/* * SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include #include #include "FreeRTOS.h" #include "task.h" //For vApplicationStackOverflowHook #include "portmacro.h" #include "spinlock.h" #include "xt_instr_macros.h" #include "xtensa/xtensa_context.h" #include "xtensa/corebits.h" #include "xtensa/config/core.h" #include "xtensa/config/core-isa.h" #include "xtensa/xtruntime.h" #include "esp_private/esp_int_wdt.h" #include "esp_private/systimer.h" #include "esp_private/periph_ctrl.h" #include "esp_heap_caps.h" #include "esp_system.h" #include "esp_task.h" #include "esp_log.h" #include "esp_cpu.h" #include "esp_rom_sys.h" #include "esp_task_wdt.h" #include "esp_heap_caps_init.h" #include "esp_freertos_hooks.h" #include "esp_intr_alloc.h" #include "esp_memory_utils.h" #ifdef CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER #include "soc/periph_defs.h" #include "soc/system_reg.h" #include "hal/systimer_hal.h" #include "hal/systimer_ll.h" #endif // CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER _Static_assert(portBYTE_ALIGNMENT == 16, "portBYTE_ALIGNMENT must be set to 16"); /* OS state variables */ volatile unsigned port_xSchedulerRunning[portNUM_PROCESSORS] = {0}; // Indicates whether scheduler is running on a per-core basis unsigned int port_interruptNesting[portNUM_PROCESSORS] = {0}; // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit //FreeRTOS SMP Locks portMUX_TYPE port_xTaskLock = portMUX_INITIALIZER_UNLOCKED; portMUX_TYPE port_xISRLock = portMUX_INITIALIZER_UNLOCKED; /* ------------------------------------------------ IDF Compatibility -------------------------------------------------- * - These need to be defined for IDF to compile * ------------------------------------------------------------------------------------------------------------------ */ // --------------------- Interrupts ------------------------ BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void) { return (port_interruptNesting[xPortGetCoreID()] != 0); } // ------------------ Critical Sections -------------------- /* Variables used by IDF critical sections only (SMP tracks critical nesting inside TCB now) [refactor-todo] Figure out how IDF critical sections will be merged with SMP FreeRTOS critical sections */ BaseType_t port_uxCriticalNestingIDF[portNUM_PROCESSORS] = {0}; BaseType_t port_uxCriticalOldInterruptStateIDF[portNUM_PROCESSORS] = {0}; /* ******************************************************************************* * Interrupt stack. The size of the interrupt stack is determined by the config * parameter "configISR_STACK_SIZE" in FreeRTOSConfig.h ******************************************************************************* */ volatile StackType_t DRAM_ATTR __attribute__((aligned(16))) port_IntStack[portNUM_PROCESSORS][configISR_STACK_SIZE]; /* One flag for each individual CPU. */ volatile uint32_t port_switch_flag[portNUM_PROCESSORS]; BaseType_t xPortEnterCriticalTimeout(portMUX_TYPE *lock, BaseType_t timeout) { /* Interrupts may already be disabled (if this function is called in nested * manner). However, there's no atomic operation that will allow us to check, * thus we have to disable interrupts again anyways. * * However, if this is call is NOT nested (i.e., the first call to enter a * critical section), we will save the previous interrupt level so that the * saved level can be restored on the last call to exit the critical. */ BaseType_t xOldInterruptLevel = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); if (!spinlock_acquire(lock, timeout)) { //Timed out attempting to get spinlock. Restore previous interrupt level and return XTOS_RESTORE_JUST_INTLEVEL((int) xOldInterruptLevel); return pdFAIL; } //Spinlock acquired. Increment the IDF critical nesting count. BaseType_t coreID = xPortGetCoreID(); BaseType_t newNesting = port_uxCriticalNestingIDF[coreID] + 1; port_uxCriticalNestingIDF[coreID] = newNesting; //If this is the first entry to a critical section. Save the old interrupt level. if ( newNesting == 1 ) { port_uxCriticalOldInterruptStateIDF[coreID] = xOldInterruptLevel; } return pdPASS; } void vPortExitCriticalIDF(portMUX_TYPE *lock) { /* This function may be called in a nested manner. Therefore, we only need * to reenable interrupts if this is the last call to exit the critical. We * can use the nesting count to determine whether this is the last exit call. */ spinlock_release(lock); BaseType_t coreID = xPortGetCoreID(); BaseType_t nesting = port_uxCriticalNestingIDF[coreID]; if (nesting > 0) { nesting--; port_uxCriticalNestingIDF[coreID] = nesting; //This is the last exit call, restore the saved interrupt level if ( nesting == 0 ) { XTOS_RESTORE_JUST_INTLEVEL((int) port_uxCriticalOldInterruptStateIDF[coreID]); } } } /* In case any IDF libs called the port critical functions directly instead of through the macros. Just inline call the IDF versions */ void vPortEnterCritical(portMUX_TYPE *lock) { vPortEnterCriticalIDF(lock); } void vPortExitCritical(portMUX_TYPE *lock) { vPortExitCriticalIDF(lock); } // ----------------------- System -------------------------- #define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1) void vPortSetStackWatchpoint( void *pxStackStart ) { //Set watchpoint 1 to watch the last 32 bytes of the stack. //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32 //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes. //This way, we make sure we trigger before/when the stack canary is corrupted, not after. int addr = (int)pxStackStart; addr = (addr + 31) & (~31); esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE); } // ---------------------- Tick Timer ----------------------- BaseType_t xPortSysTickHandler(void); #ifdef CONFIG_FREERTOS_SYSTICK_USES_CCOUNT extern void _frxt_tick_timer_init(void); extern void _xt_tick_divisor_init(void); #ifdef CONFIG_FREERTOS_CORETIMER_0 #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER0_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF) #endif #ifdef CONFIG_FREERTOS_CORETIMER_1 #define SYSTICK_INTR_ID (ETS_INTERNAL_TIMER1_INTR_SOURCE+ETS_INTERNAL_INTR_SOURCE_OFF) #endif /** * @brief Initialize CCONT timer to generate the tick interrupt * */ void vPortSetupTimer(void) { /* Init the tick divisor value */ _xt_tick_divisor_init(); _frxt_tick_timer_init(); } #elif CONFIG_FREERTOS_SYSTICK_USES_SYSTIMER _Static_assert(SOC_CPU_CORES_NUM <= SOC_SYSTIMER_ALARM_NUM - 1, "the number of cores must match the number of core alarms in SYSTIMER"); void SysTickIsrHandler(void *arg); static uint32_t s_handled_systicks[portNUM_PROCESSORS] = { 0 }; #define SYSTICK_INTR_ID (ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE) /** * @brief Set up the systimer peripheral to generate the tick interrupt * * Both timer alarms are configured in periodic mode. * It is done at the same time so SysTicks for both CPUs occur at the same time or very close. * Shifts a time of triggering interrupts for core 0 and core 1. */ void vPortSetupTimer(void) { unsigned cpuid = xPortGetCoreID(); #ifdef CONFIG_FREERTOS_CORETIMER_SYSTIMER_LVL3 const unsigned level = ESP_INTR_FLAG_LEVEL3; #else const unsigned level = ESP_INTR_FLAG_LEVEL1; #endif /* Systimer HAL layer object */ static systimer_hal_context_t systimer_hal; /* set system timer interrupt vector */ ESP_ERROR_CHECK(esp_intr_alloc(ETS_SYSTIMER_TARGET0_EDGE_INTR_SOURCE + cpuid, ESP_INTR_FLAG_IRAM | level, SysTickIsrHandler, &systimer_hal, NULL)); if (cpuid == 0) { periph_module_enable(PERIPH_SYSTIMER_MODULE); systimer_hal_init(&systimer_hal); systimer_hal_tick_rate_ops_t ops = { .ticks_to_us = systimer_ticks_to_us, .us_to_ticks = systimer_us_to_ticks, }; systimer_hal_set_tick_rate_ops(&systimer_hal, &ops); systimer_ll_set_counter_value(systimer_hal.dev, SYSTIMER_LL_COUNTER_OS_TICK, 0); systimer_ll_apply_counter_value(systimer_hal.dev, SYSTIMER_LL_COUNTER_OS_TICK); for (cpuid = 0; cpuid < SOC_CPU_CORES_NUM; cpuid++) { // Set stall option and alarm mode to default state. Below they will be set to a required state. systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, cpuid, false); uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid; systimer_hal_select_alarm_mode(&systimer_hal, alarm_id, SYSTIMER_ALARM_MODE_ONESHOT); } for (cpuid = 0; cpuid < portNUM_PROCESSORS; ++cpuid) { uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid; /* configure the timer */ systimer_hal_connect_alarm_counter(&systimer_hal, alarm_id, SYSTIMER_LL_COUNTER_OS_TICK); systimer_hal_set_alarm_period(&systimer_hal, alarm_id, 1000000UL / CONFIG_FREERTOS_HZ); systimer_hal_select_alarm_mode(&systimer_hal, alarm_id, SYSTIMER_ALARM_MODE_PERIOD); systimer_hal_counter_can_stall_by_cpu(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, cpuid, true); if (cpuid == 0) { systimer_hal_enable_alarm_int(&systimer_hal, alarm_id); systimer_hal_enable_counter(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK); #ifndef CONFIG_FREERTOS_UNICORE // SysTick of core 0 and core 1 are shifted by half of period systimer_hal_counter_value_advance(&systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK, 1000000UL / CONFIG_FREERTOS_HZ / 2); #endif } } } else { uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid; systimer_hal_enable_alarm_int(&systimer_hal, alarm_id); } } /** * @brief Systimer interrupt handler. * * The Systimer interrupt for SysTick works in periodic mode no need to calc the next alarm. * If a timer interrupt is ever serviced more than one tick late, it is necessary to process multiple ticks. */ IRAM_ATTR void SysTickIsrHandler(void *arg) { uint32_t cpuid = xPortGetCoreID(); systimer_hal_context_t *systimer_hal = (systimer_hal_context_t *)arg; #ifdef CONFIG_PM_TRACE ESP_PM_TRACE_ENTER(TICK, cpuid); #endif uint32_t alarm_id = SYSTIMER_LL_ALARM_OS_TICK_CORE0 + cpuid; do { systimer_ll_clear_alarm_int(systimer_hal->dev, alarm_id); uint32_t diff = systimer_hal_get_counter_value(systimer_hal, SYSTIMER_LL_COUNTER_OS_TICK) / systimer_ll_get_alarm_period(systimer_hal->dev, alarm_id) - s_handled_systicks[cpuid]; if (diff > 0) { if (s_handled_systicks[cpuid] == 0) { s_handled_systicks[cpuid] = diff; diff = 1; } else { s_handled_systicks[cpuid] += diff; } do { xPortSysTickHandler(); } while (--diff); } } while (systimer_ll_is_alarm_int_fired(systimer_hal->dev, alarm_id)); #ifdef CONFIG_PM_TRACE ESP_PM_TRACE_EXIT(TICK, cpuid); #endif } #endif // CONFIG_FREERTOS_SYSTICK_USES_CCOUNT /* ---------------------------------------------- Port Implementations ------------------------------------------------- * Implementations of Porting Interface functions * ------------------------------------------------------------------------------------------------------------------ */ // --------------------- Interrupts ------------------------ BaseType_t xPortCheckIfInISR(void) { //Disable interrupts so that reading port_interruptNesting is atomic BaseType_t ret; unsigned int prev_int_level = portDISABLE_INTERRUPTS(); ret = (port_interruptNesting[xPortGetCoreID()] != 0) ? pdTRUE : pdFALSE; portRESTORE_INTERRUPTS(prev_int_level); return ret; } // ------------------ Critical Sections -------------------- void vPortTakeLock( portMUX_TYPE *lock ) { spinlock_acquire( lock, portMUX_NO_TIMEOUT); } void vPortReleaseLock( portMUX_TYPE *lock ) { spinlock_release( lock ); } // ---------------------- Yielding ------------------------- // ----------------------- System -------------------------- /* ------------------------------------------------ FreeRTOS Portable -------------------------------------------------- * - Provides implementation for functions required by FreeRTOS * - Declared in portable.h * ------------------------------------------------------------------------------------------------------------------ */ // ----------------- Scheduler Start/End ------------------- extern void _xt_coproc_init(void); BaseType_t xPortStartScheduler( void ) { portDISABLE_INTERRUPTS(); // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored #if XCHAL_CP_NUM > 0 /* Initialize co-processor management for tasks. Leave CPENABLE alone. */ _xt_coproc_init(); #endif /* Setup the hardware to generate the tick. */ vPortSetupTimer(); port_xSchedulerRunning[xPortGetCoreID()] = 1; #if configNUM_CORES > 1 // Workaround for non-thread safe multi-core OS startup (see IDF-4524) if (xPortGetCoreID() != 0) { vTaskStartSchedulerOtherCores(); } #endif // configNUM_CORES > 1 // Cannot be directly called from C; never returns __asm__ volatile ("call0 _frxt_dispatch\n"); /* Should not get here. */ return pdTRUE; } void vPortEndScheduler( void ) { ; } // ----------------------- Memory -------------------------- #define FREERTOS_SMP_MALLOC_CAPS (MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT) void *pvPortMalloc( size_t xSize ) { return heap_caps_malloc(xSize, FREERTOS_SMP_MALLOC_CAPS); } void vPortFree( void *pv ) { heap_caps_free(pv); } void vPortInitialiseBlocks( void ) { ; //Does nothing, heap is initialized separately in ESP-IDF } size_t xPortGetFreeHeapSize( void ) { return esp_get_free_heap_size(); } #if( configSTACK_ALLOCATION_FROM_SEPARATE_HEAP == 1 ) void *pvPortMallocStack( size_t xSize ) { return NULL; } void vPortFreeStack( void *pv ) { } #endif // ------------------------ Stack -------------------------- // User exception dispatcher when exiting void _xt_user_exit(void); #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER // Wrapper to allow task functions to return (increases stack overhead by 16 bytes) static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters) { pxCode(pvParameters); //FreeRTOS tasks should not return. Log the task name and abort. char *pcTaskName = pcTaskGetName(NULL); ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName); abort(); } #endif const DRAM_ATTR uint32_t offset_pxEndOfStack = offsetof(StaticTask_t, pxDummy8); #if ( configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) const DRAM_ATTR uint32_t offset_uxCoreAffinityMask = offsetof(StaticTask_t, uxDummy25); #endif // ( configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) const DRAM_ATTR uint32_t offset_cpsa = XT_CP_SIZE; #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 ) StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, StackType_t * pxEndOfStack, TaskFunction_t pxCode, void * pvParameters ) #else StackType_t * pxPortInitialiseStack( StackType_t * pxTopOfStack, TaskFunction_t pxCode, void * pvParameters ) #endif { StackType_t *sp, *tp; XtExcFrame *frame; #if XCHAL_CP_NUM > 0 uint32_t *p; #endif uint32_t *threadptr; void *task_thread_local_start; extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align; // TODO: check that TLS area fits the stack uint32_t thread_local_sz = (uint8_t *)&_thread_local_end - (uint8_t *)&_thread_local_start; thread_local_sz = ALIGNUP(0x10, thread_local_sz); /* Initialize task's stack so that we have the following structure at the top: ----LOW ADDRESSES ----------------------------------------HIGH ADDRESSES---------- task stack | interrupt stack frame | thread local vars | co-processor save area | ---------------------------------------------------------------------------------- | | SP pxTopOfStack All parts are aligned to 16 byte boundary. */ sp = (StackType_t *) (((UBaseType_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz - XT_STK_FRMSZ) & ~0xf); /* Clear the entire frame (do not use memset() because we don't depend on C library) */ for (tp = sp; tp <= pxTopOfStack; ++tp) { *tp = 0; } frame = (XtExcFrame *) sp; /* Explicitly initialize certain saved registers */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->pc = (UBaseType_t) vPortTaskWrapper; /* task wrapper */ #else frame->pc = (UBaseType_t) pxCode; /* task entrypoint */ #endif frame->a0 = 0; /* to terminate GDB backtrace */ frame->a1 = (UBaseType_t) sp + XT_STK_FRMSZ; /* physical top of stack frame */ frame->exit = (UBaseType_t) _xt_user_exit; /* user exception exit dispatcher */ /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */ /* Also set entry point argument parameter. */ #ifdef __XTENSA_CALL0_ABI__ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->a2 = (UBaseType_t) pxCode; frame->a3 = (UBaseType_t) pvParameters; #else frame->a2 = (UBaseType_t) pvParameters; #endif frame->ps = PS_UM | PS_EXCM; #else /* __XTENSA_CALL0_ABI__ */ /* + for windowed ABI also set WOE and CALLINC (pretend task was 'call4'd). */ #if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER frame->a6 = (UBaseType_t) pxCode; frame->a7 = (UBaseType_t) pvParameters; #else frame->a6 = (UBaseType_t) pvParameters; #endif frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1); #endif /* __XTENSA_CALL0_ABI__ */ #ifdef XT_USE_SWPRI /* Set the initial virtual priority mask value to all 1's. */ frame->vpri = 0xFFFFFFFF; #endif /* Init threadptr register and set up TLS run-time area. * The diagram in port/riscv/port.c illustrates the calculations below. */ task_thread_local_start = (void *)(((uint32_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz) & ~0xf); memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz); threadptr = (uint32_t *)(sp + XT_STK_EXTRA); /* Calculate THREADPTR value. * The generated code will add THREADPTR value to a constant value determined at link time, * to get the address of the TLS variable. * The constant value is calculated by the linker as follows * (search for 'tpoff' in elf32-xtensa.c in BFD): * offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment) * where TCB_SIZE is hardcoded to 8. * Note this is slightly different compared to the RISC-V port, where offset = address - tls_section_vma. */ const uint32_t tls_section_alignment = (uint32_t) &_flash_rodata_align; /* ALIGN value of .flash.rodata section */ const uint32_t tcb_size = 8; /* Unrelated to FreeRTOS, this is the constant from BFD */ const uint32_t base = (tcb_size + tls_section_alignment - 1) & (~(tls_section_alignment - 1)); *threadptr = (uint32_t)task_thread_local_start - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base; #if XCHAL_CP_NUM > 0 /* Init the coprocessor save area (see xtensa_context.h) */ /* No access to TCB here, so derive indirectly. Stack growth is top to bottom. * //p = (uint32_t *) xMPUSettings->coproc_area; */ p = (uint32_t *)(((uint32_t) pxTopOfStack - XT_CP_SIZE) & ~0xf); configASSERT( ( uint32_t ) p >= frame->a1 ); p[0] = 0; p[1] = 0; p[2] = (((uint32_t) p) + 12 + XCHAL_TOTAL_SA_ALIGN - 1) & -XCHAL_TOTAL_SA_ALIGN; #endif /* XCHAL_CP_NUM */ configASSERT(((uint32_t) sp & portBYTE_ALIGNMENT_MASK) == 0); return sp; } // -------------------- Co-Processor ----------------------- #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) void _xt_coproc_release(volatile void *coproc_sa_base, BaseType_t xCoreID); void vPortCleanUpCoprocArea( void *pxTCB ) { StackType_t *coproc_area; BaseType_t xCoreID; /* Calculate the coproc save area in the stack from the TCB base */ coproc_area = ( StackType_t * ) ( ( uint32_t ) ( pxTCB + offset_pxEndOfStack )); coproc_area = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) coproc_area ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); coproc_area = ( StackType_t * ) ( ( ( uint32_t ) coproc_area - XT_CP_SIZE ) & ~0xf ); /* Extract core ID from the affinity mask */ xCoreID = __builtin_ffs( * ( UBaseType_t * ) ( pxTCB + offset_uxCoreAffinityMask ) ); assert( xCoreID >= 1 ); xCoreID -= 1; /* If task has live floating point registers somewhere, release them */ _xt_coproc_release( coproc_area, xCoreID ); } #endif // ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) // ------- Thread Local Storage Pointers Deletion Callbacks ------- #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS ) void vPortTLSPointersDelCb( void *pxTCB ) { /* Typecast pxTCB to StaticTask_t type to access TCB struct members. * pvDummy15 corresponds to pvThreadLocalStoragePointers member of the TCB. */ StaticTask_t *tcb = ( StaticTask_t * )pxTCB; /* The TLSP deletion callbacks are stored at an offset of (configNUM_THREAD_LOCAL_STORAGE_POINTERS/2) */ TlsDeleteCallbackFunction_t *pvThreadLocalStoragePointersDelCallback = ( TlsDeleteCallbackFunction_t * )( &( tcb->pvDummy15[ ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ) ] ) ); /* We need to iterate over half the depth of the pvThreadLocalStoragePointers area * to access all TLS pointers and their respective TLS deletion callbacks. */ for ( int x = 0; x < ( configNUM_THREAD_LOCAL_STORAGE_POINTERS / 2 ); x++ ) { if ( pvThreadLocalStoragePointersDelCallback[ x ] != NULL ) { //If del cb is set /* In case the TLSP deletion callback has been overwritten by a TLS pointer, gracefully abort. */ if ( !esp_ptr_executable( pvThreadLocalStoragePointersDelCallback[ x ] ) ) { // We call EARLY log here as currently portCLEAN_UP_TCB() is called in a critical section ESP_EARLY_LOGE("FreeRTOS", "Fatal error: TLSP deletion callback at index %d overwritten with non-excutable pointer %p", x, pvThreadLocalStoragePointersDelCallback[ x ]); abort(); } pvThreadLocalStoragePointersDelCallback[ x ]( x, tcb->pvDummy15[ x ] ); //Call del cb } } } #endif // CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS // -------------------- Tick Handler ----------------------- extern void esp_vApplicationIdleHook(void); extern void esp_vApplicationTickHook(void); BaseType_t xPortSysTickHandler(void) { portbenchmarkIntLatency(); traceISR_ENTER(SYSTICK_INTR_ID); BaseType_t ret; esp_vApplicationTickHook(); if (portGET_CORE_ID() == 0) { // FreeRTOS SMP requires that only core 0 calls xTaskIncrementTick() ret = xTaskIncrementTick(); } else { ret = pdFALSE; } if (ret != pdFALSE) { portYIELD_FROM_ISR(); } else { traceISR_EXIT(); } return ret; } // ------------------- Hook Functions ---------------------- #include #if ( configCHECK_FOR_STACK_OVERFLOW > 0 ) void __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName ) { #define ERR_STR1 "***ERROR*** A stack overflow in task " #define ERR_STR2 " has been detected." const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2}; char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 }; char *dest = buf; for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) { dest = strcat(dest, str[i]); } esp_system_abort(buf); } #endif #if CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK /* By default, the port uses vApplicationMinimalIdleHook() to run IDF style idle hooks. However, users may also want to provide their own vApplicationMinimalIdleHook(). In this case, we use to -Wl,--wrap option to wrap the user provided vApplicationMinimalIdleHook() */ extern void __real_vApplicationMinimalIdleHook( void ); void __wrap_vApplicationMinimalIdleHook( void ) { esp_vApplicationIdleHook(); //Run IDF style hooks __real_vApplicationMinimalIdleHook(); //Call the user provided vApplicationMinimalIdleHook() } #else // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK void vApplicationMinimalIdleHook( void ) { esp_vApplicationIdleHook(); //Run IDF style hooks } #endif // CONFIG_FREERTOS_USE_MINIMAL_IDLE_HOOK /* * Hook function called during prvDeleteTCB() to cleanup any * user defined static memory areas in the TCB. */ void vPortCleanUpTCB ( void *pxTCB ) { #if ( CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS ) /* Call TLS pointers deletion callbacks */ vPortTLSPointersDelCb( pxTCB ); #endif /* CONFIG_FREERTOS_TLSP_DELETION_CALLBACKS */ #if ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) /* Cleanup coproc save area */ vPortCleanUpCoprocArea( pxTCB ); #endif // ( XCHAL_CP_NUM > 0 && configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 ) }