/* * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: CC0-1.0 */ /** * I2S test environment UT_T1_I2S: * We use internal signals instead of external wiring, but please keep the following IO connections, or connect nothing to prevent the signal from being disturbed. * connect GPIO15 and GPIO19, GPIO25(ESP32)/GPIO17(ESP32-S2) and GPIO26, GPIO21 and GPIO22(ESP32)/GPIO20(ESP32-S2) * Please do not connect GPIO32(ESP32) any pull-up resistors externally, it will be used to test i2s adc function. */ #include #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "driver/i2s.h" #include "hal/i2s_hal.h" #include "driver/gpio.h" #include "hal/gpio_hal.h" #include "unity.h" #include "math.h" #include "esp_rom_gpio.h" #define SAMPLE_RATE (36000) #define SAMPLE_BITS (16) #if CONFIG_IDF_TARGET_ESP32 #define MASTER_BCK_IO 15 #define MASTER_WS_IO 25 #define SLAVE_BCK_IO 19 #define SLAVE_WS_IO 26 #define DATA_IN_IO 21 #define DATA_OUT_IO 22 #define ADC1_CHANNEL_4_IO 32 #define I2S0_DATA_OUT_IDX I2S0O_DATA_OUT23_IDX #define I2S0_DATA_IN_IDX I2S0I_DATA_IN15_IDX #define I2S1_DATA_OUT_IDX I2S1O_DATA_OUT23_IDX #define I2S1_DATA_IN_IDX I2S1I_DATA_IN15_IDX #elif CONFIG_IDF_TARGET_ESP32S2 #define MASTER_BCK_IO 15 #define MASTER_WS_IO 28 #define SLAVE_BCK_IO 19 #define SLAVE_WS_IO 26 #define DATA_IN_IO 21 #define DATA_OUT_IO 20 #define I2S0_DATA_OUT_IDX I2S0O_DATA_OUT23_IDX #define I2S0_DATA_IN_IDX I2S0I_DATA_IN15_IDX #elif CONFIG_IDF_TARGET_ESP32C3 // TODO: change pins #define MASTER_BCK_IO 4 #define MASTER_WS_IO 5 #define SLAVE_BCK_IO 14 #define SLAVE_WS_IO 15 #define DATA_IN_IO 19 #define DATA_OUT_IO 18 #define I2S0_DATA_OUT_IDX I2SO_SD_OUT_IDX #define I2S0_DATA_IN_IDX I2SI_SD_IN_IDX #elif CONFIG_IDF_TARGET_ESP32S3 #define MASTER_BCK_IO 4 #define MASTER_WS_IO 5 #define SLAVE_BCK_IO 14 #define SLAVE_WS_IO 15 #define DATA_IN_IO 19 #define DATA_OUT_IO 18 #define I2S0_DATA_OUT_IDX I2S0O_SD_OUT_IDX #define I2S0_DATA_IN_IDX I2S0I_SD_IN_IDX #define I2S1_DATA_OUT_IDX I2S1O_SD_OUT_IDX #define I2S1_DATA_IN_IDX I2S1I_SD_IN_IDX #endif #define PERCENT_DIFF 0.0001 #define I2S_TEST_MODE_SLAVE_TO_MAXTER 0 #define I2S_TEST_MODE_MASTER_TO_SLAVE 1 #define I2S_TEST_MODE_LOOPBACK 2 // mode: 0, master rx, slave tx. mode: 1, master tx, slave rx. mode: 2, master tx rx loopback // Since ESP32-S2 has only one I2S, only loop back test can be tested. static void i2s_test_io_config(int mode) { // Connect internal signals using IO matrix. gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[MASTER_BCK_IO], PIN_FUNC_GPIO); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[MASTER_WS_IO], PIN_FUNC_GPIO); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[DATA_OUT_IO], PIN_FUNC_GPIO); gpio_set_direction(MASTER_BCK_IO, GPIO_MODE_INPUT_OUTPUT); gpio_set_direction(MASTER_WS_IO, GPIO_MODE_INPUT_OUTPUT); gpio_set_direction(DATA_OUT_IO, GPIO_MODE_INPUT_OUTPUT); switch (mode) { #if SOC_I2S_NUM > 1 case I2S_TEST_MODE_SLAVE_TO_MAXTER: { esp_rom_gpio_connect_out_signal(MASTER_BCK_IO, I2S0I_BCK_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(MASTER_BCK_IO, I2S1O_BCK_IN_IDX, 0); esp_rom_gpio_connect_out_signal(MASTER_WS_IO, I2S0I_WS_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(MASTER_WS_IO, I2S1O_WS_IN_IDX, 0); esp_rom_gpio_connect_out_signal(DATA_OUT_IO, I2S1_DATA_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(DATA_OUT_IO, I2S0_DATA_IN_IDX, 0); } break; case I2S_TEST_MODE_MASTER_TO_SLAVE: { esp_rom_gpio_connect_out_signal(MASTER_BCK_IO, I2S0O_BCK_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(MASTER_BCK_IO, I2S1I_BCK_IN_IDX, 0); esp_rom_gpio_connect_out_signal(MASTER_WS_IO, I2S0O_WS_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(MASTER_WS_IO, I2S1I_WS_IN_IDX, 0); esp_rom_gpio_connect_out_signal(DATA_OUT_IO, I2S0_DATA_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(DATA_OUT_IO, I2S1_DATA_IN_IDX, 0); } break; #endif case I2S_TEST_MODE_LOOPBACK: { esp_rom_gpio_connect_out_signal(DATA_OUT_IO, I2S0_DATA_OUT_IDX, 0, 0); esp_rom_gpio_connect_in_signal(DATA_OUT_IO, I2S0_DATA_IN_IDX, 0); } break; default: { TEST_FAIL_MESSAGE("error: mode not supported"); } break; } } /** * i2s initialize test * 1. i2s_driver_install * 2. i2s_set_pin */ TEST_CASE("I2S basic driver install, uninstall, set pin test", "[i2s]") { // dac, adc i2s i2s_config_t i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 60, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; // normal i2s i2s_pin_config_t pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = -1 }; QueueHandle_t evt_que; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &i2s_config, 16, &evt_que)); TEST_ASSERT(evt_que); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &pin_config)); TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); //error param test TEST_ASSERT(i2s_driver_install(I2S_NUM_MAX, &i2s_config, 0, NULL) == ESP_ERR_INVALID_ARG); TEST_ASSERT(i2s_driver_install(I2S_NUM_0, NULL, 0, NULL) == ESP_ERR_INVALID_ARG); i2s_config.dma_buf_count = 1; TEST_ASSERT(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL) == ESP_ERR_INVALID_ARG); i2s_config.dma_buf_count = 129; TEST_ASSERT(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL) == ESP_ERR_INVALID_ARG); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_STATE, i2s_driver_uninstall(I2S_NUM_0)); } /** * @brief Test mono and stereo mode of I2S by loopback * @note Only rx channel distinguish left mono and right mono, tx channel does not * @note 1. Check switch mono/stereo by 'i2s_set_clk' * 2. Check rx right mono and left mono (requiring tx works in stereo mode) * 3. Check tx mono (requiring rx works in stereo mode) */ TEST_CASE("I2S_mono_stereo_loopback_test", "[i2s]") { #define WRITE_BUF_LEN 2000 #define READ_BUF_LEN 4000 // master driver installed and send data i2s_config_t master_i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX | I2S_MODE_RX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_ONLY_RIGHT, .communication_format = I2S_COMM_FORMAT_STAND_MSB, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t master_pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = DATA_IN_IO }; /* Install I2S in duplex mode */ TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_stop(I2S_NUM_0)); /* Config TX as stereo channel directly, because legacy driver can't support config tx&rx separately */ #if !SOC_I2S_SUPPORTS_TDM i2s_ll_tx_set_chan_mod(&I2S0, 0); #else i2s_ll_tx_set_active_chan_mask(&I2S0, 0x03); #endif i2s_ll_tx_enable_mono_mode(&I2S0, false); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_test_io_config(I2S_TEST_MODE_LOOPBACK); TEST_ESP_OK(i2s_start(I2S_NUM_0)); uint16_t *w_buf = calloc(1, WRITE_BUF_LEN); uint16_t *r_buf = calloc(1, READ_BUF_LEN); size_t w_bytes = 0; size_t r_bytes = 0; for (int n = 0; n < WRITE_BUF_LEN / 2; n++) { w_buf[n] = n%100; } /* rx right mono test * tx format: 0x00[L] 0x01[R] 0x02[L] 0x03[R] ... * rx receive: 0x01[R] 0x03[R] ... */ TEST_ESP_OK(i2s_write(I2S_NUM_0, w_buf, WRITE_BUF_LEN, &w_bytes, portMAX_DELAY)); TEST_ESP_OK(i2s_read(I2S_NUM_0, r_buf, READ_BUF_LEN, &r_bytes, portMAX_DELAY)); #if CONFIG_IDF_TARGET_ESP32 /* The data of tx/rx channels are flipped on ESP32 */ for (int n = 0; n < READ_BUF_LEN / 2; n += 2) { int16_t temp = r_buf[n]; r_buf[n] = r_buf[n+1]; r_buf[n+1] = temp; } #endif int i = 0; for (i = 0; (i < READ_BUF_LEN / 2); i++) { if (r_buf[i] == 1) { printf("%d %d %d %d\n%d %d %d %d\n", r_buf[i], r_buf[i+1], r_buf[i+2], r_buf[i+3], r_buf[i+4], r_buf[i+5], r_buf[i+6], r_buf[i+7]); break; } } printf("Data start index: %d\n", i); TEST_ASSERT(i < READ_BUF_LEN / 2 - 50); for (int16_t j = 1; j < 100; j += 2) { TEST_ASSERT_EQUAL_INT16(r_buf[i++], j); } printf("rx right mono test passed\n"); /* tx/rx stereo test * tx format: 0x00[L] 0x01[R] 0x02[L] 0x03[R] ... * rx receive: 0x00[L] 0x01[R] 0x02[L] 0x03[R] ... */ TEST_ESP_OK(i2s_set_clk(I2S_NUM_0, SAMPLE_RATE, SAMPLE_BITS, I2S_CHANNEL_STEREO)); TEST_ESP_OK(i2s_write(I2S_NUM_0, w_buf, WRITE_BUF_LEN, &w_bytes, portMAX_DELAY)); TEST_ESP_OK(i2s_read(I2S_NUM_0, r_buf, READ_BUF_LEN, &r_bytes, portMAX_DELAY)); for (i = 0; (i < READ_BUF_LEN / 2); i++) { if (r_buf[i] == 1) { printf("%d %d %d %d\n%d %d %d %d\n", r_buf[i], r_buf[i+1], r_buf[i+2], r_buf[i+3], r_buf[i+4], r_buf[i+5], r_buf[i+6], r_buf[i+7]); break; } } printf("Data start index: %d\n", i); TEST_ASSERT(i < READ_BUF_LEN / 2 - 100); for (int16_t j = 1; j < 100; j ++) { TEST_ASSERT_EQUAL_INT16(r_buf[i++], j); // receive all number } printf("tx/rx stereo test passed\n"); /* tx mono rx right mono test * tx format: 0x01[L] 0x01[R] 0x02[L] 0x02[R] ... * rx receive: 0x01[R] 0x02[R] ... */ TEST_ESP_OK(i2s_set_clk(I2S_NUM_0, SAMPLE_RATE, I2S_BITS_PER_SAMPLE_32BIT, I2S_CHANNEL_MONO)); TEST_ESP_OK(i2s_write(I2S_NUM_0, w_buf, WRITE_BUF_LEN, &w_bytes, portMAX_DELAY)); TEST_ESP_OK(i2s_read(I2S_NUM_0, r_buf, READ_BUF_LEN, &r_bytes, portMAX_DELAY)); for (i = 0; i < READ_BUF_LEN / 2; i++) { if (r_buf[i] == 1) { printf("%d %d %d %d\n%d %d %d %d\n", r_buf[i], r_buf[i+1], r_buf[i+2], r_buf[i+3], r_buf[i+4], r_buf[i+5], r_buf[i+6], r_buf[i+7]); break; } } printf("Data start index: %d\n", i); TEST_ASSERT(i < READ_BUF_LEN / 2 - 100); for (int16_t j = 1; j < 100; j ++) { TEST_ASSERT_EQUAL_INT16(r_buf[i++], j); } printf("tx/rx mono test passed\n"); /* Reinstalling I2S to test rx left mono */ TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); master_i2s_config.channel_format = I2S_CHANNEL_FMT_ONLY_LEFT; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_stop(I2S_NUM_0)); #if !SOC_I2S_SUPPORTS_TDM i2s_ll_tx_set_chan_mod(&I2S0, 0); #else i2s_ll_tx_set_active_chan_mask(&I2S0, 0x03); #endif i2s_ll_tx_enable_mono_mode(&I2S0, false); i2s_ll_tx_enable_mono_mode(&I2S0, false); TEST_ESP_OK(i2s_start(I2S_NUM_0)); /* rx left mono test * tx format: 0x00[L] 0x01[R] 0x02[L] 0x03[R] ... * rx receive: 0x00[R] 0x02[R] ... */ TEST_ESP_OK(i2s_write(I2S_NUM_0, w_buf, WRITE_BUF_LEN, &w_bytes, portMAX_DELAY)); TEST_ESP_OK(i2s_read(I2S_NUM_0, r_buf, READ_BUF_LEN, &r_bytes, portMAX_DELAY)); #if CONFIG_IDF_TARGET_ESP32 /* The data of tx/rx channels are flipped on ESP32 */ for (int n = 0; n < READ_BUF_LEN / 2; n += 2) { int16_t temp = r_buf[n]; r_buf[n] = r_buf[n+1]; r_buf[n+1] = temp; } #endif for (i = 0; (i < READ_BUF_LEN / 2); i++) { if (r_buf[i] == 2) { printf("%d %d %d %d\n%d %d %d %d\n", r_buf[i], r_buf[i+1], r_buf[i+2], r_buf[i+3], r_buf[i+4], r_buf[i+5], r_buf[i+6], r_buf[i+7]); break; } } printf("Data start index: %d\n", i); TEST_ASSERT(i < READ_BUF_LEN / 2 - 50); for (int16_t j = 2; j < 100; j += 2) { TEST_ASSERT_EQUAL_INT16(r_buf[i++], j); } printf("rx left mono test passed\n"); free(w_buf); free(r_buf); TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); } #if SOC_I2S_SUPPORTS_TDM TEST_CASE("I2S TDM Loopback test(master tx and rx)", "[i2s]") { // master driver installed and send data i2s_config_t master_i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX | I2S_MODE_RX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_MULTIPLE, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .total_chan = 4, .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1 | I2S_TDM_ACTIVE_CH2 | I2S_TDM_ACTIVE_CH3, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, }; i2s_pin_config_t master_pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = DATA_IN_IO }; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_test_io_config(I2S_TEST_MODE_LOOPBACK); printf("\r\nheap size: %d\n", esp_get_free_heap_size()); uint8_t *data_wr = (uint8_t *)malloc(sizeof(uint8_t) * 400); size_t i2s_bytes_write = 0; size_t bytes_read = 0; int length = 0; uint8_t *i2s_read_buff = (uint8_t *)malloc(sizeof(uint8_t) * 10000); for (int i = 0; i < 100; i++) { data_wr[i] = i + 1; } int flag = 0; // break loop flag int end_position = 0; // write data to slave i2s_write(I2S_NUM_0, data_wr, sizeof(uint8_t) * 400, &i2s_bytes_write, 1000 / portTICK_PERIOD_MS); while (!flag) { if (length >= 10000 - 500) { break; } i2s_read(I2S_NUM_0, i2s_read_buff + length, sizeof(uint8_t) * 500, &bytes_read, 1000 / portMAX_DELAY); if (bytes_read > 0) { for (int i = length; i < length + bytes_read; i++) { if (i2s_read_buff[i] == 100) { flag = 1; end_position = i; break; } } } length = length + bytes_read; } // test the read data right or not for (int i = end_position - 99; i <= end_position; i++) { TEST_ASSERT_EQUAL_UINT8((i - end_position + 100), *(i2s_read_buff + i)); } free(data_wr); free(i2s_read_buff); i2s_driver_uninstall(I2S_NUM_0); } #endif #if SOC_I2S_NUM > 1 /* ESP32S2 and ESP32C3 has only single I2S port and hence following test cases are not applicable */ TEST_CASE("I2S write and read test(master tx and slave rx)", "[i2s]") { // master driver installed and send data i2s_config_t master_i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t master_pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = -1 }; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_test_io_config(I2S_TEST_MODE_MASTER_TO_SLAVE); printf("\r\nheap size: %d\n", esp_get_free_heap_size()); i2s_config_t slave_i2s_config = { .mode = I2S_MODE_SLAVE | I2S_MODE_RX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t slave_pin_config = { .mck_io_num = -1, .bck_io_num = SLAVE_BCK_IO, .ws_io_num = SLAVE_WS_IO, .data_out_num = -1, .data_in_num = DATA_IN_IO, }; // slave driver installed and receive data TEST_ESP_OK(i2s_driver_install(I2S_NUM_1, &slave_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_1, &slave_pin_config)); i2s_test_io_config(I2S_TEST_MODE_MASTER_TO_SLAVE); printf("\r\nheap size: %d\n", esp_get_free_heap_size()); uint8_t *data_wr = (uint8_t *)malloc(sizeof(uint8_t) * 400); size_t i2s_bytes_write = 0; size_t bytes_read = 0; int length = 0; uint8_t *i2s_read_buff = (uint8_t *)malloc(sizeof(uint8_t) * 10000); for (int i = 0; i < 100; i++) { data_wr[i] = i + 1; } int flag = 0; // break loop flag int end_position = 0; // write data to slave i2s_write(I2S_NUM_0, data_wr, sizeof(uint8_t) * 400, &i2s_bytes_write, 1000 / portTICK_PERIOD_MS); printf("write data size: %d\n", i2s_bytes_write); while (!flag) { i2s_read(I2S_NUM_1, i2s_read_buff + length, sizeof(uint8_t) * 500, &bytes_read, 1000 / portTICK_PERIOD_MS); if (bytes_read > 0) { printf("read data size: %d\n", bytes_read); for (int i = length; i < length + bytes_read; i++) { if (i2s_read_buff[i] == 100) { flag = 1; end_position = i; break; } } } length = length + bytes_read; } // test the readed data right or not for (int i = end_position - 99; i <= end_position; i++) { TEST_ASSERT_EQUAL_UINT8((i - end_position + 100), *(i2s_read_buff + i)); } free(data_wr); free(i2s_read_buff); i2s_driver_uninstall(I2S_NUM_0); i2s_driver_uninstall(I2S_NUM_1); } TEST_CASE("I2S write and read test(master rx and slave tx)", "[i2s]") { // master driver installed and send data i2s_config_t master_i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_RX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 1, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t master_pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = -1, .data_in_num = DATA_IN_IO, }; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_test_io_config(I2S_TEST_MODE_SLAVE_TO_MAXTER); printf("\r\nheap size: %d\n", esp_get_free_heap_size()); i2s_config_t slave_i2s_config = { .mode = I2S_MODE_SLAVE | I2S_MODE_TX, // Only RX .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, //2-channels .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 1, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t slave_pin_config = { .mck_io_num = -1, .bck_io_num = SLAVE_BCK_IO, .ws_io_num = SLAVE_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = -1 }; // slave driver installed and receive data TEST_ESP_OK(i2s_driver_install(I2S_NUM_1, &slave_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_1, &slave_pin_config)); i2s_test_io_config(I2S_TEST_MODE_SLAVE_TO_MAXTER); printf("\r\nheap size: %d\n", esp_get_free_heap_size()); uint8_t *data_wr = (uint8_t *)malloc(sizeof(uint8_t) * 400); size_t i2s_bytes_write = 0; size_t bytes_read = 0; int length = 0; uint8_t *i2s_read_buff = (uint8_t *)malloc(sizeof(uint8_t) * 10000); for (int i = 0; i < 100; i++) { data_wr[i] = i + 1; } // slave write data to master i2s_write(I2S_NUM_1, data_wr, sizeof(uint8_t) * 400, &i2s_bytes_write, 1000 / portTICK_PERIOD_MS); printf("write data size: %d\n", i2s_bytes_write); int flag = 0; // break loop flag volatile int end_position = 0; // write data to slave while (!flag) { TEST_ESP_OK(i2s_read(I2S_NUM_0, i2s_read_buff + length, 10000 - length, &bytes_read, 1000 / portTICK_PERIOD_MS)); if (bytes_read > 0) { printf("read data size: %d\n", bytes_read); for (int i = length; i < length + bytes_read; i++) { if (i2s_read_buff[i] == 100) { flag = 1; end_position = i; break; } } } length = length + bytes_read; } // test the readed data right or not for (int i = end_position - 99; i <= end_position; i++) { TEST_ASSERT_EQUAL_UINT8((i - end_position + 100), *(i2s_read_buff + i)); } free(data_wr); free(i2s_read_buff); i2s_driver_uninstall(I2S_NUM_0); i2s_driver_uninstall(I2S_NUM_1); } #endif TEST_CASE("I2S memory leaking test", "[i2s]") { i2s_config_t master_i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_RX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 100, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; i2s_pin_config_t master_pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = -1, .data_in_num = DATA_IN_IO }; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_driver_uninstall(I2S_NUM_0); int initial_size = esp_get_free_heap_size(); for (int i = 0; i < 100; i++) { TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &master_i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &master_pin_config)); i2s_driver_uninstall(I2S_NUM_0); TEST_ASSERT(initial_size == esp_get_free_heap_size()); } vTaskDelay(100 / portTICK_PERIOD_MS); TEST_ASSERT(initial_size == esp_get_free_heap_size()); } #if SOC_I2S_SUPPORTS_APLL /* * The I2S APLL clock variation test used to test the difference between the different sample rates, different bits per sample * and the APLL clock generate for it. The TEST_CASE passes PERCENT_DIFF variation from the provided sample rate in APLL generated clock * The percentage difference calculated as (mod((obtained clock rate - desired clock rate)/(desired clock rate))) * 100. */ TEST_CASE("I2S APLL clock variation test", "[i2s]") { i2s_pin_config_t pin_config = { .mck_io_num = -1, .bck_io_num = MASTER_BCK_IO, .ws_io_num = MASTER_WS_IO, .data_out_num = DATA_OUT_IO, .data_in_num = -1 }; i2s_config_t i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 60, .use_apll = true, .intr_alloc_flags = 0, #if SOC_I2S_SUPPORTS_TDM .chan_mask = I2S_TDM_ACTIVE_CH0 | I2S_TDM_ACTIVE_CH1, .total_chan = 2, .left_align = false, .big_edin = false, .bit_order_msb = false, .skip_msk = false #endif }; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &pin_config)); TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); int initial_size = esp_get_free_heap_size(); uint32_t sample_rate_arr[8] = { 10675, 11025, 16000, 22050, 32000, 44100, 48000, 96000 }; int bits_per_sample_arr[3] = { 16, 24, 32 }; for (int i = 0; i < (sizeof(sample_rate_arr) / sizeof(sample_rate_arr[0])); i++) { for (int j = 0; j < (sizeof(bits_per_sample_arr) / sizeof(bits_per_sample_arr[0])); j++) { i2s_config.sample_rate = sample_rate_arr[i]; i2s_config.bits_per_sample = bits_per_sample_arr[j]; TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL)); TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, &pin_config)); TEST_ASSERT((fabs((i2s_get_clk(I2S_NUM_0) - sample_rate_arr[i])) / (sample_rate_arr[i])) * 100 < PERCENT_DIFF); TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); TEST_ASSERT(initial_size == esp_get_free_heap_size()); } } vTaskDelay(100 / portTICK_PERIOD_MS); TEST_ASSERT(initial_size == esp_get_free_heap_size()); } #endif #if SOC_I2S_SUPPORTS_ADC /* Only ESP32 need I2S adc/dac test */ TEST_CASE("I2S adc test", "[i2s]") { // init I2S ADC i2s_config_t i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_RX | I2S_MODE_ADC_BUILT_IN, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .intr_alloc_flags = 0, .dma_buf_count = 2, .dma_buf_len = 1024, .use_apll = 0, }; // install and start I2S driver i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL); // init ADC pad i2s_set_adc_mode(ADC_UNIT_1, ADC1_CHANNEL_4); // enable adc sampling, ADC_WIDTH_BIT_12, ADC_ATTEN_DB_12 hard-coded in adc_i2s_mode_init i2s_adc_enable(I2S_NUM_0); // init read buffer uint16_t *i2sReadBuffer = (uint16_t *)calloc(1024, sizeof(uint16_t)); size_t bytesRead; for (int loop = 0; loop < 10; loop++) { for (int level = 0; level <= 1; level++) { if (level == 0) { gpio_set_pull_mode(ADC1_CHANNEL_4_IO, GPIO_PULLDOWN_ONLY); } else { gpio_set_pull_mode(ADC1_CHANNEL_4_IO, GPIO_PULLUP_ONLY); } vTaskDelay(200 / portTICK_RATE_MS); // read data from adc, will block until buffer is full i2s_read(I2S_NUM_0, (void *)i2sReadBuffer, 1024 * sizeof(uint16_t), &bytesRead, portMAX_DELAY); // calc average int64_t adcSumValue = 0; for (size_t i = 0; i < 1024; i++) { adcSumValue += i2sReadBuffer[i] & 0xfff; } int adcAvgValue = adcSumValue / 1024; printf("adc average val: %d\n", adcAvgValue); if (level == 0) { if (adcAvgValue > 100) { i2s_adc_disable(I2S_NUM_0); free(i2sReadBuffer); i2s_driver_uninstall(I2S_NUM_0); TEST_ASSERT_LESS_THAN(100, adcAvgValue); } } else { if (adcAvgValue < 4000) { i2s_adc_disable(I2S_NUM_0); free(i2sReadBuffer); i2s_driver_uninstall(I2S_NUM_0); TEST_ASSERT_GREATER_THAN(4000, adcAvgValue); } } } } i2s_adc_disable(I2S_NUM_0); free(i2sReadBuffer); i2s_driver_uninstall(I2S_NUM_0); } #endif #if SOC_I2S_SUPPORTS_DAC TEST_CASE("I2S dac test", "[i2s]") { // dac, adc i2s i2s_config_t i2s_config = { .mode = I2S_MODE_MASTER | I2S_MODE_TX, .sample_rate = SAMPLE_RATE, .bits_per_sample = SAMPLE_BITS, .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, .communication_format = I2S_COMM_FORMAT_STAND_I2S, .dma_buf_count = 6, .dma_buf_len = 60, .use_apll = 0, .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, }; //install and start i2s driver TEST_ESP_OK(i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL)); //for internal DAC, this will enable both of the internal channels TEST_ESP_OK(i2s_set_pin(I2S_NUM_0, NULL)); //stop & destroy i2s driver TEST_ESP_OK(i2s_driver_uninstall(I2S_NUM_0)); } #endif