/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_cpu.h" #include "esp_clk_internal.h" #include "esp32h2/rom/ets_sys.h" #include "esp32h2/rom/uart.h" #include "soc/soc.h" #include "soc/rtc.h" #include "soc/rtc_periph.h" #include "soc/i2s_reg.h" #include "soc/pcr_reg.h" #include "hal/wdt_hal.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_clk.h" #include "esp_private/esp_pmu.h" #include "esp_rom_uart.h" #include "esp_rom_sys.h" #include "esp_sleep.h" /* Number of cycles to wait from the 32k XTAL oscillator to consider it running. * Larger values increase startup delay. Smaller values may cause false positive * detection (i.e. oscillator runs for a few cycles and then stops). */ #define SLOW_CLK_CAL_CYCLES CONFIG_RTC_CLK_CAL_CYCLES #define MHZ (1000000) static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src); static const char *TAG = "clk"; __attribute__((weak)) void esp_clk_init(void) { #if !CONFIG_IDF_ENV_FPGA pmu_init(); assert(rtc_clk_xtal_freq_get() == RTC_XTAL_FREQ_32M); rtc_clk_8m_enable(true); rtc_clk_fast_src_set(SOC_RTC_FAST_CLK_SRC_RC_FAST); #endif #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // WDT uses a SLOW_CLK clock source. After a function select_rtc_slow_clk a frequency of this source can changed. // If the frequency changes from 150kHz to 32kHz, then the timeout set for the WDT will increase 4.6 times. // Therefore, for the time of frequency change, set a new lower timeout value (2 sec). // This prevents excessive delay before resetting in case the supply voltage is drawdown. // (If frequency is changed from 150kHz to 32kHz then WDT timeout will increased to 2 sec * 150/32 = 9.375 sec). wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &LP_WDT}; uint32_t stage_timeout_ticks = (uint32_t)(2000ULL * rtc_clk_slow_freq_get_hz() / 1000ULL); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); //Bootloader has enabled RTC WDT until now. We're only modifying timeout, so keep the stage and timeout action the same wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif #if defined(CONFIG_RTC_CLK_SRC_EXT_CRYS) select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K); #elif defined(CONFIG_RTC_CLK_SRC_EXT_OSC) select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_OSC_SLOW); #elif defined(CONFIG_RTC_CLK_SRC_INT_RC32K) select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC32K); #else select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_RC_SLOW); #endif #ifdef CONFIG_BOOTLOADER_WDT_ENABLE // After changing a frequency WDT timeout needs to be set for new frequency. stage_timeout_ticks = (uint32_t)((uint64_t)CONFIG_BOOTLOADER_WDT_TIME_MS * rtc_clk_slow_freq_get_hz() / 1000); wdt_hal_write_protect_disable(&rtc_wdt_ctx); wdt_hal_feed(&rtc_wdt_ctx); wdt_hal_config_stage(&rtc_wdt_ctx, WDT_STAGE0, stage_timeout_ticks, WDT_STAGE_ACTION_RESET_RTC); wdt_hal_write_protect_enable(&rtc_wdt_ctx); #endif rtc_cpu_freq_config_t old_config, new_config; rtc_clk_cpu_freq_get_config(&old_config); const uint32_t old_freq_mhz = old_config.freq_mhz; const uint32_t new_freq_mhz = CONFIG_ESP_DEFAULT_CPU_FREQ_MHZ; bool res = rtc_clk_cpu_freq_mhz_to_config(new_freq_mhz, &new_config); assert(res); // Wait for UART TX to finish, otherwise some UART output will be lost // when switching APB frequency esp_rom_uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM); if (res) { rtc_clk_cpu_freq_set_config(&new_config); } // Re calculate the ccount to make time calculation correct. esp_cpu_set_cycle_count( (uint64_t)esp_cpu_get_cycle_count() * new_freq_mhz / old_freq_mhz ); // Set crypto clock (`clk_sec`) to use 96M PLL clock REG_SET_FIELD(PCR_SEC_CONF_REG, PCR_SEC_CLK_SEL, 0x3); } static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src) { uint32_t cal_val = 0; /* number of times to repeat 32k XTAL calibration * before giving up and switching to the internal RC */ int retry_32k_xtal = 3; do { if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K || rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) { /* 32k XTAL oscillator needs to be enabled and running before it can * be used. Hardware doesn't have a direct way of checking if the * oscillator is running. Here we use rtc_clk_cal function to count * the number of main XTAL cycles in the given number of 32k XTAL * oscillator cycles. If the 32k XTAL has not started up, calibration * will time out, returning 0. */ ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up"); rtc_cal_sel_t cal_sel = 0; if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) { rtc_clk_32k_enable(true); cal_sel = RTC_CAL_32K_XTAL; } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) { rtc_clk_32k_enable_external(); cal_sel = RTC_CAL_32K_OSC_SLOW; } // When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup. if (SLOW_CLK_CAL_CYCLES > 0) { cal_val = rtc_clk_cal(cal_sel, SLOW_CLK_CAL_CYCLES); if (cal_val == 0) { if (retry_32k_xtal-- > 0) { continue; } ESP_EARLY_LOGW(TAG, "32 kHz clock not found, switching to internal 150 kHz oscillator"); rtc_slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW; } } } else if (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) { rtc_clk_rc32k_enable(true); } rtc_clk_slow_src_set(rtc_slow_clk_src); if (SLOW_CLK_CAL_CYCLES > 0) { /* TODO: 32k XTAL oscillator has some frequency drift at startup. * Improve calibration routine to wait until the frequency is stable. */ cal_val = rtc_clk_cal(RTC_CAL_RTC_MUX, SLOW_CLK_CAL_CYCLES); } else { const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL; cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz()); } } while (cal_val == 0); ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val); esp_clk_slowclk_cal_set(cal_val); } void rtc_clk_select_rtc_slow_clk(void) { select_rtc_slow_clk(SOC_RTC_SLOW_CLK_SRC_XTAL32K); } /* This function is not exposed as an API at this point. * All peripheral clocks are default enabled after chip is powered on. * This function disables some peripheral clocks when cpu starts. * These peripheral clocks are enabled when the peripherals are initialized * and disabled when they are de-initialized. */ __attribute__((weak)) void esp_perip_clk_init(void) { soc_rtc_slow_clk_src_t rtc_slow_clk_src = rtc_clk_slow_src_get(); esp_sleep_pd_domain_t pu_domain = (esp_sleep_pd_domain_t) (\ (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) ? ESP_PD_DOMAIN_XTAL32K \ : (rtc_slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) ? ESP_PD_DOMAIN_RC32K \ : ESP_PD_DOMAIN_MAX); esp_sleep_pd_config(pu_domain, ESP_PD_OPTION_ON); ESP_EARLY_LOGW(TAG, "esp_perip_clk_init() has not been implemented yet"); // ESP32H2-TODO: IDF-5658 #if 0 uint32_t common_perip_clk, hwcrypto_perip_clk, wifi_bt_sdio_clk = 0; uint32_t common_perip_clk1 = 0; soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0); /* For reason that only reset CPU, do not disable the clocks * that have been enabled before reset. */ if (rst_reason == RESET_REASON_CPU0_MWDT0 || rst_reason == RESET_REASON_CPU0_SW || rst_reason == RESET_REASON_CPU0_RTC_WDT || rst_reason == RESET_REASON_CPU0_MWDT1) { common_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN0_REG); hwcrypto_perip_clk = ~READ_PERI_REG(SYSTEM_PERIP_CLK_EN1_REG); wifi_bt_sdio_clk = ~READ_PERI_REG(SYSTEM_WIFI_CLK_EN_REG); } else { common_perip_clk = SYSTEM_WDG_CLK_EN | SYSTEM_I2S0_CLK_EN | #if CONFIG_ESP_CONSOLE_UART_NUM != 0 SYSTEM_UART_CLK_EN | #endif #if CONFIG_ESP_CONSOLE_UART_NUM != 1 SYSTEM_UART1_CLK_EN | #endif SYSTEM_SPI2_CLK_EN | SYSTEM_I2C_EXT0_CLK_EN | SYSTEM_UHCI0_CLK_EN | SYSTEM_RMT_CLK_EN | SYSTEM_LEDC_CLK_EN | SYSTEM_TIMERGROUP1_CLK_EN | SYSTEM_SPI3_CLK_EN | SYSTEM_SPI4_CLK_EN | SYSTEM_TWAI_CLK_EN | SYSTEM_I2S1_CLK_EN | SYSTEM_SPI2_DMA_CLK_EN | SYSTEM_SPI3_DMA_CLK_EN; common_perip_clk1 = 0; hwcrypto_perip_clk = SYSTEM_CRYPTO_AES_CLK_EN | SYSTEM_CRYPTO_SHA_CLK_EN | SYSTEM_CRYPTO_RSA_CLK_EN; wifi_bt_sdio_clk = SYSTEM_WIFI_CLK_WIFI_EN | SYSTEM_WIFI_CLK_BT_EN_M | SYSTEM_WIFI_CLK_UNUSED_BIT5 | SYSTEM_WIFI_CLK_UNUSED_BIT12; } //Reset the communication peripherals like I2C, SPI, UART, I2S and bring them to known state. common_perip_clk |= SYSTEM_I2S0_CLK_EN | #if CONFIG_ESP_CONSOLE_UART_NUM != 0 SYSTEM_UART_CLK_EN | #endif #if CONFIG_ESP_CONSOLE_UART_NUM != 1 SYSTEM_UART1_CLK_EN | #endif SYSTEM_SPI2_CLK_EN | SYSTEM_I2C_EXT0_CLK_EN | SYSTEM_UHCI0_CLK_EN | SYSTEM_RMT_CLK_EN | SYSTEM_UHCI1_CLK_EN | SYSTEM_SPI3_CLK_EN | SYSTEM_SPI4_CLK_EN | SYSTEM_I2C_EXT1_CLK_EN | SYSTEM_I2S1_CLK_EN | SYSTEM_SPI2_DMA_CLK_EN | SYSTEM_SPI3_DMA_CLK_EN; common_perip_clk1 = 0; /* Change I2S clock to audio PLL first. Because if I2S uses 160MHz clock, * the current is not reduced when disable I2S clock. */ // TOCK(check replacement) // REG_SET_FIELD(I2S_CLKM_CONF_REG(0), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL); // REG_SET_FIELD(I2S_CLKM_CONF_REG(1), I2S_CLK_SEL, I2S_CLK_AUDIO_PLL); /* Disable some peripheral clocks. */ CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN0_REG, common_perip_clk); SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN0_REG, common_perip_clk); CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, common_perip_clk1); SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, common_perip_clk1); /* Disable hardware crypto clocks. */ CLEAR_PERI_REG_MASK(SYSTEM_PERIP_CLK_EN1_REG, hwcrypto_perip_clk); SET_PERI_REG_MASK(SYSTEM_PERIP_RST_EN1_REG, hwcrypto_perip_clk); /* Disable WiFi/BT/SDIO clocks. */ CLEAR_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, wifi_bt_sdio_clk); SET_PERI_REG_MASK(SYSTEM_WIFI_CLK_EN_REG, SYSTEM_WIFI_CLK_EN); /* Set WiFi light sleep clock source to RTC slow clock */ REG_SET_FIELD(SYSTEM_BT_LPCK_DIV_INT_REG, SYSTEM_BT_LPCK_DIV_NUM, 0); CLEAR_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_XTAL32K | SYSTEM_LPCLK_SEL_XTAL | SYSTEM_LPCLK_SEL_8M | SYSTEM_LPCLK_SEL_RTC_SLOW); SET_PERI_REG_MASK(SYSTEM_BT_LPCK_DIV_FRAC_REG, SYSTEM_LPCLK_SEL_RTC_SLOW); /* Enable RNG clock. */ periph_module_enable(PERIPH_RNG_MODULE); #endif /* Enable TimerGroup 0 clock to ensure its reference counter will never * be decremented to 0 during normal operation and preventing it from * being disabled. * If the TimerGroup 0 clock is disabled and then reenabled, the watchdog * registers (Flashboot protection included) will be reenabled, and some * seconds later, will trigger an unintended reset. */ periph_module_enable(PERIPH_TIMG0_MODULE); }