// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_efuse_rtc_table.h" #include "esp_efuse.h" #include "esp_efuse_table.h" #include "esp_log.h" #include "soc/soc_caps.h" #define RTC_TBL_LOG_TAG "efuse_rtc_table" /* Note on definition of tags * * For adc calibration, value = raw * multiplier + offset, but these values are kind of arbitrary so * we use a lookup table to do the bookkeeping. * * The offset of an item can be calculated as follows: * PARAM_OFFSET + ADC_NUM(which is the UNIT_COUNT minus 1) * ATTEN_NUM + ATTEN_NUM * where PARAM_OFFSET is the index of the first item. * * ADC, ATTEN form a 2-dim array. For each (version number, extra parameters) tuple we keep a such array, * and use if-else statements to choose which array we use. * */ #define RTCCALIB_V1_ADCREADINGLOW_OFFSET RTCCALIB_V1IDX_A10L #define RTCCALIB_V1_ADCREADINGHIGH_OFFSET RTCCALIB_V1IDX_A10H #define RTCCALIB_V2_ADCREADINGHIGH_OFFSET RTCCALIB_V2IDX_A10H #define RTCCALIB_V2_ADCREADINGINIT_OFFSET RTCCALIB_V2IDX_A10I typedef struct { const int tag; // should be the same as the index in adc_efuse_raw_map const int block; const int begin_bit; const int length; const int multiplier; const int base; const int depends; } efuse_map_info_t; static const efuse_map_info_t adc_efuse_raw_map[] = { {0}, // INDEXING TAG, BLOCK, BEGIN_BIT, LENGTH, MULTIPLIER, OFFSET BASE, OFFSET DEP {RTCCALIB_V1IDX_A10L, 2, 208, 6, 4, 2231, 0}, {RTCCALIB_V1IDX_A11L, 2, 214, 6, 4, 1643, 0}, {RTCCALIB_V1IDX_A12L, 2, 220, 6, 4, 1290, 0}, {RTCCALIB_V1IDX_A13L, 2, 226, 6, 4, 701, 0}, {RTCCALIB_V1IDX_A20L, 2, 232, 6, 4, 2305, 0}, {RTCCALIB_V1IDX_A21L, 2, 238, 6, 4, 1693, 0}, {RTCCALIB_V1IDX_A22L, 2, 244, 6, 4, 1343, 0}, {RTCCALIB_V1IDX_A23L, 2, 250, 6, 4, 723, 0}, {RTCCALIB_V1IDX_A10H, 2, 144, 8, 4, 5775, 0}, {RTCCALIB_V1IDX_A11H, 2, 152, 8, 4, 5693, 0}, {RTCCALIB_V1IDX_A12H, 2, 160, 8, 4, 5723, 0}, {RTCCALIB_V1IDX_A13H, 2, 168, 8, 4, 6209, 0}, {RTCCALIB_V1IDX_A20H, 2, 176, 8, 4, 5817, 0}, {RTCCALIB_V1IDX_A21H, 2, 184, 8, 4, 5703, 0}, {RTCCALIB_V1IDX_A22H, 2, 192, 8, 4, 5731, 0}, {RTCCALIB_V1IDX_A23H, 2, 200, 8, 4, 6157, 0}, {RTCCALIB_V2IDX_A10H, 2, 197, 6, 2, 169, RTCCALIB_V2IDX_A12H}, {RTCCALIB_V2IDX_A11H, 2, 203, 6, 2, -26, RTCCALIB_V2IDX_A12H}, {RTCCALIB_V2IDX_A12H, 2, 209, 9, 2, 126, RTCCALIB_V2IDX_A21H}, {RTCCALIB_V2IDX_A13H, 2, 218, 7, 2, 387, RTCCALIB_V2IDX_A12H}, {RTCCALIB_V2IDX_A20H, 2, 225, 7, 2, 177, RTCCALIB_V2IDX_A21H}, {RTCCALIB_V2IDX_A21H, 2, 232, 10, 2, 5815, 0}, {RTCCALIB_V2IDX_A22H, 2, 242, 7, 2, 27, RTCCALIB_V2IDX_A21H}, {RTCCALIB_V2IDX_A23H, 2, 249, 7, 2, 410, RTCCALIB_V2IDX_A21H}, {RTCCALIB_V2IDX_A10I, 2, 147, 8, 2, 1519, 0}, {RTCCALIB_V2IDX_A11I, 2, 155, 6, 2, 88, RTCCALIB_V2IDX_A10I}, {RTCCALIB_V2IDX_A12I, 2, 161, 5, 2, 8, RTCCALIB_V2IDX_A11I}, {RTCCALIB_V2IDX_A13I, 2, 166, 6, 2, 70, RTCCALIB_V2IDX_A12I}, {RTCCALIB_V2IDX_A20I, 2, 172, 8, 2, 1677, 0}, {RTCCALIB_V2IDX_A21I, 2, 180, 6, 2, 23, RTCCALIB_V2IDX_A20I}, {RTCCALIB_V2IDX_A22I, 2, 186, 5, 2, 6, RTCCALIB_V2IDX_A21I}, {RTCCALIB_V2IDX_A23I, 2, 191, 6, 2, 13, RTCCALIB_V2IDX_A22I}, {RTCCALIB_IDX_TMPSENSOR, 2, 135, 9, 1, 0, 0}, }; int esp_efuse_rtc_table_read_calib_version(void) { uint32_t result = 0; esp_efuse_read_field_blob(ESP_EFUSE_BLOCK2_VERSION, &result, 32); return result; } int esp_efuse_rtc_table_get_tag(int version, int adc_num, int atten, int extra_params) { int param_offset; // used to index which (adc_num, atten) array to use. if (version == 1 && extra_params == RTCCALIB_V1_PARAM_VLOW) { // Volage LOW, Version 1 param_offset = RTCCALIB_V1_ADCREADINGLOW_OFFSET; } else if (version == 1 && extra_params == RTCCALIB_V1_PARAM_VHIGH) { param_offset = RTCCALIB_V1_ADCREADINGHIGH_OFFSET; } else if (version == 2 && extra_params == RTCCALIB_V2_PARAM_VHIGH) { param_offset = RTCCALIB_V2_ADCREADINGHIGH_OFFSET; } else if (version == 2 && extra_params == RTCCALIB_V2_PARAM_VINIT) { param_offset = RTCCALIB_V2_ADCREADINGINIT_OFFSET; } else { return -1; } int result = param_offset + (adc_num - 1) * RTCCALIB_ESP32S2_ATTENCOUNT + atten; ESP_EARLY_LOGV(RTC_TBL_LOG_TAG, "V%d ADC%d ATTEN%d PARAM%d -> %d", version, adc_num, atten, extra_params, result); return result; } /* * Converts a signed-bit int to a normal (2-complement) int. * */ static int signed_bit_to_int(uint32_t number, int len) { if (number >> (len - 1)) { // first bit is set, unset that bit and negate the number. number = -(number ^ (1 << (len - 1))); } return number; } int esp_efuse_rtc_table_get_raw_efuse_value(int tag) { assert(tag > 0); if (tag == 0) { return 0; } uint32_t val = 0; esp_efuse_read_block(adc_efuse_raw_map[tag].block, &val, adc_efuse_raw_map[tag].begin_bit, adc_efuse_raw_map[tag].length); int result = signed_bit_to_int(val, adc_efuse_raw_map[tag].length); ESP_EARLY_LOGV(RTC_TBL_LOG_TAG, "Fetching raw for tag %d @blk%d bit%d len%d: %d", tag, adc_efuse_raw_map[tag].block, adc_efuse_raw_map[tag].begin_bit, adc_efuse_raw_map[tag].length, result); return result; } int esp_efuse_rtc_table_get_parsed_efuse_value(int tag, bool skip_efuse_reading) { assert(tag >= 0); if (tag == 0) { return 0; // tag 0 is the dummy tag and has no value. (used by depends) } int efuse_val = 0; if (!skip_efuse_reading) { efuse_val = esp_efuse_rtc_table_get_raw_efuse_value(tag) * adc_efuse_raw_map[tag].multiplier; } int result = efuse_val + adc_efuse_raw_map[tag].base + esp_efuse_rtc_table_get_parsed_efuse_value(adc_efuse_raw_map[tag].depends, skip_efuse_reading); ESP_EARLY_LOGV(RTC_TBL_LOG_TAG, "Parsed efuse val for tag %d: %d", tag, result); return result; }