/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "esp_compiler.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_check.h" #include "driver/gpio.h" #include "esp_private/periph_ctrl.h" #include "esp_private/gpio.h" #include "driver/rmt_types_legacy.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/ringbuf.h" #include "soc/soc_memory_layout.h" #include "soc/rmt_periph.h" #include "soc/rmt_struct.h" #include "esp_clk_tree.h" #include "hal/rmt_hal.h" #include "hal/rmt_ll.h" #include "hal/gpio_hal.h" #include "esp_rom_gpio.h" #define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR" #define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR" #define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR" #define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR" #define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR" #define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR" #define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW" #define RMT_GPIO_ERROR_STR "RMT GPIO ERROR" #define RMT_MODE_ERROR_STR "RMT MODE ERROR" #define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR" #define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR" #define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR" #define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram" #define RMT_TRANSLATOR_NULL_STR "RMT translator is null" #define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init" #define RMT_PARAM_ERR_STR "RMT param error" static const char *TAG = "rmt(legacy)"; // Spinlock for protecting concurrent register-level access only #define RMT_ENTER_CRITICAL() portENTER_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock)) #define RMT_EXIT_CRITICAL() portEXIT_CRITICAL_SAFE(&(rmt_contex.rmt_spinlock)) #define RMT_RX_CHANNEL_ENCODING_START (SOC_RMT_CHANNELS_PER_GROUP-SOC_RMT_TX_CANDIDATES_PER_GROUP) #define RMT_TX_CHANNEL_ENCODING_END (SOC_RMT_TX_CANDIDATES_PER_GROUP-1) #define RMT_IS_RX_CHANNEL(channel) ((channel) >= RMT_RX_CHANNEL_ENCODING_START) #define RMT_IS_TX_CHANNEL(channel) ((channel) <= RMT_TX_CHANNEL_ENCODING_END) #define RMT_DECODE_RX_CHANNEL(encode_chan) ((encode_chan - RMT_RX_CHANNEL_ENCODING_START)) #define RMT_ENCODE_RX_CHANNEL(decode_chan) ((decode_chan + RMT_RX_CHANNEL_ENCODING_START)) #if SOC_PERIPH_CLK_CTRL_SHARED #define RMT_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC() #else #define RMT_CLOCK_SRC_ATOMIC() #endif #if !SOC_RCC_IS_INDEPENDENT #define RMT_RCC_ATOMIC() PERIPH_RCC_ATOMIC() #else #define RMT_RCC_ATOMIC() #endif typedef struct { rmt_hal_context_t hal; _lock_t rmt_driver_isr_lock; portMUX_TYPE rmt_spinlock; // Mutex lock for protecting concurrent register/unregister of RMT channels' ISR rmt_isr_handle_t rmt_driver_intr_handle; rmt_tx_end_callback_t rmt_tx_end_callback;// Event called when transmission is ended uint8_t rmt_driver_channels; // Bitmask of installed drivers' channels, used to protect concurrent register/unregister of RMT channels' ISR bool rmt_module_enabled; uint32_t synchro_channel_mask; // Bitmap of channels already added in the synchronous group } rmt_contex_t; typedef struct { size_t tx_offset; size_t tx_len_rem; size_t tx_sub_len; bool translator; bool wait_done; //Mark whether wait tx done. bool loop_autostop; // mark whether loop auto-stop is enabled rmt_channel_t channel; const rmt_item32_t *tx_data; SemaphoreHandle_t tx_sem; #if CONFIG_SPIRAM_USE_MALLOC int intr_alloc_flags; StaticSemaphore_t tx_sem_buffer; #endif rmt_item32_t *tx_buf; RingbufHandle_t rx_buf; #if SOC_RMT_SUPPORT_RX_PINGPONG rmt_item32_t *rx_item_buf; uint32_t rx_item_buf_size; uint32_t rx_item_len; int rx_item_start_idx; #endif sample_to_rmt_t sample_to_rmt; void *tx_context; size_t sample_size_remain; const uint8_t *sample_cur; } rmt_obj_t; static rmt_contex_t rmt_contex = { .hal.regs = &RMT, .rmt_spinlock = portMUX_INITIALIZER_UNLOCKED, .rmt_driver_intr_handle = NULL, .rmt_tx_end_callback = { .function = NULL, }, .rmt_driver_channels = 0, .rmt_module_enabled = false, .synchro_channel_mask = 0 }; static rmt_obj_t *p_rmt_obj[RMT_CHANNEL_MAX] = {0}; #if SOC_RMT_CHANNEL_CLK_INDEPENDENT static uint32_t s_rmt_source_clock_hz[RMT_CHANNEL_MAX]; #else static uint32_t s_rmt_source_clock_hz; #endif // RMTMEM address is declared in .peripherals.ld extern rmt_mem_t RMTMEM; //Enable RMT module static void rmt_module_enable(void) { RMT_ENTER_CRITICAL(); if (rmt_contex.rmt_module_enabled == false) { RMT_RCC_ATOMIC() { rmt_ll_enable_bus_clock(0, true); rmt_ll_reset_register(0); } rmt_contex.rmt_module_enabled = true; } RMT_EXIT_CRITICAL(); } //Disable RMT module static void rmt_module_disable(void) { RMT_ENTER_CRITICAL(); if (rmt_contex.rmt_module_enabled == true) { RMT_RCC_ATOMIC() { rmt_ll_enable_bus_clock(0, false); } rmt_contex.rmt_module_enabled = false; } RMT_EXIT_CRITICAL(); } esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { rmt_ll_rx_set_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), div_cnt); } else { rmt_ll_tx_set_channel_clock_div(rmt_contex.hal.regs, channel, div_cnt); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t *div_cnt) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(div_cnt, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { *div_cnt = (uint8_t)rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); } else { *div_cnt = (uint8_t)rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_rx_set_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(thresh, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); RMT_ENTER_CRITICAL(); *thresh = (uint16_t)rmt_ll_rx_get_idle_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(rmt_mem_num <= RMT_CHANNEL_MAX - channel, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { rmt_ll_rx_set_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rmt_mem_num); } else { rmt_ll_tx_set_mem_blocks(rmt_contex.hal.regs, channel, rmt_mem_num); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t *rmt_mem_num) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(rmt_mem_num, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { *rmt_mem_num = (uint8_t)rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); } else { *rmt_mem_num = (uint8_t)rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level, rmt_carrier_level_t carrier_level) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(carrier_level < RMT_CARRIER_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CARRIER_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_tx_set_carrier_high_low_ticks(rmt_contex.hal.regs, channel, high_level, low_level); rmt_ll_tx_set_carrier_level(rmt_contex.hal.regs, channel, carrier_level); rmt_ll_tx_enable_carrier_modulation(rmt_contex.hal.regs, channel, carrier_en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_power_down_mem(rmt_contex.hal.regs, pd_en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool *pd_en) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); *pd_en = rmt_ll_is_mem_powered_down(rmt_contex.hal.regs); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); if (tx_idx_rst) { rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); } rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel)); // enable tx end interrupt in non-loop mode if (!rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) { rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), true); } else { #if SOC_RMT_SUPPORT_TX_LOOP_COUNT rmt_ll_tx_reset_loop_count(rmt_contex.hal.regs, channel); rmt_ll_tx_enable_loop_count(rmt_contex.hal.regs, channel, true); rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel)); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_LOOP_END(channel), true); #endif } rmt_ll_tx_start(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_tx_stop(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); #if SOC_RMT_SUPPORT_TX_ASYNC_STOP rmt_ll_tx_stop(rmt_contex.hal.regs, channel); #else // write ending marker to stop the TX channel RMTMEM.chan[channel].data32[0].val = 0; #endif rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } #if SOC_RMT_SUPPORT_RX_PINGPONG esp_err_t rmt_set_rx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); if (en) { uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM; ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR"); RMT_ENTER_CRITICAL(); rmt_ll_rx_set_limit(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), evt_thresh); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), true); RMT_EXIT_CRITICAL(); } else { RMT_ENTER_CRITICAL(); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false); RMT_EXIT_CRITICAL(); } return ESP_OK; } #endif esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false); if (rx_idx_rst) { rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); } rmt_ll_clear_interrupt_status(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel))); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), true); #if SOC_RMT_SUPPORT_RX_PINGPONG const uint32_t item_block_len = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)) * RMT_MEM_ITEM_NUM; p_rmt_obj[channel]->rx_item_start_idx = 0; p_rmt_obj[channel]->rx_item_len = 0; rmt_set_rx_thr_intr_en(channel, true, item_block_len / 2); #endif rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), true); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_rx_stop(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), false); rmt_ll_rx_enable(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), false); rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); #if SOC_RMT_SUPPORT_RX_PINGPONG rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_THRES(RMT_DECODE_RX_CHANNEL(channel)), false); #endif RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_tx_memory_reset(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_rx_memory_reset(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(owner < RMT_MEM_OWNER_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), owner); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t *owner) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(owner, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_OWNER_ERROR_STR); RMT_ENTER_CRITICAL(); *owner = (rmt_mem_owner_t)rmt_ll_rx_get_mem_owner(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_tx_enable_loop(rmt_contex.hal.regs, channel, loop_en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool *loop_en) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); *loop_en = rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_rx_enable_filter(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), rx_filter_en); rmt_ll_rx_set_filter_thres(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel), thresh); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t` RMT_CLOCK_SRC_ATOMIC() { rmt_ll_set_group_clock_src(rmt_contex.hal.regs, channel, (rmt_clock_source_t)base_clk, 1, 0, 0); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t *src_clk) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); // `rmt_clock_source_t` and `rmt_source_clk_t` are binary compatible, as the underlying enum entries come from the same `soc_module_clk_t` *src_clk = (rmt_source_clk_t)rmt_ll_get_group_clock_src(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(level < RMT_IDLE_LEVEL_MAX, ESP_ERR_INVALID_ARG, TAG, "RMT IDLE LEVEL ERR"); RMT_ENTER_CRITICAL(); rmt_ll_tx_fix_idle_level(rmt_contex.hal.regs, channel, level, idle_out_en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool *idle_out_en, rmt_idle_level_t *level) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); *idle_out_en = rmt_ll_tx_is_idle_enabled(rmt_contex.hal.regs, channel); *level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t *status) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { *status = rmt_ll_rx_get_status_word(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); } else { *status = rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en) { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel) && channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_DONE(RMT_DECODE_RX_CHANNEL(channel)), en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); if (RMT_IS_RX_CHANNEL(channel)) { rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), en); } else { rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_ERROR(channel), en); } RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_DONE(channel), en); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); if (en) { uint32_t item_block_len = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM; ESP_RETURN_ON_FALSE(evt_thresh <= item_block_len, ESP_ERR_INVALID_ARG, TAG, "RMT EVT THRESH ERR"); RMT_ENTER_CRITICAL(); rmt_ll_tx_set_limit(rmt_contex.hal.regs, channel, evt_thresh); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), true); RMT_EXIT_CRITICAL(); } else { RMT_ENTER_CRITICAL(); rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_THRES(channel), false); RMT_EXIT_CRITICAL(); } return ESP_OK; } esp_err_t rmt_set_gpio(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num, bool invert_signal) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(mode < RMT_MODE_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_MODE_ERROR_STR); ESP_RETURN_ON_FALSE(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))), ESP_ERR_INVALID_ARG, TAG, RMT_GPIO_ERROR_STR); gpio_func_sel(gpio_num, PIN_FUNC_GPIO); if (mode == RMT_MODE_TX) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].tx_sig, invert_signal, 0); } else { ESP_RETURN_ON_FALSE(RMT_IS_RX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); gpio_set_direction(gpio_num, GPIO_MODE_INPUT); esp_rom_gpio_connect_in_signal(gpio_num, rmt_periph_signals.groups[0].channels[channel].rx_sig, invert_signal); } return ESP_OK; } static bool rmt_is_channel_number_valid(rmt_channel_t channel, uint8_t mode) { // RX mode if (mode == RMT_MODE_RX) { return RMT_IS_RX_CHANNEL(channel) && (channel < RMT_CHANNEL_MAX); } // TX mode return (channel >= 0) && RMT_IS_TX_CHANNEL(channel); } static esp_err_t rmt_internal_config(rmt_dev_t *dev, const rmt_config_t *rmt_param) { uint8_t mode = rmt_param->rmt_mode; uint8_t channel = rmt_param->channel; uint8_t gpio_num = rmt_param->gpio_num; uint8_t mem_cnt = rmt_param->mem_block_num; uint8_t clk_div = rmt_param->clk_div; uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz; bool carrier_en = rmt_param->tx_config.carrier_en; uint32_t rmt_source_clk_hz; rmt_clock_source_t clk_src = RMT_BASECLK_DEFAULT; ESP_RETURN_ON_FALSE(rmt_is_channel_number_valid(channel, mode), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(mem_cnt + channel <= SOC_RMT_CHANNELS_PER_GROUP && mem_cnt > 0, ESP_ERR_INVALID_ARG, TAG, RMT_MEM_CNT_ERROR_STR); ESP_RETURN_ON_FALSE(clk_div > 0, ESP_ERR_INVALID_ARG, TAG, RMT_CLK_DIV_ERROR_STR); if (mode == RMT_MODE_TX) { ESP_RETURN_ON_FALSE(!carrier_en || carrier_freq_hz > 0, ESP_ERR_INVALID_ARG, TAG, "RMT carrier frequency can't be zero"); } RMT_ENTER_CRITICAL(); rmt_ll_enable_mem_access_nonfifo(dev, true); if (rmt_param->flags & RMT_CHANNEL_FLAGS_AWARE_DFS) { #if SOC_RMT_SUPPORT_XTAL // clock src: XTAL_CLK clk_src = RMT_BASECLK_XTAL; #elif SOC_RMT_SUPPORT_REF_TICK // clock src: REF_CLK clk_src = RMT_BASECLK_REF; #else #error "No clock source is aware of DFS" #endif } esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &rmt_source_clk_hz); RMT_CLOCK_SRC_ATOMIC() { rmt_ll_set_group_clock_src(dev, channel, clk_src, 1, 0, 0); rmt_ll_enable_group_clock(dev, true); } RMT_EXIT_CRITICAL(); #if SOC_RMT_CHANNEL_CLK_INDEPENDENT s_rmt_source_clock_hz[channel] = rmt_source_clk_hz; #else if (s_rmt_source_clock_hz && rmt_source_clk_hz != s_rmt_source_clock_hz) { ESP_LOGW(TAG, "RMT clock source has been configured to %"PRIu32" by other channel, now reconfigure it to %"PRIu32, s_rmt_source_clock_hz, rmt_source_clk_hz); } s_rmt_source_clock_hz = rmt_source_clk_hz; #endif ESP_LOGD(TAG, "rmt_source_clk_hz: %"PRIu32, rmt_source_clk_hz); if (mode == RMT_MODE_TX) { uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent; uint8_t carrier_level = rmt_param->tx_config.carrier_level; uint8_t idle_level = rmt_param->tx_config.idle_level; RMT_ENTER_CRITICAL(); rmt_ll_tx_set_channel_clock_div(dev, channel, clk_div); rmt_ll_tx_set_mem_blocks(dev, channel, mem_cnt); rmt_ll_tx_reset_pointer(dev, channel); rmt_ll_tx_enable_loop(dev, channel, rmt_param->tx_config.loop_en); #if SOC_RMT_SUPPORT_TX_LOOP_COUNT if (rmt_param->tx_config.loop_en) { rmt_ll_tx_set_loop_count(dev, channel, rmt_param->tx_config.loop_count); } #endif /* always enable tx ping-pong */ rmt_ll_tx_enable_wrap(dev, channel, true); /*Set idle level */ rmt_ll_tx_fix_idle_level(dev, channel, idle_level, rmt_param->tx_config.idle_output_en); /*Set carrier*/ rmt_ll_tx_enable_carrier_modulation(dev, channel, carrier_en); if (carrier_en) { uint32_t duty_div, duty_h, duty_l; duty_div = rmt_source_clk_hz / carrier_freq_hz; duty_h = duty_div * carrier_duty_percent / 100; duty_l = duty_div - duty_h; rmt_ll_tx_set_carrier_level(dev, channel, carrier_level); rmt_ll_tx_set_carrier_high_low_ticks(dev, channel, duty_h, duty_l); } else { rmt_ll_tx_set_carrier_level(dev, channel, 0); } RMT_EXIT_CRITICAL(); ESP_LOGD(TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Carrier_Hz %"PRIu32"|Duty %u", channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent); } else if (RMT_MODE_RX == mode) { uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh; uint16_t threshold = rmt_param->rx_config.idle_threshold; RMT_ENTER_CRITICAL(); rmt_ll_rx_set_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel), clk_div); rmt_ll_rx_set_mem_blocks(dev, RMT_DECODE_RX_CHANNEL(channel), mem_cnt); rmt_ll_rx_reset_pointer(dev, RMT_DECODE_RX_CHANNEL(channel)); rmt_ll_rx_set_mem_owner(dev, RMT_DECODE_RX_CHANNEL(channel), RMT_LL_MEM_OWNER_HW); /*Set idle threshold*/ rmt_ll_rx_set_idle_thres(dev, RMT_DECODE_RX_CHANNEL(channel), threshold); /* Set RX filter */ rmt_ll_rx_set_filter_thres(dev, RMT_DECODE_RX_CHANNEL(channel), filter_cnt); rmt_ll_rx_enable_filter(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.filter_en); #if SOC_RMT_SUPPORT_RX_PINGPONG /* always enable rx ping-pong */ rmt_ll_rx_enable_wrap(dev, RMT_DECODE_RX_CHANNEL(channel), true); #endif #if SOC_RMT_SUPPORT_RX_DEMODULATION rmt_ll_rx_enable_carrier_demodulation(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.rm_carrier); if (rmt_param->rx_config.rm_carrier) { uint32_t duty_total = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(dev, RMT_DECODE_RX_CHANNEL(channel)) / rmt_param->rx_config.carrier_freq_hz; uint32_t duty_high = duty_total * rmt_param->rx_config.carrier_duty_percent / 100; // there could be residual in timing the carrier pulse, so double enlarge the theoretical value rmt_ll_rx_set_carrier_high_low_ticks(dev, RMT_DECODE_RX_CHANNEL(channel), duty_high * 2, (duty_total - duty_high) * 2); rmt_ll_rx_set_carrier_level(dev, RMT_DECODE_RX_CHANNEL(channel), rmt_param->rx_config.carrier_level); } #endif RMT_EXIT_CRITICAL(); ESP_LOGD(TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %"PRIu32"|Div %u|Thresold %u|Filter %u", channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt); } return ESP_OK; } esp_err_t rmt_config(const rmt_config_t *rmt_param) { rmt_module_enable(); ESP_RETURN_ON_ERROR(rmt_set_gpio(rmt_param->channel, rmt_param->rmt_mode, rmt_param->gpio_num, rmt_param->flags & RMT_CHANNEL_FLAGS_INVERT_SIG), TAG, "set gpio for RMT driver failed"); ESP_RETURN_ON_ERROR(rmt_internal_config(&RMT, rmt_param), TAG, "initialize RMT driver failed"); return ESP_OK; } static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset) { uint32_t *from = (uint32_t *)item; volatile uint32_t *to = (volatile uint32_t *)&RMTMEM.chan[channel].data32[0].val; to += mem_offset; while (item_num--) { *to++ = *from++; } } esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t *item, uint16_t item_num, uint16_t mem_offset) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), (0), TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(item, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR); uint8_t mem_cnt = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel); ESP_RETURN_ON_FALSE(mem_cnt * RMT_MEM_ITEM_NUM >= item_num, ESP_ERR_INVALID_ARG, TAG, RMT_WR_MEM_OVF_ERROR_STR); rmt_fill_memory(channel, item, item_num, mem_offset); return ESP_OK; } esp_err_t rmt_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags, rmt_isr_handle_t *handle) { ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); ESP_RETURN_ON_FALSE(rmt_contex.rmt_driver_channels == 0, ESP_FAIL, TAG, "RMT driver installed, can not install generic ISR handler"); return esp_intr_alloc(rmt_periph_signals.groups[0].irq, intr_alloc_flags, fn, arg, handle); } esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle) { return esp_intr_free(handle); } static void IRAM_ATTR rmt_driver_isr_default(void *arg) { uint32_t status = 0; rmt_item32_t *addr = NULL; uint8_t channel = 0; rmt_hal_context_t *hal = (rmt_hal_context_t *)arg; BaseType_t HPTaskAwoken = pdFALSE; // Tx end interrupt status = rmt_ll_get_tx_end_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[channel]; if (p_rmt) { xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken); rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); p_rmt->tx_data = NULL; p_rmt->tx_len_rem = 0; p_rmt->tx_offset = 0; p_rmt->tx_sub_len = 0; p_rmt->sample_cur = NULL; p_rmt->translator = false; if (rmt_contex.rmt_tx_end_callback.function) { rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg); } } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_DONE(channel)); } // Tx thres interrupt status = rmt_ll_get_tx_thres_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[channel]; if (p_rmt) { if (p_rmt->translator) { if (p_rmt->sample_size_remain > 0) { size_t translated_size = 0; p_rmt->sample_to_rmt((void *)p_rmt->sample_cur, p_rmt->tx_buf, p_rmt->sample_size_remain, p_rmt->tx_sub_len, &translated_size, &p_rmt->tx_len_rem); p_rmt->sample_size_remain -= translated_size; p_rmt->sample_cur += translated_size; p_rmt->tx_data = p_rmt->tx_buf; } else { p_rmt->sample_cur = NULL; p_rmt->translator = false; } } const rmt_item32_t *pdata = p_rmt->tx_data; size_t len_rem = p_rmt->tx_len_rem; rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(hal->regs, channel); rmt_item32_t stop_data = (rmt_item32_t) { .level0 = idle_level, .duration0 = 0, }; if (len_rem >= p_rmt->tx_sub_len) { rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset); p_rmt->tx_data += p_rmt->tx_sub_len; p_rmt->tx_len_rem -= p_rmt->tx_sub_len; } else if (len_rem == 0) { rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset); } else { rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset); rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_offset + len_rem); p_rmt->tx_data += len_rem; p_rmt->tx_len_rem -= len_rem; } if (p_rmt->tx_offset == 0) { p_rmt->tx_offset = p_rmt->tx_sub_len; } else { p_rmt->tx_offset = 0; } } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_THRES(channel)); } // Rx end interrupt status = rmt_ll_get_rx_end_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)]; if (p_rmt) { rmt_ll_rx_enable(rmt_contex.hal.regs, channel, false); int item_len = rmt_ll_rx_get_memory_writer_offset(rmt_contex.hal.regs, channel); rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW); if (p_rmt->rx_buf) { addr = (rmt_item32_t *)RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32; #if SOC_RMT_SUPPORT_RX_PINGPONG if (item_len > p_rmt->rx_item_start_idx) { item_len = item_len - p_rmt->rx_item_start_idx; } memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(addr + p_rmt->rx_item_start_idx), item_len * 4); p_rmt->rx_item_len += item_len; BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)(p_rmt->rx_item_buf), p_rmt->rx_item_len * 4, &HPTaskAwoken); #else BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void *)addr, item_len * 4, &HPTaskAwoken); #endif if (res == pdFALSE) { ESP_DRAM_LOGE(TAG, "RMT RX BUFFER FULL"); } } else { ESP_DRAM_LOGE(TAG, "RMT RX BUFFER ERROR"); } #if SOC_RMT_SUPPORT_RX_PINGPONG p_rmt->rx_item_start_idx = 0; p_rmt->rx_item_len = 0; memset((void *)p_rmt->rx_item_buf, 0, p_rmt->rx_item_buf_size); #endif rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel); rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW); rmt_ll_rx_enable(rmt_contex.hal.regs, channel, true); } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_DONE(channel)); } #if SOC_RMT_SUPPORT_RX_PINGPONG // Rx thres interrupt status = rmt_ll_get_rx_thres_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)]; int mem_item_size = rmt_ll_rx_get_mem_blocks(rmt_contex.hal.regs, channel) * RMT_MEM_ITEM_NUM; int rx_thres_lim = rmt_ll_rx_get_limit(rmt_contex.hal.regs, channel); int item_len = (p_rmt->rx_item_start_idx == 0) ? rx_thres_lim : (mem_item_size - rx_thres_lim); if ((p_rmt->rx_item_len + item_len) < (p_rmt->rx_item_buf_size / 4)) { rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_SW); memcpy((void *)(p_rmt->rx_item_buf + p_rmt->rx_item_len), (void *)(RMTMEM.chan[RMT_ENCODE_RX_CHANNEL(channel)].data32 + p_rmt->rx_item_start_idx), item_len * 4); rmt_ll_rx_set_mem_owner(rmt_contex.hal.regs, channel, RMT_LL_MEM_OWNER_HW); p_rmt->rx_item_len += item_len; p_rmt->rx_item_start_idx += item_len; if (p_rmt->rx_item_start_idx >= mem_item_size) { p_rmt->rx_item_start_idx = 0; } } else { ESP_DRAM_LOGE(TAG, "---RX buffer too small: %d", sizeof(p_rmt->rx_item_buf)); } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_THRES(channel)); } #endif #if SOC_RMT_SUPPORT_TX_LOOP_COUNT // loop count interrupt status = rmt_ll_get_tx_loop_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[channel]; if (p_rmt) { if (p_rmt->loop_autostop) { #ifndef SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP // hardware doesn't support automatically stop output so driver should stop output here (possibility already overshotted several us) rmt_ll_tx_stop(rmt_contex.hal.regs, channel); rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); #endif } xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken); if (rmt_contex.rmt_tx_end_callback.function) { rmt_contex.rmt_tx_end_callback.function(channel, rmt_contex.rmt_tx_end_callback.arg); } } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_LOOP_END(channel)); } #endif // RX Err interrupt status = rmt_ll_get_rx_err_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[RMT_ENCODE_RX_CHANNEL(channel)]; if (p_rmt) { // Reset the receiver's write/read addresses to prevent endless err interrupts. rmt_ll_rx_reset_pointer(rmt_contex.hal.regs, channel); ESP_DRAM_LOGD(TAG, "RMT RX channel %d error", channel); ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_rx_get_status_word(rmt_contex.hal.regs, channel)); } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_RX_ERROR(channel)); } // TX Err interrupt status = rmt_ll_get_tx_err_interrupt_status(hal->regs); while (status) { channel = __builtin_ffs(status) - 1; status &= ~(1 << channel); rmt_obj_t *p_rmt = p_rmt_obj[channel]; if (p_rmt) { // Reset the transmitter's write/read addresses to prevent endless err interrupts. rmt_ll_tx_reset_pointer(rmt_contex.hal.regs, channel); ESP_DRAM_LOGD(TAG, "RMT TX channel %d error", channel); ESP_DRAM_LOGD(TAG, "status: 0x%08x", rmt_ll_tx_get_status_word(rmt_contex.hal.regs, channel)); } rmt_ll_clear_interrupt_status(hal->regs, RMT_LL_EVENT_TX_ERROR(channel)); } if (HPTaskAwoken == pdTRUE) { portYIELD_FROM_ISR(); } } esp_err_t rmt_driver_uninstall(rmt_channel_t channel) { esp_err_t err = ESP_OK; ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); // we allow to call this uninstall function on the same channel for multiple times if (p_rmt_obj[channel] == NULL) { return ESP_OK; } //Avoid blocking here(when the interrupt is disabled and do not wait tx done). if (p_rmt_obj[channel]->wait_done) { xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY); } RMT_ENTER_CRITICAL(); // check channel's working mode if (p_rmt_obj[channel]->rx_buf) { rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_RX_MASK(RMT_DECODE_RX_CHANNEL(channel)) | RMT_LL_EVENT_RX_ERROR(RMT_DECODE_RX_CHANNEL(channel)), false); } else { rmt_ll_enable_interrupt(rmt_contex.hal.regs, RMT_LL_EVENT_TX_MASK(channel) | RMT_LL_EVENT_TX_ERROR(channel), false); } RMT_EXIT_CRITICAL(); _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock)); rmt_contex.rmt_driver_channels &= ~BIT(channel); if (rmt_contex.rmt_driver_channels == 0 && rmt_contex.rmt_driver_intr_handle) { rmt_module_disable(); // all channels have driver disabled err = rmt_isr_deregister(rmt_contex.rmt_driver_intr_handle); rmt_contex.rmt_driver_intr_handle = NULL; } _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock)); if (p_rmt_obj[channel]->tx_sem) { vSemaphoreDelete(p_rmt_obj[channel]->tx_sem); p_rmt_obj[channel]->tx_sem = NULL; } if (p_rmt_obj[channel]->rx_buf) { vRingbufferDelete(p_rmt_obj[channel]->rx_buf); p_rmt_obj[channel]->rx_buf = NULL; } if (p_rmt_obj[channel]->tx_buf) { free(p_rmt_obj[channel]->tx_buf); p_rmt_obj[channel]->tx_buf = NULL; } if (p_rmt_obj[channel]->sample_to_rmt) { p_rmt_obj[channel]->sample_to_rmt = NULL; } #if SOC_RMT_SUPPORT_RX_PINGPONG if (p_rmt_obj[channel]->rx_item_buf) { free(p_rmt_obj[channel]->rx_item_buf); p_rmt_obj[channel]->rx_item_buf = NULL; p_rmt_obj[channel]->rx_item_buf_size = 0; } #endif free(p_rmt_obj[channel]); p_rmt_obj[channel] = NULL; return err; } esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); esp_err_t err = ESP_OK; if (p_rmt_obj[channel]) { ESP_LOGD(TAG, "RMT driver already installed"); return ESP_ERR_INVALID_STATE; } #if CONFIG_RINGBUF_PLACE_ISR_FUNCTIONS_INTO_FLASH if (intr_alloc_flags & ESP_INTR_FLAG_IRAM) { ESP_LOGE(TAG, "ringbuf ISR functions in flash, but used in IRAM interrupt"); return ESP_ERR_INVALID_ARG; } #endif #if !CONFIG_SPIRAM_USE_MALLOC p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t)); #else if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) { p_rmt_obj[channel] = calloc(1, sizeof(rmt_obj_t)); } else { p_rmt_obj[channel] = heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } #endif if (p_rmt_obj[channel] == NULL) { ESP_LOGE(TAG, "RMT driver malloc error"); return ESP_ERR_NO_MEM; } p_rmt_obj[channel]->tx_len_rem = 0; p_rmt_obj[channel]->tx_data = NULL; p_rmt_obj[channel]->channel = channel; p_rmt_obj[channel]->tx_offset = 0; p_rmt_obj[channel]->tx_sub_len = 0; p_rmt_obj[channel]->wait_done = false; p_rmt_obj[channel]->loop_autostop = false; p_rmt_obj[channel]->translator = false; p_rmt_obj[channel]->sample_to_rmt = NULL; if (p_rmt_obj[channel]->tx_sem == NULL) { #if !CONFIG_SPIRAM_USE_MALLOC p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary(); #else p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags; if (!(intr_alloc_flags & ESP_INTR_FLAG_IRAM)) { p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary(); } else { p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer); } #endif xSemaphoreGive(p_rmt_obj[channel]->tx_sem); } if (p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) { p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT); } #if SOC_RMT_SUPPORT_RX_PINGPONG if (p_rmt_obj[channel]->rx_item_buf == NULL && rx_buf_size > 0) { #if !CONFIG_SPIRAM_USE_MALLOC p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size); #else if (!(p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM)) { p_rmt_obj[channel]->rx_item_buf = calloc(1, rx_buf_size); } else { p_rmt_obj[channel]->rx_item_buf = heap_caps_calloc(1, rx_buf_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } #endif if (p_rmt_obj[channel]->rx_item_buf == NULL) { ESP_LOGE(TAG, "RMT malloc fail"); return ESP_FAIL; } p_rmt_obj[channel]->rx_item_buf_size = rx_buf_size; } #endif _lock_acquire_recursive(&(rmt_contex.rmt_driver_isr_lock)); if (rmt_contex.rmt_driver_channels == 0) { // first RMT channel using driver err = rmt_isr_register(rmt_driver_isr_default, &rmt_contex.hal, intr_alloc_flags, &(rmt_contex.rmt_driver_intr_handle)); } if (err == ESP_OK) { rmt_contex.rmt_driver_channels |= BIT(channel); } _lock_release_recursive(&(rmt_contex.rmt_driver_isr_lock)); rmt_module_enable(); if (RMT_IS_RX_CHANNEL(channel)) { rmt_hal_rx_channel_reset(&rmt_contex.hal, RMT_DECODE_RX_CHANNEL(channel)); } else { rmt_hal_tx_channel_reset(&rmt_contex.hal, channel); } return err; } esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t *rmt_item, int item_num, bool wait_tx_done) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); ESP_RETURN_ON_FALSE(rmt_item, ESP_FAIL, TAG, RMT_ADDR_ERROR_STR); ESP_RETURN_ON_FALSE(item_num > 0, ESP_ERR_INVALID_ARG, TAG, RMT_DRIVER_LENGTH_ERROR_STR); uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel); ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR); #if CONFIG_SPIRAM_USE_MALLOC if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) { if (!esp_ptr_internal(rmt_item)) { ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR); return ESP_ERR_INVALID_ARG; } } #endif rmt_obj_t *p_rmt = p_rmt_obj[channel]; int item_block_len = mem_blocks * RMT_MEM_ITEM_NUM; int item_sub_len = mem_blocks * RMT_MEM_ITEM_NUM / 2; int len_rem = item_num; xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY); // fill the memory block first if (item_num >= item_block_len) { rmt_fill_memory(channel, rmt_item, item_block_len, 0); len_rem -= item_block_len; rmt_set_tx_loop_mode(channel, false); rmt_set_tx_thr_intr_en(channel, 1, item_sub_len); p_rmt->tx_data = rmt_item + item_block_len; p_rmt->tx_len_rem = len_rem; p_rmt->tx_offset = 0; p_rmt->tx_sub_len = item_sub_len; } else { rmt_fill_memory(channel, rmt_item, len_rem, 0); rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel); rmt_item32_t stop_data = (rmt_item32_t) { .level0 = idle_level, .duration0 = 0, }; rmt_fill_memory(channel, &stop_data, 1, len_rem); p_rmt->tx_len_rem = 0; } rmt_tx_start(channel, true); p_rmt->wait_done = wait_tx_done; if (wait_tx_done) { // wait loop done if (rmt_ll_tx_is_loop_enabled(rmt_contex.hal.regs, channel)) { #if SOC_RMT_SUPPORT_TX_LOOP_COUNT xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY); xSemaphoreGive(p_rmt->tx_sem); #endif } else { // wait tx end xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY); xSemaphoreGive(p_rmt->tx_sem); } } return ESP_OK; } esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); if (xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) { p_rmt_obj[channel]->wait_done = false; xSemaphoreGive(p_rmt_obj[channel]->tx_sem); return ESP_OK; } else { if (wait_time != 0) { // Don't emit error message if just polling. ESP_LOGE(TAG, "Timeout on wait_tx_done"); } return ESP_ERR_TIMEOUT; } } esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t *buf_handle) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); ESP_RETURN_ON_FALSE(buf_handle, ESP_ERR_INVALID_ARG, TAG, RMT_ADDR_ERROR_STR); *buf_handle = p_rmt_obj[channel]->rx_buf; return ESP_OK; } rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg) { rmt_tx_end_callback_t previous = rmt_contex.rmt_tx_end_callback; rmt_contex.rmt_tx_end_callback.function = function; rmt_contex.rmt_tx_end_callback.arg = arg; return previous; } esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn) { ESP_RETURN_ON_FALSE(fn, ESP_ERR_INVALID_ARG, TAG, RMT_TRANSLATOR_NULL_STR); ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel); ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR); const uint32_t block_size = mem_blocks * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t); if (p_rmt_obj[channel]->tx_buf == NULL) { #if !CONFIG_SPIRAM_USE_MALLOC p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)calloc(1, block_size); #else if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) { p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } else { p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)calloc(1, block_size); } #endif if (p_rmt_obj[channel]->tx_buf == NULL) { ESP_LOGE(TAG, "RMT translator buffer create fail"); return ESP_FAIL; } } p_rmt_obj[channel]->sample_to_rmt = fn; p_rmt_obj[channel]->tx_context = NULL; p_rmt_obj[channel]->sample_size_remain = 0; p_rmt_obj[channel]->sample_cur = NULL; ESP_LOGD(TAG, "RMT translator init done"); return ESP_OK; } esp_err_t rmt_translator_set_context(rmt_channel_t channel, void *context) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); p_rmt_obj[channel]->tx_context = context; return ESP_OK; } esp_err_t rmt_translator_get_context(const size_t *item_num, void **context) { ESP_RETURN_ON_FALSE(item_num && context, ESP_ERR_INVALID_ARG, TAG, "invalid arguments"); // the address of tx_len_rem is directlly passed to the callback, // so it's possible to get the object address from that rmt_obj_t *obj = __containerof(item_num, rmt_obj_t, tx_len_rem); *context = obj->tx_context; return ESP_OK; } esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel], ESP_FAIL, TAG, RMT_DRIVER_ERROR_STR); ESP_RETURN_ON_FALSE(p_rmt_obj[channel]->sample_to_rmt, ESP_FAIL, TAG, RMT_TRANSLATOR_UNINIT_STR); uint32_t mem_blocks = rmt_ll_tx_get_mem_blocks(rmt_contex.hal.regs, channel); ESP_RETURN_ON_FALSE(mem_blocks + channel <= SOC_RMT_CHANNELS_PER_GROUP, ESP_ERR_INVALID_STATE, TAG, RMT_MEM_CNT_ERROR_STR); #if CONFIG_SPIRAM_USE_MALLOC if (p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM) { if (!esp_ptr_internal(src)) { ESP_LOGE(TAG, RMT_PSRAM_BUFFER_WARN_STR); return ESP_ERR_INVALID_ARG; } } #endif size_t translated_size = 0; rmt_obj_t *p_rmt = p_rmt_obj[channel]; const uint32_t item_block_len = mem_blocks * RMT_MEM_ITEM_NUM; const uint32_t item_sub_len = item_block_len / 2; xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY); p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &p_rmt->tx_len_rem); p_rmt->sample_size_remain = src_size - translated_size; p_rmt->sample_cur = src + translated_size; rmt_fill_memory(channel, p_rmt->tx_buf, p_rmt->tx_len_rem, 0); if (p_rmt->tx_len_rem == item_block_len) { rmt_set_tx_thr_intr_en(channel, 1, item_sub_len); p_rmt->tx_data = p_rmt->tx_buf; p_rmt->tx_offset = 0; p_rmt->tx_sub_len = item_sub_len; p_rmt->translator = true; } else { rmt_idle_level_t idle_level = rmt_ll_tx_get_idle_level(rmt_contex.hal.regs, channel); rmt_item32_t stop_data = (rmt_item32_t) { .level0 = idle_level, .duration0 = 0, }; rmt_fill_memory(channel, &stop_data, 1, p_rmt->tx_len_rem); p_rmt->tx_len_rem = 0; p_rmt->sample_cur = NULL; p_rmt->translator = false; } rmt_tx_start(channel, true); p_rmt->wait_done = wait_tx_done; if (wait_tx_done) { xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY); xSemaphoreGive(p_rmt->tx_sem); } return ESP_OK; } esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status) { ESP_RETURN_ON_FALSE(channel_status, ESP_ERR_INVALID_ARG, TAG, RMT_PARAM_ERR_STR); for (int i = 0; i < RMT_CHANNEL_MAX; i++) { channel_status->status[i] = RMT_CHANNEL_UNINIT; if (p_rmt_obj[i]) { if (p_rmt_obj[i]->tx_sem) { if (xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE) { channel_status->status[i] = RMT_CHANNEL_IDLE; xSemaphoreGive(p_rmt_obj[i]->tx_sem); } else { channel_status->status[i] = RMT_CHANNEL_BUSY; } } } } return ESP_OK; } esp_err_t rmt_get_counter_clock(rmt_channel_t channel, uint32_t *clock_hz) { ESP_RETURN_ON_FALSE(channel < RMT_CHANNEL_MAX, ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(clock_hz, ESP_ERR_INVALID_ARG, TAG, "parameter clock_hz can't be null"); RMT_ENTER_CRITICAL(); uint32_t rmt_source_clk_hz = 0; #if SOC_RMT_CHANNEL_CLK_INDEPENDENT rmt_source_clk_hz = s_rmt_source_clock_hz[channel]; #else rmt_source_clk_hz = s_rmt_source_clock_hz; #endif if (RMT_IS_RX_CHANNEL(channel)) { *clock_hz = rmt_source_clk_hz / rmt_ll_rx_get_channel_clock_div(rmt_contex.hal.regs, RMT_DECODE_RX_CHANNEL(channel)); } else { *clock_hz = rmt_source_clk_hz / rmt_ll_tx_get_channel_clock_div(rmt_contex.hal.regs, channel); } RMT_EXIT_CRITICAL(); return ESP_OK; } #if SOC_RMT_SUPPORT_TX_SYNCHRO esp_err_t rmt_add_channel_to_group(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_ll_tx_enable_sync(rmt_contex.hal.regs, true); rmt_contex.synchro_channel_mask |= (1 << channel); rmt_ll_tx_sync_group_add_channels(rmt_contex.hal.regs, 1 << channel); rmt_ll_tx_reset_channels_clock_div(rmt_contex.hal.regs, rmt_contex.synchro_channel_mask); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_remove_channel_from_group(rmt_channel_t channel) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); RMT_ENTER_CRITICAL(); rmt_contex.synchro_channel_mask &= ~(1 << channel); rmt_ll_tx_sync_group_remove_channels(rmt_contex.hal.regs, 1 << channel); if (rmt_contex.synchro_channel_mask == 0) { rmt_ll_tx_enable_sync(rmt_contex.hal.regs, false); } RMT_EXIT_CRITICAL(); return ESP_OK; } #endif #if SOC_RMT_SUPPORT_TX_LOOP_COUNT esp_err_t rmt_set_tx_loop_count(rmt_channel_t channel, uint32_t count) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); ESP_RETURN_ON_FALSE(count <= RMT_LL_MAX_LOOP_COUNT_PER_BATCH, ESP_ERR_INVALID_ARG, TAG, "Invalid count value"); RMT_ENTER_CRITICAL(); rmt_ll_tx_set_loop_count(rmt_contex.hal.regs, channel, count); RMT_EXIT_CRITICAL(); return ESP_OK; } esp_err_t rmt_enable_tx_loop_autostop(rmt_channel_t channel, bool en) { ESP_RETURN_ON_FALSE(RMT_IS_TX_CHANNEL(channel), ESP_ERR_INVALID_ARG, TAG, RMT_CHANNEL_ERROR_STR); p_rmt_obj[channel]->loop_autostop = en; #if SOC_RMT_SUPPORT_TX_LOOP_AUTO_STOP RMT_ENTER_CRITICAL(); rmt_ll_tx_enable_loop_autostop(rmt_contex.hal.regs, channel, en); RMT_EXIT_CRITICAL(); #endif return ESP_OK; } #endif /** * @brief This function will be called during start up, to check that this legacy RMT driver is not running along with the new driver */ __attribute__((constructor)) static void check_rmt_legacy_driver_conflict(void) { // This function was declared as weak here. The new RMT driver has one implementation. // So if the new RMT driver is not linked in, then `rmt_acquire_group_handle()` should be NULL at runtime. extern __attribute__((weak)) void *rmt_acquire_group_handle(int group_id); if ((void *)rmt_acquire_group_handle != NULL) { ESP_EARLY_LOGE(TAG, "CONFLICT! driver_ng is not allowed to be used with the legacy driver"); abort(); } ESP_EARLY_LOGW(TAG, "legacy driver is deprecated, please migrate to `driver/rmt_tx.h` and/or `driver/rmt_rx.h`"); }