/* * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: CC0-1.0 */ #include #include #include #include "soc/soc_caps.h" #include "esp_log.h" #include "esp_memory_utils.h" #include "esp_heap_caps.h" #include "sys/param.h" #include "soc/lldesc.h" #if SOC_SHA_SUPPORTED #if SOC_SHA_SUPPORT_DMA #include "soc/periph_defs.h" #include "esp_private/periph_ctrl.h" #include "esp_private/esp_crypto_lock_internal.h" #include "hal/sha_hal.h" #include "hal/sha_ll.h" #include "sha_dma.h" #if CONFIG_SOC_SHA_GDMA #include "esp_crypto_shared_gdma.h" #else #include "soc/crypto_dma_reg.h" #include "hal/crypto_dma_ll.h" #endif /* CONFIG_SOC_SHA_GDMA */ #ifndef SOC_SHA_DMA_MAX_BUFFER_SIZE #define SOC_SHA_DMA_MAX_BUFFER_SIZE (3968) #endif const static char* TAG = "sha_dma"; static bool s_check_dma_capable(const void *p); /* These are static due to: * * Must be in DMA capable memory, so stack is not a safe place to put them * * To avoid having to malloc/free them for every DMA operation */ static DRAM_ATTR lldesc_t s_dma_descr_input; static DRAM_ATTR lldesc_t s_dma_descr_buf; #if CONFIG_SOC_SHA_GDMA static esp_err_t esp_sha_dma_start(const lldesc_t *input) { return esp_crypto_shared_gdma_start(input, NULL, GDMA_TRIG_PERIPH_SHA); } #else static esp_err_t esp_sha_dma_start(const lldesc_t *input) { crypto_dma_ll_set_mode(CRYPTO_DMA_SHA); crypto_dma_ll_reset(); crypto_dma_ll_outlink_set((intptr_t)input); crypto_dma_ll_outlink_start(); return ESP_OK; } #endif static void acquire_hardware(void) { SHA_RCC_ATOMIC() { sha_ll_enable_bus_clock(true); #if SOC_AES_CRYPTO_DMA crypto_dma_ll_enable_bus_clock(true); #endif sha_ll_reset_register(); #if SOC_AES_CRYPTO_DMA crypto_dma_ll_reset_register(); #endif } } static void release_hardware(void) { SHA_RCC_ATOMIC() { sha_ll_enable_bus_clock(false); #if SOC_AES_CRYPTO_DMA crypto_dma_ll_enable_bus_clock(false); #endif } } static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block); /* Performs SHA on multiple blocks at a time using DMA splits up into smaller operations for inputs that exceed a single DMA list */ static int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block) { int ret = 0; unsigned char *dma_cap_buf = NULL; if (buf_len > block_length(sha_type)) { ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block"); return -1; } /* DMA cannot access memory in flash, hash block by block instead of using DMA */ if (!s_check_dma_capable(input) && (ilen != 0)) { return 0; } #if (CONFIG_SPIRAM && SOC_PSRAM_DMA_CAPABLE) if (esp_ptr_external_ram(input)) { Cache_WriteBack_Addr((uint32_t)input, ilen); } if (esp_ptr_external_ram(buf)) { Cache_WriteBack_Addr((uint32_t)buf, buf_len); } #endif /* Copy to internal buf if buf is in non DMA capable memory */ if (!s_check_dma_capable(buf) && (buf_len != 0)) { dma_cap_buf = heap_caps_malloc(sizeof(unsigned char) * buf_len, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); if (dma_cap_buf == NULL) { ESP_LOGE(TAG, "Failed to allocate buf memory"); ret = -1; goto cleanup; } memcpy(dma_cap_buf, buf, buf_len); buf = dma_cap_buf; } uint32_t dma_op_num; if (ilen > 0) { /* Number of DMA operations based on maximum chunk size in single operation */ dma_op_num = (ilen + SOC_SHA_DMA_MAX_BUFFER_SIZE - 1) / SOC_SHA_DMA_MAX_BUFFER_SIZE; } else { /* For zero input length, we must allow at-least 1 DMA operation to see * if there is any pending data that is yet to be copied out */ dma_op_num = 1; } /* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63 Thus we only do a single DMA input list + dma buf list, which is max 3968/64 + 64/64 = 63 blocks */ for (int i = 0; i < dma_op_num; i++) { int dma_chunk_len = MIN(ilen, SOC_SHA_DMA_MAX_BUFFER_SIZE); ret = esp_sha_dma_process(sha_type, input, dma_chunk_len, buf, buf_len, is_first_block); if (ret != 0) { goto cleanup; } ilen -= dma_chunk_len; input = (uint8_t *)input + dma_chunk_len; // Only append buf to the first operation buf_len = 0; is_first_block = false; } cleanup: free(dma_cap_buf); return ret; } /* Performs SHA on multiple blocks at a time */ static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block) { int ret = 0; lldesc_t *dma_descr_head = NULL; size_t num_blks = (ilen + buf_len) / block_length(sha_type); memset(&s_dma_descr_input, 0, sizeof(lldesc_t)); memset(&s_dma_descr_buf, 0, sizeof(lldesc_t)); /* DMA descriptor for Memory to DMA-SHA transfer */ if (ilen) { s_dma_descr_input.length = ilen; s_dma_descr_input.size = ilen; s_dma_descr_input.owner = 1; s_dma_descr_input.eof = 1; s_dma_descr_input.buf = (uint8_t *)input; dma_descr_head = &s_dma_descr_input; } /* Check after input to overide head if there is any buf*/ if (buf_len) { s_dma_descr_buf.length = buf_len; s_dma_descr_buf.size = buf_len; s_dma_descr_buf.owner = 1; s_dma_descr_buf.eof = 1; s_dma_descr_buf.buf = (uint8_t *)buf; dma_descr_head = &s_dma_descr_buf; } /* Link DMA lists */ if (buf_len && ilen) { s_dma_descr_buf.eof = 0; s_dma_descr_buf.empty = (uint32_t)(&s_dma_descr_input); } if (esp_sha_dma_start(dma_descr_head) != ESP_OK) { ESP_LOGE(TAG, "esp_sha_dma_start failed, no DMA channel available"); return -1; } sha_hal_hash_dma(sha_type, num_blks, is_first_block); sha_hal_wait_idle(); return ret; } static bool s_check_dma_capable(const void *p) { bool is_capable = false; #if CONFIG_SPIRAM is_capable |= esp_ptr_dma_ext_capable(p); #endif is_capable |= esp_ptr_dma_capable(p); return is_capable; } #if defined(SOC_SHA_SUPPORT_SHA1) static void esp_internal_sha1_update_state(sha1_ctx *ctx, esp_sha_type sha_type) { if (ctx->sha_state == ESP_SHA_STATE_INIT) { ctx->first_block = true; ctx->sha_state = ESP_SHA_STATE_IN_PROCESS; } else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) { ctx->first_block = false; sha_hal_write_digest(sha_type, ctx->state); } } static void sha1_update_dma(sha1_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen) { size_t fill; uint32_t left, len, local_len = 0; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if ( ctx->total[0] < (uint32_t) ilen ) { ctx->total[1]++; } if ( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); input += fill; ilen -= fill; left = 0; local_len = 64; } len = (ilen / 64) * 64; if ( len || local_len) { /* Enable peripheral module */ acquire_hardware(); esp_internal_sha1_update_state(ctx, sha_type); int ret = esp_sha_dma(sha_type, input, len, ctx->buffer, local_len, ctx->first_block); if (ret != 0) { release_hardware(); return ; } /* Reads the current message digest from the SHA engine */ sha_hal_read_digest(sha_type, ctx->state); /* Disable peripheral module */ release_hardware(); } if ( ilen > 0 ) { memcpy( (void *) (ctx->buffer + left), input + len, ilen - len ); } } void sha1_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output) { sha1_ctx ctx; ctx.total[0] = 0; ctx.total[1] = 0; memset(&ctx, 0, sizeof( sha1_ctx ) ); ctx.mode = SHA1; sha1_update_dma(&ctx, sha_type, input, ilen); uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = ( ctx.total[0] >> 29 ) | ( ctx.total[1] << 3 ); low = ( ctx.total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx.total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); sha1_update_dma(&ctx, sha_type, sha1_padding, padn); sha1_update_dma(&ctx, sha_type, msglen, 8); memcpy(output, ctx.state, 20); } #endif /* defined(SOC_SHA_SUPPORT_SHA1) */ #if defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256) static void esp_internal_sha256_update_state(sha256_ctx *ctx) { if (ctx->sha_state == ESP_SHA_STATE_INIT) { ctx->first_block = true; ctx->sha_state = ESP_SHA_STATE_IN_PROCESS; } else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) { ctx->first_block = false; sha_hal_write_digest(ctx->mode, ctx->state); } } static void sha256_update_dma(sha256_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen) { size_t fill; uint32_t left, len, local_len = 0; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += (uint32_t) ilen; ctx->total[0] &= 0xFFFFFFFF; if ( ctx->total[0] < (uint32_t) ilen ) { ctx->total[1]++; } if ( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); input += fill; ilen -= fill; left = 0; local_len = 64; } len = (ilen / 64) * 64; if ( len || local_len) { /* Enable peripheral module */ acquire_hardware(); esp_internal_sha256_update_state(ctx); int ret = esp_sha_dma(ctx->mode, input, len, ctx->buffer, local_len, ctx->first_block); if (ret != 0) { /* Disable peripheral module */ release_hardware(); return; } /* Reads the current message digest from the SHA engine */ sha_hal_read_digest(sha_type, ctx->state); /* Disable peripheral module */ release_hardware(); } if ( ilen > 0 ) { memcpy( (void *) (ctx->buffer + left), input + len, ilen - len ); } } void sha256_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output) { sha256_ctx ctx; memset(&ctx, 0, sizeof(sha256_ctx)); ctx.mode = sha_type; sha256_update_dma(&ctx, sha_type, input, ilen); uint32_t last, padn; uint32_t high, low; unsigned char msglen[8]; high = ( ctx.total[0] >> 29 ) | ( ctx.total[1] << 3 ); low = ( ctx.total[0] << 3 ); PUT_UINT32_BE( high, msglen, 0 ); PUT_UINT32_BE( low, msglen, 4 ); last = ctx.total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); sha256_update_dma(&ctx, sha_type, sha256_padding, padn); sha256_update_dma(&ctx, sha_type, msglen, 8); if (sha_type == SHA2_256) { memcpy(output, ctx.state, 32); } else if (sha_type == SHA2_224) { memcpy(output, ctx.state, 28); } } #endif /* defined(SOC_SHA_SUPPORT_SHA224) || defined(SOC_SHA_SUPPORT_SHA256) */ #if defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512) #if SOC_SHA_SUPPORT_SHA512_T int sha_512_t_init_hash_dma(uint16_t t) { uint32_t t_string = 0; uint8_t t0, t1, t2, t_len; if (t == 384) { return -1; } if (t <= 9) { t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24)); t_len = 0x48; } else if (t <= 99) { t0 = t % 10; t1 = (t / 10) % 10; t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) | (((0x30 + t1) << 24))); t_len = 0x50; } else if (t <= 512) { t0 = t % 10; t1 = (t / 10) % 10; t2 = t / 100; t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) | (((0x30 + t1) << 16) + ((0x30 + t2) << 24))); t_len = 0x58; } else { return -1; } /* Calculates and sets the initial digiest for SHA512_t */ sha_hal_sha512_init_hash(t_string, t_len); return 0; } #endif //SOC_SHA_SUPPORT_SHA512_T static void esp_internal_sha512_update_state(sha512_ctx *ctx) { if (ctx->sha_state == ESP_SHA_STATE_INIT) { if (ctx->mode == SHA2_512T) { int ret = -1; if ((ret = sha_512_t_init_hash_dma(ctx->t_val)) != 0) { release_hardware(); return; } ctx->first_block = false; } else { ctx->first_block = true; } ctx->sha_state = ESP_SHA_STATE_IN_PROCESS; } else if (ctx->sha_state == ESP_SHA_STATE_IN_PROCESS) { ctx->first_block = false; sha_hal_write_digest(ctx->mode, ctx->state); } } static void sha512_update_dma(sha512_ctx* ctx, esp_sha_type sha_type, const unsigned char *input, size_t ilen) { size_t fill; unsigned int left, len, local_len = 0; left = (unsigned int) (ctx->total[0] & 0x7F); fill = 128 - left; ctx->total[0] += (uint64_t) ilen; if ( ctx->total[0] < (uint64_t) ilen ) { ctx->total[1]++; } if ( left && ilen >= fill ) { memcpy( (void *) (ctx->buffer + left), input, fill ); input += fill; ilen -= fill; left = 0; local_len = 128; } len = (ilen / 128) * 128; if ( len || local_len) { /* Enable peripheral module */ acquire_hardware(); esp_internal_sha512_update_state(ctx); int ret = esp_sha_dma(ctx->mode, input, len, ctx->buffer, local_len, ctx->first_block); if (ret != 0) { release_hardware(); return; } /* Reads the current message digest from the SHA engine */ sha_hal_read_digest(sha_type, ctx->state); /* Disable peripheral module */ release_hardware(); } if ( ilen > 0 ) { memcpy( (void *) (ctx->buffer + left), input + len, ilen - len ); } } void sha512_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output) { sha512_ctx ctx; memset(&ctx, 0, sizeof(sha512_ctx)); ctx.mode = sha_type; sha512_update_dma(&ctx, sha_type, input, ilen); size_t last, padn; uint64_t high, low; unsigned char msglen[16]; high = ( ctx.total[0] >> 61 ) | ( ctx.total[1] << 3 ); low = ( ctx.total[0] << 3 ); PUT_UINT64_BE( high, msglen, 0 ); PUT_UINT64_BE( low, msglen, 8 ); last = (size_t)( ctx.total[0] & 0x7F ); padn = ( last < 112 ) ? ( 112 - last ) : ( 240 - last ); sha512_update_dma( &ctx, sha_type, sha512_padding, padn ); sha512_update_dma( &ctx, sha_type, msglen, 16 ); if (sha_type == SHA2_384) { memcpy(output, ctx.state, 48); } else { memcpy(output, ctx.state, 64); } } #endif /* defined(SOC_SHA_SUPPORT_SHA384) || defined(SOC_SHA_SUPPORT_SHA512) */ #if SOC_SHA_SUPPORT_SHA512_T void sha512t_dma(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output, uint32_t t_val) { sha512_ctx ctx; memset(&ctx, 0, sizeof(sha512_ctx)); ctx.t_val = t_val; ctx.mode = sha_type; sha512_update_dma(&ctx, sha_type, input, ilen); size_t last, padn; uint64_t high, low; unsigned char msglen[16]; high = ( ctx.total[0] >> 61 ) | ( ctx.total[1] << 3 ); low = ( ctx.total[0] << 3 ); PUT_UINT64_BE( high, msglen, 0 ); PUT_UINT64_BE( low, msglen, 8 ); last = (size_t)( ctx.total[0] & 0x7F ); padn = ( last < 112 ) ? ( 112 - last ) : ( 240 - last ); sha512_update_dma( &ctx, sha_type, sha512_padding, padn ); sha512_update_dma( &ctx, sha_type, msglen, 16 ); if (sha_type == SHA2_384) { memcpy(output, ctx.state, 48); } else { memcpy(output, ctx.state, 64); } } #endif /*SOC_SHA_SUPPORT_SHA512_T*/ #endif /* SOC_SHA_SUPPORT_DMA*/ #endif /*SOC_SHA_SUPPORTED*/