK; } else { ETSEvent *evt = (ETSEvent *)os_malloc(sizeof(ETSEvent)); if (evt == NULL) { wpa_printf(MSG_ERROR, "WPS: E N M"); DATA_MUTEX_GIVE(); return ESP_FAIL; } s_wps_sig_cnt[sig]++; evt->sig = sig; evt->par = par; DATA_MUTEX_GIVE(); if (os_queue_send(s_wps_queue, &evt, os_task_ms_to_tick(10)) != TRUE) { wpa_printf(MSG_ERROR, "WPS: Q S E"); DATA_MUTEX_TAKE(); s_wps_sig_cnt[sig]--; DATA_MUTEX_GIVE(); return ESP_FAIL; } } return ESP_OK; } #endif /* * wps_sm_ether_send - Send Ethernet frame * @wpa_s: Pointer to wpa_supplicant data * @proto: Ethertype in host byte order * @buf: Frame payload starting from IEEE 802.1X header * @len: Frame payload length * Returns: >=0 on success, <0 on failure */ static inline int wps_sm_ether_send(struct wps_sm *sm, u16 proto, const u8 *data, size_t data_len) { u8 bssid[ETH_ALEN]; int ret = esp_wifi_get_assoc_bssid_internal(bssid); if (ret != 0) { wpa_printf(MSG_ERROR, "bssid is empty!"); return -1; } return wpa_ether_send(sm, bssid, proto, data, data_len); } u8 *wps_sm_alloc_eapol(struct wps_sm *sm, u8 type, const void *data, u16 data_len, size_t *msg_len, void **data_pos) { return wpa_alloc_eapol(sm, type, data, data_len, msg_len, data_pos); } void wps_sm_free_eapol(u8 *buffer) { return wpa_free_eapol(buffer); } static void wps_build_ic_appie_wps_pr(void) { struct wpabuf *extra_ie = NULL; struct wpabuf *wps_ie; struct wps_sm *sm = gWpsSm; u16 pw_id; wpa_printf(MSG_DEBUG, "wps build: wps pr"); if (wps_get_type() == WPS_TYPE_PBC) { pw_id = DEV_PW_PUSHBUTTON; } else { pw_id = DEV_PW_DEFAULT; } wps_ie = wps_build_probe_req_ie(pw_id, sm->dev, sm->uuid, WPS_REQ_ENROLLEE, 0, NULL); if (!wps_ie) { return; } if (wpabuf_resize(&extra_ie, wpabuf_len(wps_ie)) == 0) { wpabuf_put_buf(extra_ie, wps_ie); } else { wpabuf_free(wps_ie); return; } wpabuf_free(wps_ie); esp_wifi_set_appie_internal(WIFI_APPIE_WPS_PR, (uint8_t *)wpabuf_head(extra_ie), extra_ie->used, 0); wpabuf_free(extra_ie); } static void wps_build_ic_appie_wps_ar(void) { struct wpabuf *buf = wps_build_assoc_req_ie(WPS_REQ_ENROLLEE); wpa_printf(MSG_DEBUG, "wps build: wps ar"); if (buf) { esp_wifi_set_appie_internal(WIFI_APPIE_WPS_AR, (uint8_t *)wpabuf_head(buf), buf->used, 0); wpabuf_free(buf); } } static bool ap_supports_sae(struct wps_scan_ie *scan) { struct wpa_ie_data rsn_info; if (!scan->rsn) { return false; } wpa_parse_wpa_ie_rsn(scan->rsn, scan->rsn[1] + 2, &rsn_info); if (rsn_info.key_mgmt & WPA_KEY_MGMT_SAE) { return true; } return false; } static bool wps_parse_scan_result(struct wps_scan_ie *scan) { struct wps_sm *sm = gWpsSm; wifi_mode_t op_mode = 0; if (!sm->is_wps_scan || !scan->bssid) { return false; } if (wps_get_type() == WPS_TYPE_DISABLE || (wps_get_status() != WPS_STATUS_DISABLE && wps_get_status() != WPS_STATUS_SCANNING) ) { return false; } esp_wifi_get_mode(&op_mode); if ((op_mode != WIFI_MODE_STA) #ifdef CONFIG_ESP_WIFI_SOFTAP_SUPPORT && (op_mode != WIFI_MODE_APSTA) #endif ) { return false; } if (!scan->rsn && !scan->wpa && (scan->capinfo & WLAN_CAPABILITY_PRIVACY)) { wpa_printf(MSG_DEBUG, "WEP not suppported in WPS"); return false; } if (sm->ignore_sel_reg && !is_zero_ether_addr(sm->bssid)) { /* We have selected candidate for this scan */ return false; } if (scan->wps) { bool ap_found = false; struct wpabuf *buf = wpabuf_alloc_copy(scan->wps + 6, scan->wps[1] - 4); int count; if ((wps_get_type() == WPS_TYPE_PBC && wps_is_selected_pbc_registrar(buf)) || (wps_get_type() == WPS_TYPE_PIN && wps_is_addr_authorized(buf, sm->ownaddr, 1))) { /* Found one AP with selected registrar true */ sm->ignore_sel_reg = false; sm->discard_ap_cnt = 0; ap_found = true; } if (wps_get_type() == WPS_TYPE_PIN && sm->ignore_sel_reg) { /* AP is in discard list? */ for (count = 0; count < WPS_MAX_DIS_AP_NUM; count++) { if (os_memcmp(sm->dis_ap_list[count].bssid, scan->bssid, ETH_ALEN) == 0) { wpa_printf(MSG_INFO, "discard ap bssid "MACSTR, MAC2STR(scan->bssid)); wpabuf_free(buf); return false; } } } if (ap_found || sm->ignore_sel_reg) { wpabuf_free(buf); if (scan->ssid[1] > SSID_MAX_LEN) { return false; } esp_wifi_enable_sta_privacy_internal(); os_memset(sm->ssid[0], 0, SSID_MAX_LEN); os_memcpy(sm->ssid[0], (char *)&scan->ssid[2], (int)scan->ssid[1]); sm->ssid_len[0] = scan->ssid[1]; if (scan->bssid && memcmp(sm->bssid, scan->bssid, ETH_ALEN) != 0) { wpa_printf(MSG_INFO, "sm BSSid: "MACSTR " scan BSSID " MACSTR, MAC2STR(sm->bssid), MAC2STR(scan->bssid)); sm->discover_ssid_cnt++; os_memcpy(sm->bssid, scan->bssid, ETH_ALEN); if (ap_supports_sae(scan)) { wpa_printf(MSG_INFO, "AP supports SAE, get password in passphrase"); sm->dev->config_methods |= WPS_CONFIG_DISPLAY | WPS_CONFIG_VIRT_DISPLAY; sm->wps->wps->config_methods |= WPS_CONFIG_DISPLAY | WPS_CONFIG_VIRT_DISPLAY; /* Reset assoc req, probe reset not needed */ wps_build_ic_appie_wps_ar(); } } wpa_printf(MSG_DEBUG, "wps discover [%s]", (char *)sm->ssid); sm->channel = scan->chan; return true; } wpabuf_free(buf); } return false; } int wps_send_eap_identity_rsp(u8 id) { struct wps_sm *sm = gWpsSm; struct wpabuf *eap_buf = NULL; u8 *buf = NULL; int len; int ret = ESP_OK; wpa_printf(MSG_DEBUG, "wps send eapol id rsp"); eap_buf = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, sm->identity_len, EAP_CODE_RESPONSE, id); if (!eap_buf) { wpa_printf(MSG_ERROR, "eap buf allocation failed"); ret = ESP_FAIL; goto _err; } wpabuf_put_data(eap_buf, sm->identity, sm->identity_len); buf = wps_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAP_PACKET, wpabuf_head_u8(eap_buf), wpabuf_len(eap_buf), (size_t *)&len, NULL); if (!buf) { wpa_printf(MSG_ERROR, "buf allocation failed"); ret = ESP_ERR_NO_MEM; goto _err; } ret = wps_sm_ether_send(sm, ETH_P_EAPOL, buf, len); if (ret) { wpa_printf(MSG_ERROR, "wps sm ether send failed ret=%d", ret); ret = ESP_FAIL; goto _err; } _err: wps_sm_free_eapol(buf); wpabuf_free(eap_buf); return ret; } int wps_send_frag_ack(u8 id) { struct wps_sm *sm = gWpsSm; struct wpabuf *eap_buf = NULL; u8 *buf; int len; int ret = 0; wpa_printf(MSG_DEBUG, "send frag ack id:%d", id); if (!sm) { return ESP_FAIL; } eap_buf = eap_wsc_build_frag_ack(id, EAP_CODE_RESPONSE); if (!eap_buf) { ret = ESP_ERR_NO_MEM; goto _err; } buf = wps_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAP_PACKET, wpabuf_head_u8(eap_buf), wpabuf_len(eap_buf), (size_t *)&len, NULL); if (!buf) { ret = ESP_ERR_NO_MEM; goto _err; } ret = wps_sm_ether_send(sm, ETH_P_EAPOL, buf, len); wps_sm_free_eapol(buf); if (ret) { ret = ESP_ERR_NO_MEM; goto _err; } _err: wpabuf_free(eap_buf); return ret; } int wps_enrollee_process_msg_frag(struct wpabuf **buf, int tot_len, u8 *frag_data, int frag_len, u8 flag) { struct wps_sm *sm = gWpsSm; u8 identifier; if (!sm) { return ESP_FAIL; } identifier = sm->current_identifier; if (buf == NULL || frag_data == NULL) { wpa_printf(MSG_ERROR, "fun:%s. line:%d, frag buf or frag data is null", __FUNCTION__, __LINE__); return ESP_FAIL; } if (*buf == NULL) { if (0 == (flag & WPS_MSG_FLAG_LEN) || tot_len < frag_len) { wpa_printf(MSG_ERROR, "fun:%s. line:%d, flag error:%02x", __FUNCTION__, __LINE__, flag); return ESP_FAIL; } *buf = wpabuf_alloc(tot_len); if (*buf == NULL) { return ESP_ERR_NO_MEM; } wpabuf_put_data(*buf, frag_data, frag_len); return wps_send_frag_ack(identifier); } if (flag & WPS_MSG_FLAG_LEN) { wpa_printf(MSG_ERROR, "fun:%s. line:%d, flag error:%02x", __FUNCTION__, __LINE__, flag); return ESP_FAIL; } wpabuf_put_data(*buf, frag_data, frag_len); if (flag & WPS_MSG_FLAG_MORE) { return wps_send_frag_ack(identifier); } return ESP_OK; } int wps_process_wps_mX_req(u8 *ubuf, int len, enum wps_process_res *res) { struct wps_sm *sm = gWpsSm; static struct wpabuf *wps_buf = NULL; struct eap_expand *expd; int tlen = 0; u8 *tbuf; u8 flag; int frag_len; u16 be_tot_len = 0; if (!sm || !res) { return ESP_FAIL; } expd = (struct eap_expand *) ubuf; wpa_printf(MSG_DEBUG, "wps process mX req: len %d, tlen %d", len, tlen); if (sm->state == WAIT_START) { if (expd->opcode != WSC_Start) { wpa_printf(MSG_DEBUG, "EAP-WSC: Unexpected Op-Code %d " "in WAIT_START state", expd->opcode); return ESP_FAIL; } wpa_printf(MSG_DEBUG, "EAP-WSC: Received start"); sm->state = WPA_MESG; } else if (expd->opcode == WSC_Start){ wpa_printf(MSG_DEBUG, "EAP-WSC: Unexpected Op-Code %d", expd->opcode); return ESP_FAIL; } flag = *(u8 *)(ubuf + sizeof(struct eap_expand)); if (flag & WPS_MSG_FLAG_LEN) { tbuf = ubuf + sizeof(struct eap_expand) + 1 + 2;//two bytes total length frag_len = len - (sizeof(struct eap_expand) + 1 + 2); be_tot_len = *(u16 *)(ubuf + sizeof(struct eap_expand) + 1); tlen = ((be_tot_len & 0xff) << 8) | ((be_tot_len >> 8) & 0xff); } else { tbuf = ubuf + sizeof(struct eap_expand) + 1; frag_len = len - (sizeof(struct eap_expand) + 1); tlen = frag_len; } if ((flag & WPS_MSG_FLAG_MORE) || wps_buf != NULL) {//frag msg if (tlen > 50000) { wpa_printf(MSG_ERROR, "EAP-WSC: Invalid Message Length"); return ESP_FAIL; } wpa_printf(MSG_DEBUG, "rx frag msg id:%d, flag:%d, frag_len: %d, tot_len: %d, be_tot_len:%d", sm->current_identifier, flag, frag_len, tlen, be_tot_len); if (ESP_OK != wps_enrollee_process_msg_frag(&wps_buf, tlen, tbuf, frag_len, flag)) { if (wps_buf) { wpabuf_free(wps_buf); wps_buf = NULL; } return ESP_FAIL; } if (flag & WPS_MSG_FLAG_MORE) { *res = WPS_FRAGMENT; return ESP_OK; } } else { //not frag msg if (wps_buf) {//if something wrong, frag msg buf is not freed, free first wpa_printf(MSG_ERROR, "something is wrong, frag buf is not freed"); wpabuf_free(wps_buf); wps_buf = NULL; } wps_buf = wpabuf_alloc_copy(tbuf, tlen); } if (!wps_buf) { return ESP_FAIL; } eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); *res = wps_enrollee_process_msg(sm->wps, expd->opcode, wps_buf); if (*res == WPS_FAILURE) { sm->state = WPA_FAIL; } if (wps_buf) { wpabuf_free(wps_buf); wps_buf = NULL; } return ESP_OK; } int wps_send_wps_mX_rsp(u8 id) { struct wps_sm *sm = gWpsSm; struct wpabuf *eap_buf = NULL; struct wpabuf *wps_buf = NULL; u8 *buf; int len; int ret = 0; enum wsc_op_code opcode; wpa_printf(MSG_DEBUG, "wps send wps mX rsp"); if (!sm) { return ESP_FAIL; } wps_buf = wps_enrollee_get_msg(sm->wps, &opcode); if (!wps_buf) { ret = ESP_FAIL; goto _err; } eap_buf = eap_msg_alloc(EAP_VENDOR_WFA, 0x00000001, wpabuf_len(wps_buf) + 2, EAP_CODE_RESPONSE, id); if (!eap_buf) { ret = ESP_FAIL; goto _err; } wpabuf_put_u8(eap_buf, opcode); wpabuf_put_u8(eap_buf, 0x00); /* flags */ wpabuf_put_data(eap_buf, wpabuf_head_u8(wps_buf), wpabuf_len(wps_buf)); wpabuf_free(wps_buf); buf = wps_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAP_PACKET, wpabuf_head_u8(eap_buf), wpabuf_len(eap_buf), (size_t *)&len, NULL); if (!buf) { ret = ESP_FAIL; goto _err; } ret = wps_sm_ether_send(sm, ETH_P_EAPOL, buf, len); wps_sm_free_eapol(buf); if (ret) { ret = ESP_FAIL; goto _err; } _err: wpabuf_free(eap_buf); return ret; } int wps_tx_start(void) { struct wps_sm *sm = gWpsSm; u8 *buf; int len; if (!sm) { return ESP_FAIL; } wpa_printf(MSG_DEBUG, "WPS: Send EAPOL START."); buf = wps_sm_alloc_eapol(sm, IEEE802_1X_TYPE_EAPOL_START, (u8 *)"", 0, (size_t *)&len, NULL); if (!buf) { return ESP_ERR_NO_MEM; } wps_sm_ether_send(sm, ETH_P_EAPOL, buf, len); wps_sm_free_eapol(buf); eloop_register_timeout(3, 0, wifi_station_wps_eapol_start_handle, NULL, NULL); return ESP_OK; } int wps_start_pending(void) { if (!gWpsSm) { return ESP_FAIL; } wpa_printf(MSG_DEBUG, "wps start pending"); return wps_tx_start(); } static void wps_stop_connection_timers(struct wps_sm *sm) { esp_wifi_disarm_sta_connection_timer_internal(); eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_success, NULL, NULL); } static int wps_sm_init(struct wps_sm *sm) { if (!sm) { return -1; } sm->ignore_sel_reg = false; sm->discard_ap_cnt = 0; sm->scan_cnt = 0; sm->discover_ssid_cnt = 0; os_bzero(sm->bssid, ETH_ALEN); os_bzero(sm->ssid, sizeof(sm->ssid)); os_bzero(sm->ssid_len, sizeof(sm->ssid_len)); sm->ap_cred_cnt = 0; return 0; } int wps_stop_process(wifi_event_sta_wps_fail_reason_t reason_code) { struct wps_sm *sm = gWpsSm; if (!gWpsSm) { return ESP_FAIL; } wps_set_status(WPS_STATUS_DISABLE); wps_sm_init(sm); sm->wps->state = SEND_M1; wps_stop_connection_timers(sm); esp_wifi_disconnect(); sm->state = WPA_FAIL; wpa_printf(MSG_DEBUG, "Write wps_fail_information"); esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_FAILED, &reason_code, sizeof(reason_code), OS_BLOCK); return ESP_OK; } int wps_finish(void) { struct wps_sm *sm = gWpsSm; int ret = ESP_FAIL; if (!gWpsSm) { return ESP_FAIL; } if (sm->wps->state == WPS_FINISHED) { wpa_printf(MSG_DEBUG, "wps finished------>"); wps_set_status(WPS_STATUS_SUCCESS); wps_stop_connection_timers(sm); if (sm->ap_cred_cnt == 1) { wifi_config_t *config = os_zalloc(sizeof(wifi_config_t)); if (config == NULL) { return ESP_FAIL; } esp_wifi_get_config(WIFI_IF_STA, config); os_memcpy(config->sta.ssid, sm->ssid[0], sm->ssid_len[0]); os_memcpy(config->sta.password, sm->key[0], sm->key_len[0]); os_memcpy(config->sta.bssid, sm->bssid, ETH_ALEN); config->sta.bssid_set = 0; config->sta.sae_pwe_h2e = 0; esp_wifi_set_config(WIFI_IF_STA, config); os_free(config); } eloop_cancel_timeout(wifi_station_wps_success, NULL, NULL); eloop_register_timeout(1, 0, wifi_station_wps_success, NULL, NULL); ret = 0; } else { wpa_printf(MSG_ERROR, "wps failed-----> ignore_sel_reg=%d", sm->ignore_sel_reg); if (sm->ignore_sel_reg) { sm->discover_ssid_cnt = 0; esp_wifi_disconnect(); os_bzero(sm->ssid, sizeof(sm->ssid)); os_bzero(sm->ssid_len, sizeof(sm->ssid_len)); wps_add_discard_ap(sm->bssid); } else { ret = wps_stop_process(WPS_FAIL_REASON_NORMAL); } } return ret; } /* Add current ap to discard ap list */ void wps_add_discard_ap(u8 *bssid) { struct wps_sm *sm = gWpsSm; u8 cnt = sm->discard_ap_cnt; if (!gWpsSm || !bssid) { return; } if (sm->discard_ap_cnt < WPS_MAX_DIS_AP_NUM) { sm->discard_ap_cnt++; } else { for (cnt = 0; cnt < WPS_MAX_DIS_AP_NUM - 2; cnt++) { os_memcpy(sm->dis_ap_list[cnt].bssid, sm->dis_ap_list[cnt + 1].bssid, 6); } sm->discard_ap_cnt = WPS_MAX_DIS_AP_NUM; } os_memcpy(sm->dis_ap_list[cnt].bssid, bssid, ETH_ALEN); wpa_printf(MSG_INFO, "Added BSSID:"MACSTR" to discard list cnt=%d" , MAC2STR(bssid), sm->discard_ap_cnt); } int wps_start_msg_timer(void) { struct wps_sm *sm = gWpsSm; uint32_t msg_timeout; int ret = ESP_FAIL; if (!gWpsSm) { return ESP_FAIL; } if (sm->wps->state == WPS_FINISHED) { msg_timeout = 100; wpa_printf(MSG_DEBUG, "start msg timer WPS_FINISHED %" PRId32 " ms", msg_timeout); eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_register_timeout(0, msg_timeout*1000, wifi_station_wps_msg_timeout, NULL, NULL); ret = 0; } else if (sm->wps->state == RECV_M2) { msg_timeout = 5; wpa_printf(MSG_DEBUG, "start msg timer RECV_M2 %" PRId32 " ms", msg_timeout); eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_register_timeout(msg_timeout, 0, wifi_station_wps_msg_timeout, NULL, NULL); ret = 0; } return ret; } /** * wps_sm_rx_eapol - Process received WPA EAPOL frames * @sm: Pointer to WPA state machine data from wpa_sm_init() * @src_addr: Source MAC address of the EAPOL packet * @buf: Pointer to the beginning of the EAPOL data (EAPOL header) * @len: Length of the EAPOL frame * Returns: 1 = WPA EAPOL-Key processed, ESP_OK = not a WPA EAPOL-Key, ESP_FAIL failure * * This function is called for each received EAPOL frame. Other than EAPOL-Key * frames can be skipped if filtering is done elsewhere. wpa_sm_rx_eapol() is * only processing WPA and WPA2 EAPOL-Key frames. * * The received EAPOL-Key packets are validated and valid packets are replied * to. In addition, key material (PTK, GTK) is configured at the end of a * successful key handshake. * buf begin from version, so remove mac header ,snap header and ether_type */ int wps_sm_rx_eapol(u8 *src_addr, u8 *buf, u32 len) { if (!gWpsSm) { return ESP_FAIL; } #ifdef USE_WPS_TASK { struct wps_rx_param *param = os_zalloc(sizeof(struct wps_rx_param)); /* free in task */ if (!param) { return ESP_ERR_NO_MEM; } param->buf = os_zalloc(len); /* free in task */ if (!param->buf) { os_free(param); return ESP_ERR_NO_MEM; } os_memcpy(param->buf, buf, len); param->len = len; os_memcpy(param->sa, src_addr, ETH_ALEN); wps_rxq_enqueue(param); return wps_post(SIG_WPS_RX, 0); } #else return wps_sm_rx_eapol_internal(src_addr, buf, len); #endif } int wps_sm_rx_eapol_internal(u8 *src_addr, u8 *buf, u32 len) { struct wps_sm *sm = gWpsSm; u32 plen, data_len, eap_len; struct ieee802_1x_hdr *hdr; struct eap_hdr *ehdr; u8 *tmp; u8 eap_code; u8 eap_type; int ret = ESP_FAIL; enum wps_process_res res = WPS_DONE; if (!gWpsSm) { return ESP_FAIL; } if (len < sizeof(*hdr) + sizeof(*ehdr)) { wpa_printf(MSG_DEBUG, "WPA: EAPOL frame too short to be a WPA " "EAPOL-Key (len %lu, expecting at least %lu)", (unsigned long) len, (unsigned long) sizeof(*hdr) + sizeof(*ehdr)); return ESP_OK; } tmp = buf; hdr = (struct ieee802_1x_hdr *) tmp; ehdr = (struct eap_hdr *) (hdr + 1); plen = be_to_host16(hdr->length); data_len = plen + sizeof(*hdr); eap_len = be_to_host16(ehdr->length); wpa_printf(MSG_DEBUG, "IEEE 802.1X RX: version=%d type=%d length=%" PRId32 "", hdr->version, hdr->type, plen); if (hdr->version < EAPOL_VERSION) { /* TODO: backwards compatibility */ } if (hdr->type != IEEE802_1X_TYPE_EAP_PACKET) { wpa_printf(MSG_DEBUG, "WPS: EAP frame (type %u) discarded, " "not a EAP PACKET frame", hdr->type); ret = 0; goto out; } if (plen > len - sizeof(*hdr) || plen < sizeof(*ehdr)) { wpa_printf(MSG_DEBUG, "WPA: EAPOL frame payload size %lu " "invalid (frame size %lu)", (unsigned long) plen, (unsigned long) len); ret = 0; goto out; } wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-EAP PACKET", tmp, len); if (data_len < len) { wpa_printf(MSG_DEBUG, "WPA: ignoring %lu bytes after the IEEE " "802.1X data", (unsigned long) len - data_len); } if (eap_len != plen) { wpa_printf(MSG_DEBUG, "WPA: EAPOL length %lu " "invalid (eapol length %lu)", (unsigned long) eap_len, (unsigned long) plen); ret = 0; goto out; } eap_code = ehdr->code; switch (eap_code) { case EAP_CODE_SUCCESS: wpa_printf(MSG_DEBUG, "error: receive eapol success frame!"); ret = 0; break; case EAP_CODE_FAILURE: wpa_printf(MSG_DEBUG, "receive eap code failure!"); ret = wps_finish(); break; case EAP_CODE_RESPONSE: wpa_printf(MSG_DEBUG, "error: receive eapol response frame!"); ret = 0; break; case EAP_CODE_REQUEST: { eap_type = ((u8 *)ehdr)[sizeof(*ehdr)]; switch (eap_type) { case EAP_TYPE_IDENTITY: wpa_printf(MSG_DEBUG, "=========identity==========="); sm->current_identifier = ehdr->identifier; eloop_cancel_timeout(wifi_station_wps_eapol_start_handle, NULL, NULL); wpa_printf(MSG_DEBUG, "WPS: Build EAP Identity."); ret = wps_send_eap_identity_rsp(ehdr->identifier); eloop_register_timeout(3, 0, wifi_station_wps_eapol_start_handle, NULL, NULL); break; case EAP_TYPE_EXPANDED: wpa_printf(MSG_DEBUG, "=========expanded plen[%" PRId32 "], %d===========", plen, sizeof(*ehdr)); sm->current_identifier = ehdr->identifier; tmp = (u8 *)(ehdr + 1) + 1; ret = wps_process_wps_mX_req(tmp, plen - sizeof(*ehdr) - 1, &res); if (ret == ESP_OK && res != WPS_FAILURE && res != WPS_FRAGMENT) { ret = wps_send_wps_mX_rsp(ehdr->identifier); if (ret == ESP_OK) { wpa_printf(MSG_DEBUG, "sm->wps->state = %d", sm->wps->state); wps_start_msg_timer(); } } else if (ret == ESP_OK && res == WPS_FRAGMENT) { wpa_printf(MSG_DEBUG, "wps frag, continue..."); ret = ESP_OK; } else { ret = ESP_FAIL; } break; default: break; } break; } default: break; } out: if (ret != 0 && sm->ignore_sel_reg) { wifi_wps_scan(NULL, NULL); } else if ((ret != 0 || res == WPS_FAILURE)) { wifi_event_sta_wps_fail_reason_t reason_code = WPS_FAIL_REASON_NORMAL; wpa_printf(MSG_DEBUG, "wpa rx eapol internal: fail ret=%d", ret); wps_set_status(WPS_STATUS_DISABLE); esp_wifi_disarm_sta_connection_timer_internal(); eloop_cancel_timeout(wifi_station_wps_timeout, NULL, NULL); esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_FAILED, &reason_code, sizeof(reason_code), OS_BLOCK); return ret; } return ret; } int wps_set_default_factory(void) { if (!s_factory_info) { s_factory_info = os_zalloc(sizeof(wps_factory_information_t)); if (!s_factory_info) { wpa_printf(MSG_ERROR, "wps factory info malloc failed"); return ESP_ERR_NO_MEM; } } os_snprintf(s_factory_info->manufacturer, WPS_MAX_MANUFACTURER_LEN, "ESPRESSIF"); os_snprintf(s_factory_info->model_name, WPS_MAX_MODEL_NUMBER_LEN, "ESPRESSIF IOT"); os_snprintf(s_factory_info->model_number, WPS_MAX_MODEL_NAME_LEN, wps_model_number); os_snprintf(s_factory_info->device_name, WPS_MAX_DEVICE_NAME_LEN, "%s STATION", wps_model_number); return ESP_OK; } int wps_set_factory_info(const esp_wps_config_t *config) { int ret; ret = wps_set_default_factory(); if (ret != 0) { return ret; } if (config->factory_info.manufacturer[0] != 0) { os_memcpy(s_factory_info->manufacturer, config->factory_info.manufacturer, WPS_MAX_MANUFACTURER_LEN - 1); } if (config->factory_info.model_number[0] != 0) { os_memcpy(s_factory_info->model_number, config->factory_info.model_number, WPS_MAX_MODEL_NUMBER_LEN - 1); } if (config->factory_info.model_name[0] != 0) { os_memcpy(s_factory_info->model_name, config->factory_info.model_name, WPS_MAX_MODEL_NAME_LEN - 1); } if (config->factory_info.device_name[0] != 0) { os_memcpy(s_factory_info->device_name, config->factory_info.device_name, WPS_MAX_DEVICE_NAME_LEN - 1); } wpa_printf(MSG_INFO, "manufacturer: %s, model number: %s, model name: %s, device name: %s", s_factory_info->manufacturer, s_factory_info->model_number, s_factory_info->model_name, s_factory_info->device_name); return ESP_OK; } int wps_dev_init(void) { int ret = 0; struct wps_sm *sm = gWpsSm; struct wps_device_data *dev = NULL; if (!sm) { ret = ESP_FAIL; goto _out; } dev = &sm->wps_ctx->dev; sm->dev = dev; if (!dev) { ret = ESP_FAIL; goto _out; } dev->config_methods = WPS_CONFIG_VIRT_PUSHBUTTON; #ifdef CONFIG_ESP_WIFI_WPS_PASSPHRASE dev->config_methods |= WPS_CONFIG_DISPLAY | WPS_CONFIG_VIRT_DISPLAY; #endif dev->rf_bands = WPS_RF_24GHZ; WPA_PUT_BE16(dev->pri_dev_type, WPS_DEV_PHONE); WPA_PUT_BE32(dev->pri_dev_type + 2, WPS_DEV_OUI_WFA); WPA_PUT_BE16(dev->pri_dev_type + 6, WPS_DEV_PHONE_SINGLE_MODE); if (!s_factory_info) { ret = wps_set_default_factory(); if (ret != 0) { goto _out; } } dev->manufacturer = os_zalloc(WPS_MAX_MANUFACTURER_LEN); if (!dev->manufacturer) { ret = ESP_FAIL; goto _out; } os_snprintf(dev->manufacturer, WPS_MAX_MANUFACTURER_LEN, s_factory_info->manufacturer); dev->model_name = os_zalloc(WPS_MAX_MODEL_NAME_LEN); if (!dev->model_name) { ret = ESP_FAIL; goto _out; } os_snprintf(dev->model_name, WPS_MAX_MODEL_NAME_LEN, s_factory_info->model_name); dev->model_number = os_zalloc(WPS_MAX_MODEL_NAME_LEN); if (!dev->model_number) { ret = ESP_FAIL; goto _out; } os_snprintf(dev->model_number, WPS_MAX_MODEL_NAME_LEN, s_factory_info->model_number); dev->device_name = os_zalloc(WPS_MAX_DEVICE_NAME_LEN); if (!dev->device_name) { ret = ESP_FAIL; goto _out; } os_snprintf(dev->device_name, WPS_MAX_DEVICE_NAME_LEN, s_factory_info->device_name); dev->serial_number = os_zalloc(16); if (!dev->serial_number) { ret = ESP_FAIL; goto _out; } os_snprintf(dev->serial_number, 16, "%02x%02x%02x%02x%02x%02x", sm->ownaddr[0], sm->ownaddr[1], sm->ownaddr[2], sm->ownaddr[3], sm->ownaddr[4], sm->ownaddr[5]); uuid_gen_mac_addr(sm->ownaddr, sm->uuid); os_memcpy(dev->mac_addr, sm->ownaddr, ETH_ALEN); return ESP_OK; _out: wps_dev_deinit(dev); return ret; } int wps_dev_deinit(struct wps_device_data *dev) { int ret = 0; if (!dev) { return ESP_FAIL; } wps_device_data_free(dev); if (s_factory_info) { os_free(s_factory_info); s_factory_info = NULL; } return ret; } void wifi_station_wps_timeout_internal(void) { struct wps_sm *sm = gWpsSm; if (!sm) { return; } esp_wifi_disarm_sta_connection_timer_internal(); wps_set_status(WPS_STATUS_DISABLE); esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_TIMEOUT, 0, 0, OS_BLOCK); } void wifi_station_wps_timeout(void *data, void *user_ctx) { #ifdef USE_WPS_TASK wps_post(SIG_WPS_TIMER_TIMEOUT, 0); return; #else wifi_station_wps_timeout_internal(); #endif } void wifi_station_wps_msg_timeout_internal(void) { struct wps_sm *sm = gWpsSm; if (!sm) { return; } if (sm->wps->state == WPS_FINISHED) { wpa_printf(MSG_DEBUG, "wps msg timeout WPS_FINISHED"); wps_finish(); return; } else if (sm->wps->state == RECV_M2) { wpa_printf(MSG_DEBUG, "wps msg timeout RECV_M2"); if (!sm->ignore_sel_reg) { wps_stop_process(WPS_FAIL_REASON_RECV_M2D); } } if (sm->ignore_sel_reg) { esp_wifi_disconnect(); wps_add_discard_ap(sm->bssid); os_bzero(sm->ssid, sizeof(sm->ssid)); os_bzero(sm->ssid_len, sizeof(sm->ssid_len)); os_bzero(sm->bssid, ETH_ALEN); sm->discover_ssid_cnt = 0; wifi_wps_scan(NULL, NULL); } } void wifi_station_wps_msg_timeout(void *data, void *user_ctx) { #ifdef USE_WPS_TASK wps_post(SIG_WPS_TIMER_MSG_TIMEOUT, 0); return; #else wifi_station_wps_msg_timeout_internal(); #endif } void wifi_station_wps_success_internal(void) { wifi_event_sta_wps_er_success_t evt = {0}; struct wps_sm *sm = gWpsSm; int i; /* * For only one AP credential don't send event data, wps_finish() has already set * the config. This is for backward compatibility. */ if (sm->ap_cred_cnt > 1) { evt.ap_cred_cnt = sm->ap_cred_cnt; for (i = 0; i < MAX_WPS_AP_CRED; i++) { os_memcpy(evt.ap_cred[i].ssid, sm->ssid[i], sm->ssid_len[i]); os_memcpy(evt.ap_cred[i].passphrase, sm->key[i], sm->key_len[i]); } esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_SUCCESS, &evt, sizeof(evt), OS_BLOCK); } else { esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_SUCCESS, 0, 0, OS_BLOCK); } } void wifi_station_wps_success(void *data, void *user_ctx) { #ifdef USE_WPS_TASK wps_post(SIG_WPS_TIMER_SUCCESS_CB, 0); return; #else wifi_station_wps_success_internal(); #endif } void wifi_station_wps_eapol_start_handle_internal(void) { wpa_printf(MSG_DEBUG, "Resend EAPOL-Start."); wps_tx_start(); } void wifi_station_wps_eapol_start_handle(void *data, void *user_ctx) { #ifdef USE_WPS_TASK wps_post(SIG_WPS_TIMER_EAPOL_START, 0); return; #else wifi_station_wps_eapol_start_handle_internal(); #endif } static int save_credentials_cb(void *ctx, const struct wps_credential *cred) { if (!gWpsSm || !cred || gWpsSm->ap_cred_cnt > 2) { return ESP_FAIL; } os_memset(gWpsSm->ssid[gWpsSm->ap_cred_cnt], 0x00, sizeof(gWpsSm->ssid[gWpsSm->ap_cred_cnt])); os_memset(gWpsSm->key[gWpsSm->ap_cred_cnt], 0x00, sizeof(gWpsSm->key[gWpsSm->ap_cred_cnt])); os_memcpy(gWpsSm->ssid[gWpsSm->ap_cred_cnt], cred->ssid, cred->ssid_len); gWpsSm->ssid_len[gWpsSm->ap_cred_cnt] = cred->ssid_len; os_memcpy(gWpsSm->key[gWpsSm->ap_cred_cnt], cred->key, cred->key_len); gWpsSm->key_len[gWpsSm->ap_cred_cnt] = cred->key_len; gWpsSm->ap_cred_cnt++; wpa_hexdump_ascii(MSG_DEBUG, "ssid ", cred->ssid, cred->ssid_len); wpa_hexdump_ascii(MSG_DEBUG, "key ", cred->key, cred->key_len); return ESP_OK; } int wps_init_cfg_pin(struct wps_config *cfg) { if (wps_get_type() != WPS_TYPE_PIN) { cfg->pbc = 1; return 0; } cfg->pbc = 0; if ((os_strncmp((char *)cfg->pin, "00000000", 8) == 0) || !wps_pin_str_valid((char *)cfg->pin)) { unsigned int spin = 0; cfg->dev_pw_id = DEV_PW_DEFAULT; cfg->pin_len = 8; if (wps_generate_pin(&spin) < 0) { return -1; } wpa_printf(MSG_INFO, "Provided PIN %s is not valid, generated a new PIN %08d", (char *)cfg->pin, spin); os_snprintf((char *)cfg->pin, 9, "%08d", spin); } return 0; } static int wifi_station_wps_init(const esp_wps_config_t *config) { struct wps_funcs *wps_cb; struct wps_sm *sm = NULL; struct wps_config cfg = {0}; if (gWpsSm) { goto _out; } wpa_printf(MSG_DEBUG, "wifi sta wps init"); gWpsSm = os_zalloc(sizeof(struct wps_sm)); /* alloc Wps_sm */ if (!gWpsSm) { goto _out; } sm = gWpsSm; esp_wifi_get_macaddr_internal(WIFI_IF_STA, sm->ownaddr); os_memcpy(gWpaSm.own_addr, sm->ownaddr, ETH_ALEN); sm->identity_len = WSC_ID_ENROLLEE_LEN; os_memcpy(sm->identity, WSC_ID_ENROLLEE, sm->identity_len); sm->wps_ctx = os_zalloc(sizeof(struct wps_context)); /* alloc wps_ctx */ if (!sm->wps_ctx) { goto _err; } if (wps_dev_init() != 0) { goto _err; } cfg.wps = sm->wps_ctx; os_memcpy((void *)cfg.pin, config->pin, 8); if (wps_init_cfg_pin(&cfg) < 0) { goto _err; } os_memcpy(cfg.wps->uuid, sm->uuid, WPS_UUID_LEN); cfg.wps->config_methods = sm->wps_ctx->dev.config_methods; if ((sm->wps = wps_init(&cfg)) == NULL) { /* alloc wps_data */ goto _err; } /* Report PIN */ if (wps_get_type() == WPS_TYPE_PIN) { wifi_event_sta_wps_er_pin_t evt; os_memcpy(evt.pin_code, sm->wps->dev_password, 8); esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_PIN, &evt, sizeof(evt), OS_BLOCK); } sm->wps->wps->cred_cb = save_credentials_cb; /**************80211 reference***************/ if (esp_wifi_get_appie_internal(WIFI_APPIE_WPS_PR) == NULL) { /* alloc probe req wps ie */ wps_build_ic_appie_wps_pr(); } if (esp_wifi_get_appie_internal(WIFI_APPIE_WPS_AR) == NULL) { /* alloc assoc req wps ie */ wps_build_ic_appie_wps_ar(); } eloop_cancel_timeout(wifi_station_wps_timeout, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_success, NULL, NULL); eloop_cancel_timeout(wifi_wps_scan, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_eapol_start_handle, NULL, NULL); wps_cb = os_malloc(sizeof(struct wps_funcs)); if (wps_cb == NULL) { goto _err; } wps_cb->wps_parse_scan_result = wps_parse_scan_result; wps_cb->wifi_station_wps_start = wifi_station_wps_start; wps_cb->wps_sm_rx_eapol = wps_sm_rx_eapol; wps_cb->wps_start_pending = wps_start_pending; esp_wifi_set_wps_cb_internal(wps_cb); return ESP_OK; _err: esp_wifi_unset_appie_internal(WIFI_APPIE_WPS_PR); esp_wifi_unset_appie_internal(WIFI_APPIE_WPS_AR); if (sm->dev) { wps_dev_deinit(sm->dev); sm->dev = NULL; } if (sm->wps_ctx) { if (sm->wps_ctx->dh_privkey) { wpabuf_free(sm->wps_ctx->dh_privkey); } os_free(sm->wps_ctx); sm->wps_ctx = NULL; } if (sm->wps) { wps_deinit(sm->wps); sm->wps = NULL; } os_free(gWpsSm); gWpsSm = NULL; return ESP_FAIL; _out: return ESP_FAIL; } int wps_delete_timer(void) { struct wps_sm *sm = gWpsSm; if (!sm) { return ESP_OK; } eloop_cancel_timeout(wifi_station_wps_success, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_timeout, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_cancel_timeout(wifi_wps_scan, NULL, NULL); eloop_cancel_timeout(wifi_station_wps_eapol_start_handle, NULL, NULL); esp_wifi_disarm_sta_connection_timer_internal(); return ESP_OK; } int wifi_station_wps_deinit(void) { struct wps_sm *sm = gWpsSm; if (gWpsSm == NULL) { return ESP_FAIL; } esp_wifi_unset_appie_internal(WIFI_APPIE_WPS_PR); esp_wifi_unset_appie_internal(WIFI_APPIE_WPS_AR); esp_wifi_set_wps_cb_internal(NULL); if (sm->dev) { wps_dev_deinit(sm->dev); sm->dev = NULL; } if (sm->wps_ctx) { if (sm->wps_ctx->dh_privkey) { wpabuf_free(sm->wps_ctx->dh_privkey); } os_free(sm->wps_ctx); sm->wps_ctx = NULL; } if (sm->wps) { wps_deinit(sm->wps); sm->wps = NULL; } os_free(gWpsSm); gWpsSm = NULL; return ESP_OK; } struct wps_sm * wps_sm_get(void) { return gWpsSm; } void wifi_wps_scan_done(void *arg, ETS_STATUS status) { struct wps_sm *sm = gWpsSm; wifi_config_t wifi_config = {0}; wpa_printf(MSG_INFO, "WPS: scan done"); if (wps_get_type() == WPS_TYPE_DISABLE) { return; } if (!sm) { return; } if (sm->discover_ssid_cnt == 1) { wps_set_status(WPS_STATUS_PENDING); } else if (sm->discover_ssid_cnt == 0) { wps_set_status(WPS_STATUS_SCANNING); } else { if (wps_get_type() == WPS_TYPE_PBC) { wpa_printf(MSG_INFO, "PBC session overlap!"); wps_set_status(WPS_STATUS_DISABLE); esp_event_post(WIFI_EVENT, WIFI_EVENT_STA_WPS_ER_PBC_OVERLAP, 0, 0, OS_BLOCK); } else { wps_set_status(WPS_STATUS_PENDING); } } wpa_printf(MSG_DEBUG, "wps scan_done discover_ssid_cnt = %d", sm->discover_ssid_cnt); sm->discover_ssid_cnt = 0; if (wps_get_status() == WPS_STATUS_PENDING) { esp_wifi_disconnect(); os_memcpy(wifi_config.sta.bssid, sm->bssid, ETH_ALEN); os_memcpy(wifi_config.sta.ssid, (char *)sm->ssid[0], sm->ssid_len[0]); wifi_config.sta.bssid_set = 1; wifi_config.sta.channel = sm->channel; wpa_printf(MSG_INFO, "WPS: connecting to %s, bssid=" MACSTR, (char *)sm->ssid[0], MAC2STR(wifi_config.sta.bssid)); esp_wifi_set_config(0, &wifi_config); wpa_printf(MSG_DEBUG, "WPS: neg start"); esp_wifi_connect(); sm->state = WAIT_START; eloop_cancel_timeout(wifi_station_wps_msg_timeout, NULL, NULL); eloop_register_timeout(2, 0, wifi_station_wps_msg_timeout, NULL, NULL); } else if (wps_get_status() == WPS_STATUS_SCANNING) { if (wps_get_type() == WPS_TYPE_PIN && sm->scan_cnt > WPS_IGNORE_SEL_REG_MAX_CNT) { wpa_printf(MSG_INFO, "WPS: ignore selected registrar after %d scans", sm->scan_cnt); sm->ignore_sel_reg = true; } eloop_cancel_timeout(wifi_wps_scan, NULL, NULL); eloop_register_timeout(0, 100*1000, wifi_wps_scan, NULL, NULL); } else { return; } } void wifi_wps_scan_internal(void) { struct wps_sm *sm = gWpsSm; sm->scan_cnt++; wpa_printf(MSG_DEBUG, "wifi_wps_scan : %d", sm->scan_cnt); typedef void (* scan_done_cb_t)(void *arg, ETS_STATUS status); extern int esp_wifi_promiscuous_scan_start(wifi_scan_config_t *config, scan_done_cb_t cb); esp_wifi_promiscuous_scan_start(NULL, wifi_wps_scan_done); } void wifi_wps_scan(void *data, void *user_ctx) { #ifdef USE_WPS_TASK wps_post(SIG_WPS_TIMER_SCAN, 0); return; #else wifi_wps_scan_internal(); #endif } static int wps_rf_band_cb(void *ctx) { return WPS_RF_24GHZ; } int wifi_station_wps_start(void) { struct wps_sm *sm = wps_sm_get(); if (!sm) { wpa_printf(MSG_ERROR, "WPS: wps is not initialized"); return ESP_FAIL; } eloop_register_timeout(120, 0, wifi_station_wps_timeout, NULL, NULL); switch (wps_get_status()) { case WPS_STATUS_DISABLE: { sm->is_wps_scan = true; wps_build_public_key(sm->wps, NULL); if (sm->wps->wps->dh_privkey) { wpabuf_free(sm->wps->wps->dh_privkey); } sm->wps->wps->dh_privkey = sm->wps->dh_privkey; sm->wps->wps->dh_ctx = sm->wps->dh_ctx; sm->wps->wps->dh_pubkey = sm->wps->dh_pubkey_e; sm->wps->wps->rf_band_cb = wps_rf_band_cb; sm->wps->dh_privkey = NULL; wifi_wps_scan(NULL, NULL); break; } case WPS_STATUS_SCANNING: sm->scan_cnt = 0; eloop_cancel_timeout(wifi_station_wps_timeout, NULL, NULL); eloop_register_timeout(120, 0, wifi_station_wps_timeout, NULL, NULL); break; default: break; } sm->discard_ap_cnt = 0; os_memset(&sm->dis_ap_list, 0, WPS_MAX_DIS_AP_NUM * sizeof(struct discard_ap_list_t)); esp_wifi_set_wps_start_flag_internal(true); return ESP_OK; } int wps_task_deinit(void) { wpa_printf(MSG_DEBUG, "wps task deinit"); if (s_wps_api_sem) { os_semphr_delete(s_wps_api_sem); s_wps_api_sem = NULL; wpa_printf(MSG_DEBUG, "wps task deinit: free api sem"); } if (s_wps_task_create_sem) { os_semphr_delete(s_wps_task_create_sem); s_wps_task_create_sem = NULL; wpa_printf(MSG_DEBUG, "wps task deinit: free task create sem"); } if (s_wps_queue) { os_queue_delete(s_wps_queue); s_wps_queue = NULL; wpa_printf(MSG_DEBUG, "wps task deinit: free queue"); } if (STAILQ_FIRST(&s_wps_rxq) != NULL){ wps_rxq_deinit(); } if (s_wps_data_lock) { os_semphr_delete(s_wps_data_lock); s_wps_data_lock = NULL; wpa_printf(MSG_DEBUG, "wps task deinit: free data lock"); } return ESP_OK; } int wps_task_init(void) { int ret = 0; /* Call wps_task_deinit() first in case esp_wifi_wps_disable() fails */ wps_task_deinit(); s_wps_data_lock = os_recursive_mutex_create(); if (!s_wps_data_lock) { wpa_printf(MSG_ERROR, "wps task init: failed to alloc data lock"); goto _wps_no_mem; } s_wps_api_sem = os_semphr_create(1, 0); if (!s_wps_api_sem) { wpa_printf(MSG_ERROR, "wps task init: failed to create api sem"); goto _wps_no_mem; } s_wps_task_create_sem = os_semphr_create(1, 0); if (!s_wps_task_create_sem) { wpa_printf(MSG_ERROR, "wps task init: failed to create task sem"); goto _wps_no_mem; } os_bzero(s_wps_sig_cnt, SIG_WPS_NUM); s_wps_queue = os_queue_create(SIG_WPS_NUM, sizeof(s_wps_queue)); if (!s_wps_queue) { wpa_printf(MSG_ERROR, "wps task init: failed to alloc queue"); goto _wps_no_mem; } wps_rxq_init(); ret = os_task_create(wps_task, "wpsT", WPS_TASK_STACK_SIZE, NULL, 2, &s_wps_task_hdl); if (TRUE != ret) { wpa_printf(MSG_ERROR, "wps enable: failed to create task"); goto _wps_no_mem; } os_semphr_take(s_wps_task_create_sem, OS_BLOCK); os_semphr_delete(s_wps_task_create_sem); s_wps_task_create_sem = NULL; wpa_printf(MSG_DEBUG, "wifi wps enable: task prio:%d, stack:%d", 2, WPS_TASK_STACK_SIZE); return ESP_OK; _wps_no_mem: wps_task_deinit(); return ESP_ERR_NO_MEM; } int wps_post_block(uint32_t sig, void *arg) { wps_ioctl_param_t param; param.ret = ESP_FAIL; param.arg = arg; if (ESP_OK != wps_post(sig, (uint32_t)¶m)) { return ESP_FAIL; } if (TRUE == os_semphr_take(s_wps_api_sem, OS_BLOCK)) { return param.ret; } else { return ESP_FAIL; } } int wps_check_wifi_mode(void) { wifi_mode_t mode; int ret; ret = esp_wifi_get_mode(&mode); if (ESP_OK != ret) { wpa_printf(MSG_ERROR, "wps check wifi mode: failed to get wifi mode ret=%d", ret); return ESP_FAIL; } if ( #ifdef CONFIG_ESP_WIFI_SOFTAP_SUPPORT mode == WIFI_MODE_AP || #endif mode == WIFI_MODE_NULL) { wpa_printf(MSG_ERROR, "wps check wifi mode: wrong wifi mode=%d ", mode); return ESP_ERR_WIFI_MODE; } return ESP_OK; } int esp_wifi_wps_enable(const esp_wps_config_t *config) { int ret = ESP_OK; struct wps_sm *sm = gWpsSm; if (esp_wifi_get_user_init_flag_internal() == 0) { wpa_printf(MSG_ERROR, "wps enable: wifi not started cannot disable wpsreg"); return ESP_ERR_WIFI_STATE; } if (ESP_OK != wps_check_wifi_mode()) { return ESP_ERR_WIFI_MODE; } API_MUTEX_TAKE(); if (s_wps_enabled) { if (sm && os_memcmp(sm->identity, WSC_ID_REGISTRAR, sm->identity_len) == 0) { wpa_printf(MSG_ERROR, "wps enable: wpsreg already enabled cannot enable wps enrollee"); ret = ESP_ERR_WIFI_MODE; } else { wpa_printf(MSG_DEBUG, "wps enable: already enabled"); } API_MUTEX_GIVE(); return ret; } #ifdef USE_WPS_TASK ret = wps_task_init(); if (ESP_OK != ret) { API_MUTEX_GIVE(); return ret; } ret = wps_post_block(SIG_WPS_ENABLE, (esp_wps_config_t *)config); if (ESP_OK != ret) { wps_task_deinit(); API_MUTEX_GIVE(); return ret; } s_wps_enabled = true; wpa_printf(MSG_DEBUG, "wifi wps task: prio:%d, stack:%d", 2, WPS_TASK_STACK_SIZE); API_MUTEX_GIVE(); return ret; #else ret = wifi_wps_enable_internal(config); API_MUTEX_GIVE(); return ret; #endif } int wifi_wps_enable_internal(const esp_wps_config_t *config) { int ret = 0; struct wpa_sm *wpa_sm = &gWpaSm; wpa_printf(MSG_DEBUG, "ESP WPS crypto initialize!"); if (config->wps_type == WPS_TYPE_DISABLE) { wpa_printf(MSG_ERROR, "wps enable: invalid wps type"); return ESP_ERR_WIFI_WPS_TYPE; } wpa_printf(MSG_DEBUG, "Set factory information."); ret = wps_set_factory_info(config); if (ret != 0) { return ret; } wpa_printf(MSG_INFO, "wifi_wps_enable"); wps_set_type(config->wps_type); wps_set_status(WPS_STATUS_DISABLE); ret = wifi_station_wps_init(config); if (ret != 0) { wps_set_type(WPS_TYPE_DISABLE); wps_set_status(WPS_STATUS_DISABLE); return ESP_FAIL; } wpa_sm->wpa_sm_wps_disable = esp_wifi_wps_disable; return ESP_OK; } int wifi_wps_disable_internal(void) { wps_set_status(WPS_STATUS_DISABLE); wifi_station_wps_deinit(); return ESP_OK; } int esp_wifi_wps_disable(void) { int ret = 0; int wps_status; struct wps_sm *wps_sm = gWpsSm; struct wpa_sm *wpa_sm = &gWpaSm; if (wps_sm && os_memcmp(wps_sm->identity, WSC_ID_REGISTRAR, wps_sm->identity_len) == 0) { return ESP_ERR_WIFI_MODE; } API_MUTEX_TAKE(); if (!s_wps_enabled) { wpa_printf(MSG_DEBUG, "wps disable: already disabled"); API_MUTEX_GIVE(); return ESP_OK; } wps_status = wps_get_status(); wpa_printf(MSG_INFO, "wifi_wps_disable"); wps_set_type(WPS_TYPE_DISABLE); /* Notify WiFi task */ /* Call wps_delete_timer to delete all WPS timer, no timer will call wps_post() * to post message to wps_task once this function returns. */ wps_delete_timer(); #ifdef USE_WPS_TASK ret = wps_post_block(SIG_WPS_DISABLE, 0); #else ret = wifi_wps_disable_internal(); #endif if (ESP_OK != ret) { wpa_printf(MSG_ERROR, "wps disable: failed to disable wps, ret=%d", ret); } /* Only disconnect in case of WPS pending/done */ if ((wps_status == WPS_STATUS_PENDING) || (wps_status == WPS_STATUS_SUCCESS)) { esp_wifi_disconnect(); } esp_wifi_set_wps_start_flag_internal(false); wps_task_deinit(); s_wps_enabled = false; API_MUTEX_GIVE(); wpa_sm->wpa_sm_wps_disable = NULL; return ESP_OK; } int esp_wifi_wps_start(int timeout_ms) { if (ESP_OK != wps_check_wifi_mode()) { return ESP_ERR_WIFI_MODE; } API_MUTEX_TAKE(); if (!s_wps_enabled) { wpa_printf(MSG_ERROR, "wps start: wps not enabled"); API_MUTEX_GIVE(); return ESP_ERR_WIFI_WPS_SM; } if (wps_get_type() == WPS_TYPE_DISABLE || (wps_get_status() != WPS_STATUS_DISABLE && wps_get_status() != WPS_STATUS_SCANNING)) { API_MUTEX_GIVE(); return ESP_ERR_WIFI_WPS_TYPE; } if (esp_wifi_get_user_init_flag_internal() == 0) { API_MUTEX_GIVE(); return ESP_ERR_WIFI_STATE; } wpa_printf(MSG_DEBUG, "wps scan"); #ifdef USE_WPS_TASK wps_post_block(SIG_WPS_START, 0); #else ic_pp_post(SIG_PP_WPS, 0); #endif API_MUTEX_GIVE(); return ESP_OK; }