// Copyright 2015-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "freertos/event_groups.h" #include "freertos/xtensa_api.h" #include "freertos/portmacro.h" #include "freertos/xtensa_api.h" #include "esp_types.h" #include "esp_system.h" #include "esp_task.h" #include "esp_intr_alloc.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_event.h" #include "esp_heap_caps.h" #include "esp_private/wifi_os_adapter.h" #include "esp_private/wifi.h" #include "esp_phy_init.h" #include "esp32s2/clk.h" #include "soc/dport_reg.h" #include "soc/syscon_reg.h" #include "phy_init_data.h" #include "driver/periph_ctrl.h" #include "nvs.h" #include "os.h" #include "esp_smartconfig.h" #include "esp_coexist_internal.h" #include "esp_coexist_adapter.h" #define TAG "esp_adapter" /* If CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP is enabled. Prefer to allocate a chunk of memory in SPIRAM firstly. If failed, try to allocate it in internal memory then. */ IRAM_ATTR void *wifi_malloc( size_t size ) { #if CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP return heap_caps_malloc_prefer(size, 2, MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL); #else return malloc(size); #endif } /* If CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP is enabled. Prefer to allocate a chunk of memory in SPIRAM firstly. If failed, try to allocate it in internal memory then. */ IRAM_ATTR void *wifi_realloc( void *ptr, size_t size ) { #if CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP return heap_caps_realloc_prefer(ptr, size, 2, MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL); #else return realloc(ptr, size); #endif } /* If CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP is enabled. Prefer to allocate a chunk of memory in SPIRAM firstly. If failed, try to allocate it in internal memory then. */ IRAM_ATTR void *wifi_calloc( size_t n, size_t size ) { #if CONFIG_SPIRAM_TRY_ALLOCATE_WIFI_LWIP return heap_caps_calloc_prefer(n, size, 2, MALLOC_CAP_DEFAULT|MALLOC_CAP_SPIRAM, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL); #else return calloc(n, size); #endif } static void * IRAM_ATTR wifi_zalloc_wrapper(size_t size) { void *ptr = wifi_calloc(1, size); if (ptr) { memset(ptr, 0, size); } return ptr; } wifi_static_queue_t* wifi_create_queue( int queue_len, int item_size) { wifi_static_queue_t *queue = NULL; queue = (wifi_static_queue_t*)heap_caps_malloc(sizeof(wifi_static_queue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue) { return NULL; } #if CONFIG_SPIRAM_USE_MALLOC queue->storage = heap_caps_calloc(1, sizeof(StaticQueue_t) + (queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue->storage) { goto _error; } queue->handle = xQueueCreateStatic( queue_len, item_size, ((uint8_t*)(queue->storage)) + sizeof(StaticQueue_t), (StaticQueue_t*)(queue->storage)); if (!queue->handle) { goto _error; } return queue; _error: if (queue) { if (queue->storage) { free(queue->storage); } free(queue); } return NULL; #else queue->handle = xQueueCreate( queue_len, item_size); return queue; #endif } void wifi_delete_queue(wifi_static_queue_t *queue) { if (queue) { vQueueDelete(queue->handle); #if CONFIG_SPIRAM_USE_MALLOC if (queue->storage) { free(queue->storage); } #endif free(queue); } } static void * wifi_create_queue_wrapper(int queue_len, int item_size) { return wifi_create_queue(queue_len, item_size); } static void wifi_delete_queue_wrapper(void *queue) { wifi_delete_queue(queue); } static void set_isr_wrapper(int32_t n, void *f, void *arg) { xt_set_interrupt_handler(n, (xt_handler)f, arg); } static void * spin_lock_create_wrapper(void) { portMUX_TYPE tmp = portMUX_INITIALIZER_UNLOCKED; void *mux = heap_caps_malloc(sizeof(portMUX_TYPE), MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL); if (mux) { memcpy(mux,&tmp,sizeof(portMUX_TYPE)); return mux; } return NULL; } static uint32_t IRAM_ATTR wifi_int_disable_wrapper(void *wifi_int_mux) { if (xPortInIsrContext()) { portENTER_CRITICAL_ISR(wifi_int_mux); } else { portENTER_CRITICAL(wifi_int_mux); } return 0; } static void IRAM_ATTR wifi_int_restore_wrapper(void *wifi_int_mux, uint32_t tmp) { if (xPortInIsrContext()) { portEXIT_CRITICAL_ISR(wifi_int_mux); } else { portEXIT_CRITICAL(wifi_int_mux); } } static bool IRAM_ATTR is_from_isr_wrapper(void) { return xPortInIsrContext(); } static void IRAM_ATTR task_yield_from_isr_wrapper(void) { portYIELD_FROM_ISR(); } static void * semphr_create_wrapper(uint32_t max, uint32_t init) { return (void *)xSemaphoreCreateCounting(max, init); } static void semphr_delete_wrapper(void *semphr) { vSemaphoreDelete(semphr); } static void wifi_thread_semphr_free(void* data) { xSemaphoreHandle *sem = (xSemaphoreHandle*)(data); if (sem) { vSemaphoreDelete(sem); } } static void * wifi_thread_semphr_get_wrapper(void) { static bool s_wifi_thread_sem_key_init = false; static pthread_key_t s_wifi_thread_sem_key; xSemaphoreHandle sem = NULL; if (s_wifi_thread_sem_key_init == false) { if (0 != pthread_key_create(&s_wifi_thread_sem_key, wifi_thread_semphr_free)) { return NULL; } s_wifi_thread_sem_key_init = true; } sem = pthread_getspecific(s_wifi_thread_sem_key); if (!sem) { sem = xSemaphoreCreateCounting(1, 0); if (sem) { pthread_setspecific(s_wifi_thread_sem_key, sem); ESP_LOGV(TAG, "thread sem create: sem=%p", sem); } } ESP_LOGV(TAG, "thread sem get: sem=%p", sem); return (void*)sem; } static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw) { return (int32_t)xSemaphoreTakeFromISR(semphr, hptw); } static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw) { return (int32_t)xSemaphoreGiveFromISR(semphr, hptw); } static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_tick) { if (block_time_tick == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY); } else { return (int32_t)xSemaphoreTake(semphr, block_time_tick); } } static int32_t semphr_give_wrapper(void *semphr) { return (int32_t)xSemaphoreGive(semphr); } static void * recursive_mutex_create_wrapper(void) { return (void *)xSemaphoreCreateRecursiveMutex(); } static void * mutex_create_wrapper(void) { return (void *)xSemaphoreCreateMutex(); } static void mutex_delete_wrapper(void *mutex) { vSemaphoreDelete(mutex); } static int32_t IRAM_ATTR mutex_lock_wrapper(void *mutex) { return (int32_t)xSemaphoreTakeRecursive(mutex, portMAX_DELAY); } static int32_t IRAM_ATTR mutex_unlock_wrapper(void *mutex) { return (int32_t)xSemaphoreGiveRecursive(mutex); } static void * queue_create_wrapper(uint32_t queue_len, uint32_t item_size) { return (void *)xQueueCreate(queue_len, item_size); } static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_tick) { if (block_time_tick == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xQueueSend(queue, item, portMAX_DELAY); } else { return (int32_t)xQueueSend(queue, item, block_time_tick); } } static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw) { return (int32_t)xQueueSendFromISR(queue, item, hptw); } static int32_t queue_send_to_back_wrapper(void *queue, void *item, uint32_t block_time_tick) { return (int32_t)xQueueGenericSend(queue, item, block_time_tick, queueSEND_TO_BACK); } static int32_t queue_send_to_front_wrapper(void *queue, void *item, uint32_t block_time_tick) { return (int32_t)xQueueGenericSend(queue, item, block_time_tick, queueSEND_TO_FRONT); } static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_tick) { if (block_time_tick == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xQueueReceive(queue, item, portMAX_DELAY); } else { return (int32_t)xQueueReceive(queue, item, block_time_tick); } } static uint32_t event_group_wait_bits_wrapper(void *event, uint32_t bits_to_wait_for, int clear_on_exit, int wait_for_all_bits, uint32_t block_time_tick) { if (block_time_tick == OSI_FUNCS_TIME_BLOCKING) { return (uint32_t)xEventGroupWaitBits(event, bits_to_wait_for, clear_on_exit, wait_for_all_bits, portMAX_DELAY); } else { return (uint32_t)xEventGroupWaitBits(event, bits_to_wait_for, clear_on_exit, wait_for_all_bits, block_time_tick); } } static int32_t task_create_pinned_to_core_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id) { return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY)); } static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle) { return (uint32_t)xTaskCreate(task_func, name, stack_depth, param, prio, task_handle); } static int32_t IRAM_ATTR task_ms_to_tick_wrapper(uint32_t ms) { return (int32_t)(ms / portTICK_PERIOD_MS); } static int32_t task_get_max_priority_wrapper(void) { return (int32_t)(configMAX_PRIORITIES); } static int32_t esp_event_post_wrapper(const char* event_base, int32_t event_id, void* event_data, size_t event_data_size, uint32_t ticks_to_wait) { if (ticks_to_wait == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)esp_event_post(event_base, event_id, event_data, event_data_size, portMAX_DELAY); } else { return (int32_t)esp_event_post(event_base, event_id, event_data, event_data_size, ticks_to_wait); } } static void IRAM_ATTR timer_arm_wrapper(void *timer, uint32_t tmout, bool repeat) { ets_timer_arm(timer, tmout, repeat); } static void IRAM_ATTR timer_disarm_wrapper(void *timer) { ets_timer_disarm(timer); } static void timer_done_wrapper(void *ptimer) { ets_timer_done(ptimer); } static void timer_setfn_wrapper(void *ptimer, void *pfunction, void *parg) { ets_timer_setfn(ptimer, pfunction, parg); } static void IRAM_ATTR timer_arm_us_wrapper(void *ptimer, uint32_t us, bool repeat) { ets_timer_arm_us(ptimer, us, repeat); } static void wifi_reset_mac_wrapper(void) { DPORT_SET_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, DPORT_MAC_RST); DPORT_CLEAR_PERI_REG_MASK(DPORT_CORE_RST_EN_REG, DPORT_MAC_RST); } static void wifi_clock_enable_wrapper(void) { periph_module_enable(PERIPH_WIFI_MODULE); } static void wifi_clock_disable_wrapper(void) { periph_module_disable(PERIPH_WIFI_MODULE); } static int get_time_wrapper(void *t) { return os_get_time(t); } static uint32_t esp_clk_slowclk_cal_get_wrapper(void) { /* The bit width of WiFi light sleep clock calibration is 12 while the one of * system is 19. It should shift 19 - 12 = 7. */ return (esp_clk_slowclk_cal_get() >> 7); } static void * IRAM_ATTR malloc_internal_wrapper(size_t size) { return heap_caps_malloc(size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); } static void * IRAM_ATTR realloc_internal_wrapper(void *ptr, size_t size) { return heap_caps_realloc(ptr, size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); } static void * IRAM_ATTR calloc_internal_wrapper(size_t n, size_t size) { return heap_caps_calloc(n, size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); } static void * IRAM_ATTR zalloc_internal_wrapper(size_t size) { void *ptr = heap_caps_calloc(1, size, MALLOC_CAP_8BIT|MALLOC_CAP_DMA|MALLOC_CAP_INTERNAL); if (ptr) { memset(ptr, 0, size); } return ptr; } static uint32_t coex_status_get_wrapper(void) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE return coex_status_get(); #else return 0; #endif } static void coex_condition_set_wrapper(uint32_t type, bool dissatisfy) { #if CONFIG_SW_COEXIST_ENABLE coex_condition_set(type, dissatisfy); #endif } static int coex_wifi_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE return coex_wifi_request(event, latency, duration); #else return 0; #endif } static int coex_wifi_release_wrapper(uint32_t event) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE return coex_wifi_release(event); #else return 0; #endif } static int coex_wifi_channel_set_wrapper(uint8_t primary, uint8_t secondary) { #if CONFIG_SW_COEXIST_ENABLE return coex_wifi_channel_set(primary, secondary); #else return 0; #endif } static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_clear(type, status); #endif } static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status) { #if CONFIG_SW_COEXIST_ENABLE coex_schm_status_bit_set(type, status); #endif } static IRAM_ATTR int coex_schm_interval_set_wrapper(uint32_t interval) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_interval_set(interval); #else return 0; #endif } static uint32_t coex_schm_interval_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_interval_get(); #else return 0; #endif } static uint8_t coex_schm_curr_period_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_period_get(); #else return 0; #endif } static void * coex_schm_curr_phase_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_phase_get(); #else return NULL; #endif } static int coex_schm_curr_phase_idx_set_wrapper(int idx) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_phase_idx_set(idx); #else return 0; #endif } static int coex_schm_curr_phase_idx_get_wrapper(void) { #if CONFIG_SW_COEXIST_ENABLE return coex_schm_curr_phase_idx_get(); #else return 0; #endif } static void IRAM_ATTR esp_empty_wrapper(void) { } wifi_osi_funcs_t g_wifi_osi_funcs = { ._version = ESP_WIFI_OS_ADAPTER_VERSION, ._set_isr = set_isr_wrapper, ._ints_on = xt_ints_on, ._ints_off = xt_ints_off, ._is_from_isr = is_from_isr_wrapper, ._spin_lock_create = spin_lock_create_wrapper, ._spin_lock_delete = free, ._wifi_int_disable = wifi_int_disable_wrapper, ._wifi_int_restore = wifi_int_restore_wrapper, ._task_yield_from_isr = task_yield_from_isr_wrapper, ._semphr_create = semphr_create_wrapper, ._semphr_delete = semphr_delete_wrapper, ._semphr_take = semphr_take_wrapper, ._semphr_give = semphr_give_wrapper, ._wifi_thread_semphr_get = wifi_thread_semphr_get_wrapper, ._mutex_create = mutex_create_wrapper, ._recursive_mutex_create = recursive_mutex_create_wrapper, ._mutex_delete = mutex_delete_wrapper, ._mutex_lock = mutex_lock_wrapper, ._mutex_unlock = mutex_unlock_wrapper, ._queue_create = queue_create_wrapper, ._queue_delete = (void(*)(void *))vQueueDelete, ._queue_send = queue_send_wrapper, ._queue_send_from_isr = queue_send_from_isr_wrapper, ._queue_send_to_back = queue_send_to_back_wrapper, ._queue_send_to_front = queue_send_to_front_wrapper, ._queue_recv = queue_recv_wrapper, ._queue_msg_waiting = (uint32_t(*)(void *))uxQueueMessagesWaiting, ._event_group_create = (void *(*)(void))xEventGroupCreate, ._event_group_delete = (void(*)(void *))vEventGroupDelete, ._event_group_set_bits = (uint32_t(*)(void *,uint32_t))xEventGroupSetBits, ._event_group_clear_bits = (uint32_t(*)(void *,uint32_t))xEventGroupClearBits, ._event_group_wait_bits = event_group_wait_bits_wrapper, ._task_create_pinned_to_core = task_create_pinned_to_core_wrapper, ._task_create = task_create_wrapper, ._task_delete = (void(*)(void *))vTaskDelete, ._task_delay = vTaskDelay, ._task_ms_to_tick = task_ms_to_tick_wrapper, ._task_get_current_task = (void *(*)(void))xTaskGetCurrentTaskHandle, ._task_get_max_priority = task_get_max_priority_wrapper, ._malloc = malloc, ._free = free, ._event_post = esp_event_post_wrapper, ._get_free_heap_size = esp_get_free_internal_heap_size, ._rand = esp_random, ._dport_access_stall_other_cpu_start_wrap = esp_empty_wrapper, ._dport_access_stall_other_cpu_end_wrap = esp_empty_wrapper, ._phy_rf_deinit = esp_phy_rf_deinit, ._phy_load_cal_and_init = esp_phy_load_cal_and_init, ._phy_update_country_info = esp_phy_update_country_info, ._read_mac = esp_read_mac, ._timer_arm = timer_arm_wrapper, ._timer_disarm = timer_disarm_wrapper, ._timer_done = timer_done_wrapper, ._timer_setfn = timer_setfn_wrapper, ._timer_arm_us = timer_arm_us_wrapper, ._wifi_reset_mac = wifi_reset_mac_wrapper, ._wifi_clock_enable = wifi_clock_enable_wrapper, ._wifi_clock_disable = wifi_clock_disable_wrapper, ._esp_timer_get_time = esp_timer_get_time, ._nvs_set_i8 = nvs_set_i8, ._nvs_get_i8 = nvs_get_i8, ._nvs_set_u8 = nvs_set_u8, ._nvs_get_u8 = nvs_get_u8, ._nvs_set_u16 = nvs_set_u16, ._nvs_get_u16 = nvs_get_u16, ._nvs_open = nvs_open, ._nvs_close = nvs_close, ._nvs_commit = nvs_commit, ._nvs_set_blob = nvs_set_blob, ._nvs_get_blob = nvs_get_blob, ._nvs_erase_key = nvs_erase_key, ._get_random = os_get_random, ._get_time = get_time_wrapper, ._random = os_random, #if CONFIG_IDF_TARGET_ESP32S2 ._slowclk_cal_get = esp_clk_slowclk_cal_get_wrapper, #endif ._log_write = esp_log_write, ._log_writev = esp_log_writev, ._log_timestamp = esp_log_timestamp, ._malloc_internal = malloc_internal_wrapper, ._realloc_internal = realloc_internal_wrapper, ._calloc_internal = calloc_internal_wrapper, ._zalloc_internal = zalloc_internal_wrapper, ._wifi_malloc = wifi_malloc, ._wifi_realloc = wifi_realloc, ._wifi_calloc = wifi_calloc, ._wifi_zalloc = wifi_zalloc_wrapper, ._wifi_create_queue = wifi_create_queue_wrapper, ._wifi_delete_queue = wifi_delete_queue_wrapper, ._modem_sleep_enter = esp_modem_sleep_enter, ._modem_sleep_exit = esp_modem_sleep_exit, ._modem_sleep_register = esp_modem_sleep_register, ._modem_sleep_deregister = esp_modem_sleep_deregister, ._coex_status_get = coex_status_get_wrapper, ._coex_condition_set = coex_condition_set_wrapper, ._coex_wifi_request = coex_wifi_request_wrapper, ._coex_wifi_release = coex_wifi_release_wrapper, ._coex_wifi_channel_set = coex_wifi_channel_set_wrapper, ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper, ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper, ._coex_schm_interval_set = coex_schm_interval_set_wrapper, ._coex_schm_interval_get = coex_schm_interval_get_wrapper, ._coex_schm_curr_period_get = coex_schm_curr_period_get_wrapper, ._coex_schm_curr_phase_get = coex_schm_curr_phase_get_wrapper, ._coex_schm_curr_phase_idx_set = coex_schm_curr_phase_idx_set_wrapper, ._coex_schm_curr_phase_idx_get = coex_schm_curr_phase_idx_get_wrapper, ._magic = ESP_WIFI_OS_ADAPTER_MAGIC, }; coex_adapter_funcs_t g_coex_adapter_funcs = { ._version = COEX_ADAPTER_VERSION, ._spin_lock_create = spin_lock_create_wrapper, ._spin_lock_delete = free, ._int_disable = wifi_int_disable_wrapper, ._int_enable = wifi_int_restore_wrapper, ._task_yield_from_isr = task_yield_from_isr_wrapper, ._semphr_create = semphr_create_wrapper, ._semphr_delete = semphr_delete_wrapper, ._semphr_take_from_isr = semphr_take_from_isr_wrapper, ._semphr_give_from_isr = semphr_give_from_isr_wrapper, ._semphr_take = semphr_take_wrapper, ._semphr_give = semphr_give_wrapper, ._is_in_isr = xPortInIsrContext, ._malloc_internal = malloc_internal_wrapper, ._free = free, ._timer_disarm = timer_disarm_wrapper, ._timer_done = timer_done_wrapper, ._timer_setfn = timer_setfn_wrapper, ._timer_arm_us = timer_arm_us_wrapper, ._esp_timer_get_time = esp_timer_get_time, ._magic = COEX_ADAPTER_MAGIC, };