/* * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "hal/hal_utils.h" #include "hal/assert.h" #ifndef BIT #define BIT(n) (1UL << (n)) #endif #ifndef BIT_MASK #define BIT_MASK(n) (BIT(n) - 1) #endif __attribute__((always_inline)) static inline uint32_t _sub_abs(uint32_t a, uint32_t b) { return a > b ? a - b : b - a; } uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div) { HAL_ASSERT(clk_info->max_fract > 2); uint32_t div_denom = 2; uint32_t div_numer = 0; uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz; uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz; // fractional divider if (freq_error) { // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2) if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) { // Calculate the Greatest Common Divisor, time complexity O(log n) uint32_t gcd = hal_utils_gcd(clk_info->exp_freq_hz, freq_error); // divide by the Greatest Common Divisor to get the accurate fraction before normalization div_denom = clk_info->exp_freq_hz / gcd; div_numer = freq_error / gcd; // normalize div_denom and div_numer uint32_t d = div_denom / clk_info->max_fract + 1; // divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract div_denom /= d; div_numer /= d; } else { div_integ++; } } // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0 if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) { return 0; } // Assign result clk_div->integer = div_integ; clk_div->denominator = div_denom; clk_div->numerator = div_numer; // Return the actual frequency if (div_numer) { uint32_t temp = div_integ * div_denom + div_numer; return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp); } return clk_info->src_freq_hz / div_integ; } uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div) { HAL_ASSERT(clk_info->max_fract > 2); uint32_t div_denom = 2; uint32_t div_numer = 0; uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz; uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz; if (freq_error) { // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2) if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) { // Search the closest fraction, time complexity O(n) for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a < clk_info->max_fract; a++) { b = (a * freq_error + clk_info->exp_freq_hz / 2) / clk_info->exp_freq_hz; sub = _sub_abs(clk_info->exp_freq_hz * b, freq_error * a); if (sub < min) { div_denom = a; div_numer = b; min = sub; } } } else { div_integ++; } } // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0 if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) { return 0; } // Assign result clk_div->integer = div_integ; clk_div->denominator = div_denom; clk_div->numerator = div_numer; // Return the actual frequency if (div_numer) { uint32_t temp = div_integ * div_denom + div_numer; return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp); } return clk_info->src_freq_hz / div_integ; } uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div) { uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz; uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz; /* If there is error and always round up, Or, do the normal rounding and error >= (src/n + src/(n+1)) / 2, then carry the bit */ if ((freq_error && clk_info->round_opt == HAL_DIV_ROUND_UP) || (clk_info->round_opt == HAL_DIV_ROUND && (freq_error >= clk_info->src_freq_hz / (2 * div_integ * (div_integ + 1))))) { div_integ++; } /* Check the integral division whether in range [min_integ, max_integ) */ /* If the result is less than the minimum, set the division to the minimum but return 0 */ if (div_integ < clk_info->min_integ) { *int_div = clk_info->min_integ; return 0; } /* if the result is greater or equal to the maximum , set the division to the maximum but return 0 */ if (div_integ >= clk_info->max_integ) { *int_div = clk_info->max_integ - 1; return 0; } // Assign result *int_div = div_integ; // Return the actual frequency return clk_info->src_freq_hz / div_integ; } typedef union { struct { uint32_t mantissa: 23; uint32_t exponent: 8; uint32_t sign: 1; }; uint32_t val; } hal_utils_ieee754_float_t; int hal_utils_float_to_fixed_point_32b(float flt, const hal_utils_fixed_point_t *fp_cfg, uint32_t *fp_out) { int ret = 0; uint32_t output = 0; const hal_utils_ieee754_float_t *f = (const hal_utils_ieee754_float_t *)&flt; if (fp_cfg->int_bit + fp_cfg->frac_bit > 31) { // Not supported return -3; } if (f->val == 0) { // Zero case *fp_out = 0; return 0; } if (f->exponent != 0xFF) { // Normal case int real_exp = (int)f->exponent - 127; uint32_t real_mant = f->mantissa | BIT(23); // Add the hidden bit // Overflow check if (real_exp >= (int)fp_cfg->int_bit) { ret = -1; } // Determine sign output |= f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit); // Determine integer and fraction part int shift = 23 - fp_cfg->frac_bit - real_exp; output |= shift >= 0 ? real_mant >> shift : real_mant << -shift; } else { if (f->mantissa && f->mantissa < BIT(23) - 1) { // NaN (Not-a-Number) case return -2; } else { // Infinity or Largest Number case output = f->sign ? ~(uint32_t)0 : BIT(31) - 1; ret = -1; } } if (ret != 0 && fp_cfg->saturation) { *fp_out = (f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit)) | (BIT_MASK(fp_cfg->int_bit + fp_cfg->frac_bit)); } else { *fp_out = output; } return ret; }