/* * SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "esp_err.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "esp_sleep.h" #include "soc/soc_caps.h" #include "esp_private/esp_regdma.h" #include "esp_private/esp_pau.h" #include "esp_private/sleep_retention.h" #include "sdkconfig.h" #include "esp_pmu.h" #if SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE #include "soc/pmu_reg.h" // for PMU_DATE_REG, it can provide full 32 bit read and write access #endif #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE #include "hal/cache_ll.h" #endif static __attribute__((unused)) const char *TAG = "sleep"; struct sleep_retention_module_object { sleep_retention_module_callbacks_t cbs; /* A callback list that can extend more sleep retention event callbacks */ sleep_retention_module_bitmap_t dependents; /* A bitmap identifying all modules that the current module depends on */ sleep_retention_module_bitmap_t references; /* A bitmap indicating all other modules that depend on (or reference) the current module, * It will update at runtime based on whether the module is referenced by other modules */ sleep_retention_module_attribute_t attributes; /* A bitmap indicating attribute of the current module */ }; static inline void sleep_retention_module_object_ctor(struct sleep_retention_module_object * const self, sleep_retention_module_callbacks_t *cbs) { self->cbs = *cbs; self->dependents = 0; self->references = 0; self->attributes = 0; } static inline void sleep_retention_module_object_dtor(struct sleep_retention_module_object * const self) { self->cbs = (sleep_retention_module_callbacks_t) { .create = { .handle = NULL, .arg = NULL } }; } static inline void set_dependencies(struct sleep_retention_module_object * const self, sleep_retention_module_bitmap_t depends) { self->dependents = depends; } static inline void clr_dependencies(struct sleep_retention_module_object * const self) { self->dependents = 0; } static inline sleep_retention_module_bitmap_t get_dependencies(struct sleep_retention_module_object * const self) { return self->dependents; } static inline void set_reference(struct sleep_retention_module_object * const self, sleep_retention_module_t module) { self->references |= BIT(module); } static inline void clr_reference(struct sleep_retention_module_object * const self, sleep_retention_module_t module) { self->references &= ~BIT(module); } static inline sleep_retention_module_bitmap_t get_references(struct sleep_retention_module_object * const self) { return self->references; } static inline bool references_exist(struct sleep_retention_module_object * const self) { return (get_references(self) != 0); } static inline void set_attributes(struct sleep_retention_module_object * const self, sleep_retention_module_attribute_t attributes) { self->attributes = attributes; } static inline void clr_attributes(struct sleep_retention_module_object * const self) { self->attributes = 0; } static inline sleep_retention_module_attribute_t get_attributes(struct sleep_retention_module_object * const self) { return self->attributes; } static inline bool module_is_passive(struct sleep_retention_module_object * const self) { return (get_attributes(self) & SLEEP_RETENTION_MODULE_ATTR_PASSIVE) ? true : false; } static inline bool module_is_inited(sleep_retention_module_t module) { return (sleep_retention_get_inited_modules() & BIT(module)) ? true : false; } static inline bool module_is_created(sleep_retention_module_t module) { return (sleep_retention_get_created_modules() & BIT(module)) ? true : false; } /** * Internal structure which holds all requested sleep retention parameters */ typedef struct { /* The hardware retention module (REGDMA and PMU) uses 4 linked lists to * record the hardware context information that needs to be backed up and * restored when switching between different power states. The 4 linked * lists are linked by 8 types of nodes. The 4 linked lists can reuse some * nodes with each other, or separate their own unique nodes after branch * type nodes. * The REGDMA module iterates the entire linked list from the head of a * linked list and backs up and restores the corresponding register context * information according to the configuration information of the linked list * nodes. * The PMU module triggers REGDMA to use the corresponding linked list when * switching between different power states. For example: * * +---------------+---------------+-------------------+-----------+ * | Current | The next | The entry will be | Retention | * | PMU state | PMU state | used by REGDMA | clock | * +---------------+---------------+-------------------+-----------+ * | PMU_HP_ACTIVE | PMU_HP_SLEEP | entry0 | XTAL | * | PMU_HP_SLEEP | PMU_HP_ACTIVE | entry0 | XTAL | * | PMU_HP_MODEM | PMU_HP_SLEEP | ------ | XTAL | * | PMU_HP_SLEEP | PMU_HP_MODEM | entry1 | XTAL | * | PMU_HP_MODEM | PMU_HP_ACTIVE | entry2 | PLL | * |---------------------------------------------------------------| * | PMU_HP_ACTIVE | PMU_HP_ACTIVE | entry3 | PLL | (Clock BUG) * +---------------+---------------+-------------------+-----------+ * * +--------+ +-------------------------+ +-------------+ +-----------+ +--------+ +-----+ * entry2 -> | | -> | WiFi MAC Minimum System | -> | | -------------------------> | ######### | -> | ###### | -> | End | * | SOC | +-------------------------+ | Digital | | Bluetooth | | Zigbee | +-----+ * | System | +--------+ | Peripherals | +------+ +------+ | / BLE | | | +-----+ * entry0 -> | | ----------> | | ---------> | | -> | | -> | | -> | | -> | | -> | End | * +--------+ | Modem | +-------------+ | WiFi | | WiFi | +-----------+ +--------+ +-----+ * | System | | MAC | | BB | +-----+ * entry1 ------------------------> | |-----------------------------> | | -> | | -> | End | * +--------+ +------+ +------+ +-----+ * * The entry3 (alias: extra linked list) is used for backup and restore of * modules (such as BLE or 15.4 modules) with retention clock bugs. * * +---------+ +----------+ +-------------+ +-----+ * entry3 -> | BLE MAC | -> | 15.4 MAC | -> | BLE/15.4 BB | -> | End | * +---------+ +----------+ +-------------+ +-----+ * * Using it (extra linked list) for retention has the following constraints: * 1. The PLL clock must be enabled (can be done with esp_pm_lock_acquire() * interface to acquire a pm lock of type ESP_PM_APB_FREQ_MAX. * 2. When using the sleep_retention_entries_create() interface to create an * extra linked list, the node owner must be equal to BIT(3). * 3. Use the sleep_retention_do_extra_retention() interface to backup or * restore the register context, which ensures only one backup or restore * when multiple modules (BLE and 15.4) exists. */ #define SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES (8u) #define SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY (0) #define SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY (SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES - 1) #define SLEEP_RETENTION_MODULE_INVALID ((sleep_retention_module_t)(-1)) /* the final node does not belong to any module */ struct { sleep_retention_entries_t entries; uint32_t entries_bitmap: REGDMA_LINK_ENTRY_NUM; uint32_t runtime_bitmap: REGDMA_LINK_ENTRY_NUM; #if REGDMA_LINK_ENTRY_NUM < 16 uint32_t reserved: 32-(2*REGDMA_LINK_ENTRY_NUM); #endif void *entries_tail; } lists[SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES]; _lock_t lock; regdma_link_priority_t highpri; uint32_t inited_modules; uint32_t created_modules; struct sleep_retention_module_object instance[32]; #define EXTRA_LINK_NUM (REGDMA_LINK_ENTRY_NUM - 1) } sleep_retention_t; static DRAM_ATTR __attribute__((unused)) sleep_retention_t s_retention = { .highpri = (uint8_t)-1, .inited_modules = 0, .created_modules = 0 }; #define SLEEP_RETENTION_ENTRY_BITMAP_MASK (BIT(REGDMA_LINK_ENTRY_NUM) - 1) #define SLEEP_RETENTION_ENTRY_BITMAP(bitmap) ((bitmap) & SLEEP_RETENTION_ENTRY_BITMAP_MASK) static esp_err_t sleep_retention_entries_create_impl(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module); static void sleep_retention_entries_join(void); static inline sleep_retention_module_bitmap_t module_num2map(sleep_retention_module_t module) { return (module == SLEEP_RETENTION_MODULE_INVALID) ? 0 : BIT(module); } static inline bool sleep_retention_entries_require_branch(uint32_t owner, uint32_t runtime_bitmap) { bool use_new_entry = SLEEP_RETENTION_ENTRY_BITMAP(owner & ~runtime_bitmap) ? true : false; bool intersection_exist = SLEEP_RETENTION_ENTRY_BITMAP(owner & runtime_bitmap) ? true : false; return use_new_entry && intersection_exist; } static esp_err_t sleep_retention_entries_check_and_create_default(uint32_t owner, uint32_t runtime_bitmap, uint32_t entries_bitmap, regdma_link_priority_t priority, sleep_retention_module_t module) { assert(sleep_retention_entries_require_branch(owner, runtime_bitmap)); static sleep_retention_entries_config_t dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), 0 }; dummy.owner = SLEEP_RETENTION_ENTRY_BITMAP(owner & ~entries_bitmap); if (dummy.owner) { return sleep_retention_entries_create_impl(&dummy, 1, priority, module); } return ESP_OK; } static esp_err_t sleep_retention_entries_check_and_create_final_default(void) { static const sleep_retention_entries_config_t final_dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), SLEEP_RETENTION_ENTRY_BITMAP_MASK }; esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); if (s_retention.lists[SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY].entries_bitmap == 0) { err = sleep_retention_entries_create_impl(&final_dummy, 1, SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY, SLEEP_RETENTION_MODULE_INVALID); } _lock_release_recursive(&s_retention.lock); return err; } static void sleep_retention_entries_update(uint32_t owner, void *new_link, regdma_link_priority_t priority) { _lock_acquire_recursive(&s_retention.lock); sleep_retention_entries_t retention_entries = { (owner & BIT(0)) ? new_link : s_retention.lists[priority].entries[0], (owner & BIT(1)) ? new_link : s_retention.lists[priority].entries[1], (owner & BIT(2)) ? new_link : s_retention.lists[priority].entries[2], (owner & BIT(3)) ? new_link : s_retention.lists[priority].entries[3] #if (REGDMA_LINK_ENTRY_NUM == 5) , (owner & BIT(4)) ? new_link : s_retention.lists[priority].entries[4] #endif }; if (s_retention.lists[priority].entries_bitmap == 0) { s_retention.lists[priority].entries_tail = new_link; } memcpy(s_retention.lists[priority].entries, retention_entries, sizeof(sleep_retention_entries_t)); s_retention.lists[priority].runtime_bitmap = owner; s_retention.lists[priority].entries_bitmap |= owner; _lock_release_recursive(&s_retention.lock); } static void * sleep_retention_entries_try_create(const regdma_link_config_t *config, uint32_t owner, regdma_link_priority_t priority, sleep_retention_module_t module) { void *link = NULL; assert(owner > 0 && owner < BIT(REGDMA_LINK_ENTRY_NUM)); _lock_acquire_recursive(&s_retention.lock); if (sleep_retention_entries_require_branch(owner, s_retention.lists[priority].runtime_bitmap)) { if (sleep_retention_entries_check_and_create_default(owner, s_retention.lists[priority].runtime_bitmap, s_retention.lists[priority].entries_bitmap, priority, module_num2map(module)) == ESP_OK) { /* branch node can't as tail node */ link = regdma_link_init_safe( config, true, module_num2map(module), (owner & BIT(0)) ? s_retention.lists[priority].entries[0] : NULL, (owner & BIT(1)) ? s_retention.lists[priority].entries[1] : NULL, (owner & BIT(2)) ? s_retention.lists[priority].entries[2] : NULL, (owner & BIT(3)) ? s_retention.lists[priority].entries[3] : NULL #if (REGDMA_LINK_ENTRY_NUM == 5) , (owner & BIT(4)) ? s_retention.lists[priority].entries[4] : NULL #endif ); } } else { link = regdma_link_init_safe(config, false, module_num2map(module), s_retention.lists[priority].entries[__builtin_ffs(owner) - 1]); } _lock_release_recursive(&s_retention.lock); return link; } static void * sleep_retention_entries_try_create_bonding(const regdma_link_config_t *config, uint32_t owner, regdma_link_priority_t priority, sleep_retention_module_t module) { assert(owner > 0 && owner < BIT(REGDMA_LINK_ENTRY_NUM)); _lock_acquire_recursive(&s_retention.lock); void *link = regdma_link_init_safe( config, true, module_num2map(module), (owner & BIT(0)) ? s_retention.lists[priority].entries[0] : NULL, (owner & BIT(1)) ? s_retention.lists[priority].entries[1] : NULL, (owner & BIT(2)) ? s_retention.lists[priority].entries[2] : NULL, (owner & BIT(3)) ? s_retention.lists[priority].entries[3] : NULL #if (REGDMA_LINK_ENTRY_NUM == 5) , (owner & BIT(4)) ? s_retention.lists[priority].entries[4] : NULL #endif ); _lock_release_recursive(&s_retention.lock); return link; } static void sleep_retention_entries_stats(void) { _lock_acquire_recursive(&s_retention.lock); if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries); entry++) { regdma_link_stats(s_retention.lists[s_retention.highpri].entries[entry], entry); } } _lock_release_recursive(&s_retention.lock); } void sleep_retention_dump_entries(FILE *out) { _lock_acquire_recursive(&s_retention.lock); if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries); entry++) { fprintf(out, "\nsleep retention entries[%d] context:\n", entry); regdma_link_dump(out, s_retention.lists[s_retention.highpri].entries[entry], entry); } } fflush(out); _lock_release_recursive(&s_retention.lock); } void * sleep_retention_find_link_by_id(int id) { void *link = NULL; _lock_acquire_recursive(&s_retention.lock); if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { for (int entry = 0; (link == NULL && entry < ARRAY_SIZE(s_retention.lists[s_retention.highpri].entries)); entry++) { link = regdma_find_link_by_id(s_retention.lists[s_retention.highpri].entries[entry], entry, id); } } _lock_release_recursive(&s_retention.lock); return link; } static uint32_t sleep_retention_entries_owner_bitmap(sleep_retention_entries_t *entries, sleep_retention_entries_t *tails) { uint32_t owner = 0; _lock_acquire_recursive(&s_retention.lock); for (int entry = 0; entry < ARRAY_SIZE(*entries); entry++) { owner |= regdma_link_get_owner_bitmap((*entries)[entry], (*tails)[entry], entry); } _lock_release_recursive(&s_retention.lock); return owner; } static bool sleep_retention_entries_get_destroy_context(regdma_link_priority_t priority, sleep_retention_module_t module, sleep_retention_entries_t *destroy_entries, void **destroy_tail, sleep_retention_entries_t *next_entries, void **prev_tail) { bool exist = false; sleep_retention_entries_t destroy_tails, prev_tails; memset(&destroy_tails, 0, sizeof(sleep_retention_entries_t)); memset(&prev_tails, 0, sizeof(sleep_retention_entries_t)); _lock_acquire_recursive(&s_retention.lock); for (int entry = 0; entry < ARRAY_SIZE(s_retention.lists[priority].entries); entry++) { (*destroy_entries)[entry] = regdma_find_module_link_head( s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module)); destroy_tails [entry] = regdma_find_module_link_tail( s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module)); (*next_entries) [entry] = regdma_find_next_module_link_head( s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module)); prev_tails [entry] = regdma_find_prev_module_link_tail( s_retention.lists[priority].entries[entry], s_retention.lists[priority].entries_tail, entry, module_num2map(module)); if ((*destroy_entries)[entry] && destroy_tails[entry]) { exist = true; } assert(destroy_tails[entry] == destroy_tails[0]); assert(prev_tails[entry] == prev_tails[0]); } *destroy_tail = destroy_tails[0]; *prev_tail = prev_tails[0]; _lock_release_recursive(&s_retention.lock); return exist; } static void sleep_retention_entries_context_update(regdma_link_priority_t priority) { _lock_acquire_recursive(&s_retention.lock); sleep_retention_entries_t tails = { s_retention.lists[priority].entries_tail, s_retention.lists[priority].entries_tail, s_retention.lists[priority].entries_tail, s_retention.lists[priority].entries_tail }; s_retention.lists[priority].entries_bitmap = sleep_retention_entries_owner_bitmap(&s_retention.lists[priority].entries, &tails); s_retention.lists[priority].runtime_bitmap = sleep_retention_entries_owner_bitmap(&s_retention.lists[priority].entries, &s_retention.lists[priority].entries); _lock_release_recursive(&s_retention.lock); } static bool sleep_retention_entries_dettach(regdma_link_priority_t priority, sleep_retention_entries_t *destroy_entries, void *destroy_tail, sleep_retention_entries_t *next_entries, void *prev_tail) { _lock_acquire_recursive(&s_retention.lock); bool is_head = (memcmp(destroy_entries, &s_retention.lists[priority].entries, sizeof(sleep_retention_entries_t)) == 0); bool is_tail = (destroy_tail == s_retention.lists[priority].entries_tail); if (is_head && is_tail) { memset(s_retention.lists[priority].entries, 0, sizeof(sleep_retention_entries_t)); s_retention.lists[priority].entries_tail = NULL; } else if (is_head) { memcpy(&s_retention.lists[priority].entries, next_entries, sizeof(sleep_retention_entries_t)); } else if (is_tail) { s_retention.lists[priority].entries_tail = prev_tail; } else { #if (REGDMA_LINK_ENTRY_NUM == 5) regdma_link_update_next_safe(prev_tail, (*next_entries)[0], (*next_entries)[1], (*next_entries)[2], (*next_entries)[3], (*next_entries)[4]); #else regdma_link_update_next_safe(prev_tail, (*next_entries)[0], (*next_entries)[1], (*next_entries)[2], (*next_entries)[3]); #endif } sleep_retention_entries_context_update(priority); #if (REGDMA_LINK_ENTRY_NUM == 5) regdma_link_update_next_safe(destroy_tail, NULL, NULL, NULL, NULL, NULL); #else regdma_link_update_next_safe(destroy_tail, NULL, NULL, NULL, NULL); #endif _lock_release_recursive(&s_retention.lock); return (is_head || is_tail); } static void sleep_retention_entries_destroy_wrapper(sleep_retention_entries_t *destroy_entries) { for (int entry = 0; entry < ARRAY_SIZE(*destroy_entries); entry++) { regdma_link_destroy((*destroy_entries)[entry], entry); } } static void sleep_retention_entries_check_and_distroy_final_default(void) { _lock_acquire_recursive(&s_retention.lock); assert(s_retention.highpri == SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY); assert(s_retention.created_modules == 0); sleep_retention_entries_destroy_wrapper(&s_retention.lists[SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY].entries); _lock_release_recursive(&s_retention.lock); } static void sleep_retention_entries_all_destroy_wrapper(sleep_retention_module_t module) { void *destroy_tail = NULL, *prev_tail = NULL; sleep_retention_entries_t destroy_entries, next_entries; memset(&destroy_entries, 0, sizeof(sleep_retention_entries_t)); memset(&next_entries, 0, sizeof(sleep_retention_entries_t)); _lock_acquire_recursive(&s_retention.lock); regdma_link_priority_t priority = 0; do { bool exist = sleep_retention_entries_get_destroy_context(priority, module, &destroy_entries, &destroy_tail, &next_entries, &prev_tail); if (s_retention.lists[priority].entries_bitmap && exist) { if (sleep_retention_entries_dettach(priority, &destroy_entries, destroy_tail, &next_entries, prev_tail)) { sleep_retention_entries_join(); } sleep_retention_entries_destroy_wrapper(&destroy_entries); } else { priority++; } } while (priority < SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES); s_retention.created_modules &= ~module_num2map(module); _lock_release_recursive(&s_retention.lock); } static void sleep_retention_entries_do_destroy(sleep_retention_module_t module) { assert(SLEEP_RETENTION_MODULE_MIN <= module && module <= SLEEP_RETENTION_MODULE_MAX); _lock_acquire_recursive(&s_retention.lock); sleep_retention_entries_join(); sleep_retention_entries_stats(); sleep_retention_entries_all_destroy_wrapper(module); _lock_release_recursive(&s_retention.lock); } static void sleep_retention_entries_destroy(sleep_retention_module_t module) { assert(SLEEP_RETENTION_MODULE_MIN <= module && module <= SLEEP_RETENTION_MODULE_MAX); _lock_acquire_recursive(&s_retention.lock); sleep_retention_entries_do_destroy(module); if (s_retention.created_modules == 0) { sleep_retention_entries_check_and_distroy_final_default(); pmu_sleep_disable_regdma_backup(); memset((void *)s_retention.lists, 0, sizeof(s_retention.lists)); s_retention.highpri = (uint8_t)-1; } _lock_release_recursive(&s_retention.lock); } static esp_err_t sleep_retention_entries_create_impl(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module) { esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); for (int i = num - 1; (i >= 0) && (err == ESP_OK); i--) { #if SOC_PM_RETENTION_HAS_CLOCK_BUG if ((retent[i].owner > BIT(EXTRA_LINK_NUM)) && (retent[i].config.id != 0xffff)) { _lock_release_recursive(&s_retention.lock); sleep_retention_entries_do_destroy(module); return ESP_ERR_NOT_SUPPORTED; } #endif #if SOC_PM_PAU_REGDMA_UPDATE_CACHE_BEFORE_WAIT_COMPARE /* There is a bug in REGDMA wait mode, when two wait nodes need to wait for the * same value (_val & _mask), the second wait node will immediately return to * wait done, The reason is that the wait mode comparison output logic immediate * compares the value of the previous wait register cached inside the * digital logic before reading out he register contents specified by _backup. */ #define config_is_wait_mode(_config) (regdma_link_get_config_mode(_config) == REGDMA_LINK_MODE_WAIT) if ((retent[i].config.id != 0xffff) && config_is_wait_mode(&(retent[i].config)) && (retent[i].config.id != 0xfffe)) { uint32_t value = retent[i].config.write_wait.value; uint32_t mask = retent[i].config.write_wait.mask; bool skip_b = retent[i].config.head.skip_b; bool skip_r = retent[i].config.head.skip_r; sleep_retention_entries_config_t wait_bug_workaround[] = { [0] = { .config = REGDMA_LINK_WRITE_INIT(0xfffe, PMU_DATE_REG, ~value, mask, skip_b, skip_r), .owner = retent[i].owner }, [1] = { .config = REGDMA_LINK_WAIT_INIT (0xfffe, PMU_DATE_REG, ~value, mask, skip_b, skip_r), .owner = retent[i].owner } }; err = sleep_retention_entries_create_impl(wait_bug_workaround, ARRAY_SIZE(wait_bug_workaround), priority, module); } #endif if (err == ESP_OK) { void *link = sleep_retention_entries_try_create(&retent[i].config, retent[i].owner, priority, module); if (link == NULL) { _lock_release_recursive(&s_retention.lock); sleep_retention_entries_do_destroy(module); return ESP_ERR_NO_MEM; } sleep_retention_entries_update(retent[i].owner, link, priority); } else { break; } } _lock_release_recursive(&s_retention.lock); return err; } static esp_err_t sleep_retention_entries_create_bonding(regdma_link_priority_t priority, sleep_retention_module_t module) { static const sleep_retention_entries_config_t bonding_dummy = { REGDMA_LINK_WAIT_INIT(0xffff, 0, 0, 0, 1, 1), SLEEP_RETENTION_ENTRY_BITMAP_MASK }; _lock_acquire_recursive(&s_retention.lock); void *link = sleep_retention_entries_try_create_bonding(&bonding_dummy.config, bonding_dummy.owner, priority, module); if (link == NULL) { _lock_release_recursive(&s_retention.lock); sleep_retention_entries_do_destroy(module); return ESP_ERR_NO_MEM; } sleep_retention_entries_update(bonding_dummy.owner, link, priority); _lock_release_recursive(&s_retention.lock); return ESP_OK; } static void sleep_retention_entries_join(void) { void *entries_tail = NULL; _lock_acquire_recursive(&s_retention.lock); s_retention.highpri = SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY; for (regdma_link_priority_t priority = 0; priority < SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES; priority++) { if (s_retention.lists[priority].entries_bitmap == 0) continue; if (priority < s_retention.highpri) { s_retention.highpri = priority; } if (entries_tail) { regdma_link_update_next_safe( entries_tail, s_retention.lists[priority].entries[0], s_retention.lists[priority].entries[1], s_retention.lists[priority].entries[2], s_retention.lists[priority].entries[3] #if (REGDMA_LINK_ENTRY_NUM == 5) , s_retention.lists[priority].entries[4] #endif ); } entries_tail = s_retention.lists[priority].entries_tail; } pau_regdma_set_entry_link_addr(&(s_retention.lists[s_retention.highpri].entries)); _lock_release_recursive(&s_retention.lock); } static esp_err_t sleep_retention_entries_create_wrapper(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module) { _lock_acquire_recursive(&s_retention.lock); esp_err_t err = sleep_retention_entries_create_bonding(priority, module); if(err) goto error; err = sleep_retention_entries_create_impl(retent, num, priority, module); if(err) goto error; err = sleep_retention_entries_create_bonding(priority, module); if(err) goto error; s_retention.created_modules |= module_num2map(module); sleep_retention_entries_join(); error: _lock_release_recursive(&s_retention.lock); return err; } esp_err_t sleep_retention_entries_create(const sleep_retention_entries_config_t retent[], int num, regdma_link_priority_t priority, sleep_retention_module_t module) { if (retent == NULL || num <= 0) { return ESP_ERR_INVALID_ARG; } if (priority >= SLEEP_RETENTION_REGDMA_LINK_NR_PRIORITIES) { return ESP_ERR_INVALID_ARG; } if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) { return ESP_ERR_INVALID_ARG; } esp_err_t err = sleep_retention_entries_check_and_create_final_default(); if (err) goto error; err = sleep_retention_entries_create_wrapper(retent, num, priority, module); if (err) goto error; pmu_sleep_enable_regdma_backup(); ESP_ERROR_CHECK(esp_deep_sleep_register_hook(&pmu_sleep_disable_regdma_backup)); error: return err; } void sleep_retention_entries_get(sleep_retention_entries_t *entries) { memset(entries, 0, sizeof(sleep_retention_entries_t)); _lock_acquire_recursive(&s_retention.lock); if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { memcpy(entries, &s_retention.lists[s_retention.highpri].entries, sizeof(sleep_retention_entries_t)); } _lock_release_recursive(&s_retention.lock); } uint32_t IRAM_ATTR sleep_retention_get_inited_modules(void) { return s_retention.inited_modules; } uint32_t IRAM_ATTR sleep_retention_get_created_modules(void) { return s_retention.created_modules; } esp_err_t sleep_retention_module_init(sleep_retention_module_t module, sleep_retention_module_init_param_t *param) { if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) { return ESP_ERR_INVALID_ARG; } if (param == NULL || param->cbs.create.handle == NULL) { return ESP_ERR_INVALID_ARG; } if (s_retention.lock == NULL) { /* Passive modules will be initialized during the system startup, with the * operating system scheduler not yet enabled. There is no risk of contention * for lock initialization here. */ _lock_init_recursive(&s_retention.lock); if (s_retention.lock == NULL) { ESP_LOGE(TAG, "Create sleep retention lock failed"); return ESP_ERR_NO_MEM; } } esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); if (module_is_created(module) || module_is_inited(module)) { err = ESP_ERR_INVALID_STATE; } else { sleep_retention_module_object_ctor(&s_retention.instance[module], ¶m->cbs); set_dependencies(&s_retention.instance[module], param->depends); set_attributes(&s_retention.instance[module], param->attribute); s_retention.inited_modules |= module_num2map(module); } _lock_release_recursive(&s_retention.lock); return err; } esp_err_t sleep_retention_module_deinit(sleep_retention_module_t module) { if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) { return ESP_ERR_INVALID_ARG; } esp_err_t err = ESP_OK; bool do_lock_release = false; _lock_acquire_recursive(&s_retention.lock); if (module_is_created(module) || !module_is_inited(module)) { err = ESP_ERR_INVALID_STATE; } else { clr_attributes(&s_retention.instance[module]); clr_dependencies(&s_retention.instance[module]); sleep_retention_module_object_dtor(&s_retention.instance[module]); s_retention.inited_modules &= ~module_num2map(module); do_lock_release = (sleep_retention_get_inited_modules() == 0); } _lock_release_recursive(&s_retention.lock); if (do_lock_release) { _lock_close_recursive(&s_retention.lock); s_retention.lock = NULL; } return err; } static esp_err_t sleep_retention_passive_module_allocate(sleep_retention_module_t module) { assert(module >= SLEEP_RETENTION_MODULE_MIN && module <= SLEEP_RETENTION_MODULE_MAX); esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); assert(module_is_passive(&s_retention.instance[module]) && "Illegal dependency"); assert(module_is_inited(module) && "All passive module must be inited first!"); if (!module_is_created(module)) { sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]); for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) { if (depends & BIT(0)) { set_reference(&s_retention.instance[i], module); err = sleep_retention_passive_module_allocate(i); } } if (err == ESP_OK) { sleep_retention_callback_t fn = s_retention.instance[module].cbs.create.handle; if (fn) { err = (*fn)(s_retention.instance[module].cbs.create.arg); } } } _lock_release_recursive(&s_retention.lock); return err; } esp_err_t sleep_retention_module_allocate(sleep_retention_module_t module) { if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) { return ESP_ERR_INVALID_ARG; } esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); if (!module_is_passive(&s_retention.instance[module])) { if (module_is_inited(module) && !module_is_created(module)) { sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]); for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) { if (depends & BIT(0)) { set_reference(&s_retention.instance[i], module); if (module_is_passive(&s_retention.instance[i])) { /* the callee ensures this module is inited */ err = sleep_retention_passive_module_allocate(i); } } } if (err == ESP_OK) { sleep_retention_callback_t fn = s_retention.instance[module].cbs.create.handle; if (fn) { err = (*fn)(s_retention.instance[module].cbs.create.arg); } } } else { err = ESP_ERR_INVALID_STATE; } } else { err = ESP_ERR_NOT_ALLOWED; } _lock_release_recursive(&s_retention.lock); return err; } static esp_err_t sleep_retention_passive_module_free(sleep_retention_module_t module) { assert(module >= SLEEP_RETENTION_MODULE_MIN && module <= SLEEP_RETENTION_MODULE_MAX); esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); assert(module_is_passive(&s_retention.instance[module]) && "Illegal dependency"); assert(module_is_inited(module) && "All passive module must be inited first!"); if (module_is_created(module)) { if (!references_exist(&s_retention.instance[module])) { sleep_retention_entries_destroy(module); sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]); for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) { if (depends & BIT(0)) { clr_reference(&s_retention.instance[i], module); err = sleep_retention_passive_module_free(i); } } } } _lock_release_recursive(&s_retention.lock); return err; } esp_err_t sleep_retention_module_free(sleep_retention_module_t module) { if (module < SLEEP_RETENTION_MODULE_MIN || module > SLEEP_RETENTION_MODULE_MAX) { return ESP_ERR_INVALID_ARG; } esp_err_t err = ESP_OK; _lock_acquire_recursive(&s_retention.lock); if (!module_is_passive(&s_retention.instance[module])) { if (module_is_inited(module) && module_is_created(module)) { sleep_retention_entries_destroy(module); sleep_retention_module_bitmap_t depends = get_dependencies(&s_retention.instance[module]); for (int i = 0; (err == ESP_OK) && depends; depends >>= 1, i++) { if (depends & BIT(0)) { clr_reference(&s_retention.instance[i], module); if (module_is_passive(&s_retention.instance[i])) { err = sleep_retention_passive_module_free(i); } } } } else { err = ESP_ERR_INVALID_STATE; } } else { err = ESP_ERR_NOT_ALLOWED; } _lock_release_recursive(&s_retention.lock); return err; } void IRAM_ATTR sleep_retention_do_extra_retention(bool backup_or_restore) { if (s_retention.highpri < SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY || s_retention.highpri > SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { return; } #if SOC_PAU_IN_TOP_DOMAIN pau_regdma_enable_aon_link_entry(false); #endif // Set extra linked list head pointer to hardware pau_regdma_set_extra_link_addr(s_retention.lists[s_retention.highpri].entries[EXTRA_LINK_NUM]); #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE /* Data of retention link may be temporarily stored in L1 DCache, which is not accessible by REGDMA, write it back to L2MEM before starting REGDMA. */ cache_ll_writeback_all(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA, CACHE_LL_ID_ALL); #endif if (backup_or_restore) { pau_regdma_trigger_extra_link_backup(); } else { pau_regdma_trigger_extra_link_restore(); } } #if SOC_PM_RETENTION_SW_TRIGGER_REGDMA void IRAM_ATTR sleep_retention_do_system_retention(bool backup_or_restore) { #define SYSTEM_LINK_NUM (0) if (s_retention.highpri >= SLEEP_RETENTION_REGDMA_LINK_HIGHEST_PRIORITY && s_retention.highpri <= SLEEP_RETENTION_REGDMA_LINK_LOWEST_PRIORITY) { // Set extra linked list head pointer to hardware pau_regdma_set_system_link_addr(s_retention.lists[s_retention.highpri].entries[SYSTEM_LINK_NUM]); // When PD TOP, we need to prevent the PMU from triggering the REGDMA backup, because REGDMA will power off pmu_sleep_disable_regdma_backup(); if (backup_or_restore) { pau_regdma_trigger_system_link_backup(); } else { pau_regdma_trigger_system_link_restore(); } } } #endif