/* * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include "sdkconfig.h" #include "esp_partition.h" #include "esp_flash_partitions.h" #include "esp_private/partition_linux.h" #include "esp_log.h" static const char *TAG = "linux_spiflash"; static void *s_spiflash_mem_file_buf = NULL; static const esp_partition_mmap_handle_t s_default_partition_mmap_handle = 0; #ifdef CONFIG_ESP_PARTITION_ENABLE_STATS // variables holding stats and controlling wear emulation size_t s_esp_partition_stat_read_ops = 0; size_t s_esp_partition_stat_write_ops = 0; size_t s_esp_partition_stat_read_bytes = 0; size_t s_esp_partition_stat_write_bytes = 0; size_t s_esp_partition_stat_erase_ops = 0; size_t s_esp_partition_stat_total_time = 0; size_t s_esp_partition_emulated_flash_life = SIZE_MAX; // tracking erase count individually for each emulated sector size_t s_esp_partition_stat_sector_erase_count[ESP_PARTITION_EMULATED_FLASH_SIZE / ESP_PARTITION_EMULATED_SECTOR_SIZE] = {0}; // forward declaration of hooks static void esp_partition_hook_read(const void *srcAddr, const size_t size); static bool esp_partition_hook_write(const void *dstAddr, const size_t size); static bool esp_partition_hook_erase(const void *dstAddr, const size_t size); // redirect hooks to functions #define ESP_PARTITION_HOOK_READ(srcAddr, size) esp_partition_hook_read(srcAddr, size) #define ESP_PARTITION_HOOK_WRITE(dstAddr, size) esp_partition_hook_write(dstAddr, size) #define ESP_PARTITION_HOOK_ERASE(dstAddr, size) esp_partition_hook_erase(dstAddr, size) #else // redirect hooks to "do nothing code" #define ESP_PARTITION_HOOK_READ(srcAddr, size) #define ESP_PARTITION_HOOK_WRITE(dstAddr, size) true #define ESP_PARTITION_HOOK_ERASE(dstAddr, size) true #endif const char *esp_partition_type_to_str(const uint32_t type) { switch (type) { case PART_TYPE_APP: return "app"; case PART_TYPE_DATA: return "data"; default: return "unknown"; } } const char *esp_partition_subtype_to_str(const uint32_t type, const uint32_t subtype) { switch (type) { case PART_TYPE_APP: switch (subtype) { case PART_SUBTYPE_FACTORY: return "factory"; case PART_SUBTYPE_OTA_FLAG: return "ota_flag"; case PART_SUBTYPE_OTA_MASK: return "ota_mask"; case PART_SUBTYPE_TEST: return "test"; default: return "unknown"; } case PART_TYPE_DATA: switch (subtype) { case PART_SUBTYPE_DATA_OTA: return "data_ota"; case PART_SUBTYPE_DATA_RF: return "data_rf"; case PART_SUBTYPE_DATA_WIFI: return "data_wifi"; case PART_SUBTYPE_DATA_NVS_KEYS: return "nvs_keys"; case PART_SUBTYPE_DATA_EFUSE_EM: return "efuse_em"; default: return "unknown"; } default: return "unknown"; } } esp_err_t esp_partition_file_mmap(const uint8_t **part_desc_addr_start) { //create temporary file to hold complete SPIFLASH size char temp_spiflash_mem_file_name[PATH_MAX] = {"/tmp/idf-partition-XXXXXX"}; int spiflash_mem_file_fd = mkstemp(temp_spiflash_mem_file_name); if (spiflash_mem_file_fd == -1) { ESP_LOGE(TAG, "Failed to create SPI FLASH emulation file %s: %s", temp_spiflash_mem_file_name, strerror(errno)); return ESP_ERR_NOT_FINISHED; } if (ftruncate(spiflash_mem_file_fd, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) { ESP_LOGE(TAG, "Failed to set size of SPI FLASH memory emulation file %s: %s", temp_spiflash_mem_file_name, strerror(errno)); return ESP_ERR_INVALID_SIZE; } ESP_LOGV(TAG, "SPIFLASH memory emulation file created: %s (size: %d B)", temp_spiflash_mem_file_name, ESP_PARTITION_EMULATED_FLASH_SIZE); //create memory-mapping for the partitions holder file if ((s_spiflash_mem_file_buf = mmap(NULL, ESP_PARTITION_EMULATED_FLASH_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, spiflash_mem_file_fd, 0)) == MAP_FAILED) { ESP_LOGE(TAG, "Failed to mmap() SPI FLASH memory emulation file: %s", strerror(errno)); return ESP_ERR_NO_MEM; } //initialize whole range with bit-1 (NOR FLASH default) memset(s_spiflash_mem_file_buf, 0xFF, ESP_PARTITION_EMULATED_FLASH_SIZE); //upload partition table to the mmap file at real offset as in SPIFLASH const char *partition_table_file_name = "build/partition_table/partition-table.bin"; FILE *f_partition_table = fopen(partition_table_file_name, "r+"); if (f_partition_table == NULL) { ESP_LOGE(TAG, "Failed to open partition table file %s: %s", partition_table_file_name, strerror(errno)); return ESP_ERR_NOT_FOUND; } if (fseek(f_partition_table, 0L, SEEK_END) != 0) { ESP_LOGE(TAG, "Failed to seek in partition table file %s: %s", partition_table_file_name, strerror(errno)); return ESP_ERR_INVALID_SIZE; } int partition_table_file_size = ftell(f_partition_table); ESP_LOGV(TAG, "Using partition table file %s (size: %d B):", partition_table_file_name, partition_table_file_size); uint8_t *part_table_in_spiflash = s_spiflash_mem_file_buf + ESP_PARTITION_TABLE_OFFSET; //copy partition table from the file to emulated SPIFLASH memory space if (fseek(f_partition_table, 0L, SEEK_SET) != 0) { ESP_LOGE(TAG, "Failed to seek in partition table file %s: %s", partition_table_file_name, strerror(errno)); return ESP_ERR_INVALID_SIZE; } size_t res = fread(part_table_in_spiflash, 1, partition_table_file_size, f_partition_table); fclose(f_partition_table); if (res != partition_table_file_size) { ESP_LOGE(TAG, "Failed to read partition table file %s", partition_table_file_name); return ESP_ERR_INVALID_STATE; } #ifdef CONFIG_LOG_DEFAULT_LEVEL_VERBOSE uint8_t *part_ptr = part_table_in_spiflash; uint8_t *part_end_ptr = part_table_in_spiflash + partition_table_file_size; ESP_LOGV(TAG, ""); ESP_LOGV(TAG, "Partition table sucessfully imported, partitions found:"); while (part_ptr < part_end_ptr) { esp_partition_info_t *p_part_item = (esp_partition_info_t *)part_ptr; if (p_part_item->magic != ESP_PARTITION_MAGIC ) { break; } ESP_LOGV(TAG, " --------------"); ESP_LOGV(TAG, " label: %s", p_part_item->label); ESP_LOGV(TAG, " type: %s", esp_partition_type_to_str(p_part_item->type)); ESP_LOGV(TAG, " subtype: %s", esp_partition_subtype_to_str(p_part_item->type, p_part_item->subtype)); ESP_LOGV(TAG, " offset: 0x%08X", p_part_item->pos.offset); ESP_LOGV(TAG, " size: %d", p_part_item->pos.size); ESP_LOGV(TAG, " flags: %d", p_part_item->flags); part_ptr += sizeof(esp_partition_info_t); } ESP_LOGV(TAG, ""); #endif //return mmapped file starting address *part_desc_addr_start = s_spiflash_mem_file_buf; return ESP_OK; } esp_err_t esp_partition_file_munmap(void) { if (s_spiflash_mem_file_buf == NULL) { return ESP_ERR_NO_MEM; } if (ESP_PARTITION_EMULATED_FLASH_SIZE == 0) { return ESP_ERR_INVALID_SIZE; } if (munmap(s_spiflash_mem_file_buf, ESP_PARTITION_EMULATED_FLASH_SIZE) != 0) { ESP_LOGE(TAG, "Failed to munmap() SPI FLASH memory emulation file: %s", strerror(errno)); return ESP_ERR_INVALID_RESPONSE; } s_spiflash_mem_file_buf = NULL; return ESP_OK; } esp_err_t esp_partition_write(const esp_partition_t *partition, size_t dst_offset, const void *src, size_t size) { assert(partition != NULL); if (partition->encrypted) { return ESP_ERR_NOT_SUPPORTED; } if (dst_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (dst_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } uint8_t *write_buf = malloc(size); if (write_buf == NULL) { return ESP_ERR_NO_MEM; } void *dst_addr = s_spiflash_mem_file_buf + partition->address + dst_offset; ESP_LOGV(TAG, "esp_partition_write(): partition=%s dst_offset=%zu src=%p size=%zu (real dst address: %p)", partition->label, dst_offset, src, size, dst_addr); // hook gathers statistics and can emulate limited number of write cycles if (!ESP_PARTITION_HOOK_WRITE(dst_addr, size)) { return ESP_FAIL; } //read the contents first, AND with the write buffer (to emulate real NOR FLASH behavior) memcpy(write_buf, dst_addr, size); for (size_t x = 0; x < size; x++) { write_buf[x] &= ((uint8_t *)src)[x]; } memcpy(dst_addr, write_buf, size); free(write_buf); return ESP_OK; } esp_err_t esp_partition_read(const esp_partition_t *partition, size_t src_offset, void *dst, size_t size) { assert(partition != NULL); if (partition->encrypted) { return ESP_ERR_NOT_SUPPORTED; } if (src_offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (src_offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } void *src_addr = s_spiflash_mem_file_buf + partition->address + src_offset; ESP_LOGV(TAG, "esp_partition_read(): partition=%s src_offset=%zu dst=%p size=%zu (real src address: %p)", partition->label, src_offset, dst, size, src_addr); memcpy(dst, src_addr, size); ESP_PARTITION_HOOK_READ(src_addr, size); // statistics return ESP_OK; } esp_err_t esp_partition_read_raw(const esp_partition_t *partition, size_t src_offset, void *dst, size_t size) { ESP_LOGV(TAG, "esp_partition_read_raw(): calling esp_partition_read()"); return esp_partition_read(partition, src_offset, dst, size); } esp_err_t esp_partition_write_raw(const esp_partition_t *partition, size_t dst_offset, const void *src, size_t size) { ESP_LOGV(TAG, "esp_partition_write_raw(): calling esp_partition_write()"); return esp_partition_write(partition, dst_offset, src, size); } esp_err_t esp_partition_erase_range(const esp_partition_t *partition, size_t offset, size_t size) { assert(partition != NULL); if (offset > partition->size || offset % partition->erase_size != 0) { return ESP_ERR_INVALID_ARG; } if (offset + size > partition->size || size % partition->erase_size != 0) { return ESP_ERR_INVALID_SIZE; } void *target_addr = s_spiflash_mem_file_buf + partition->address + offset; ESP_LOGV(TAG, "esp_partition_erase_range(): partition=%s offset=%zu size=%zu (real target address: %p)", partition->label, offset, size, target_addr); // hook gathers statistics and can emulate limited number of write/erase cycles if (!ESP_PARTITION_HOOK_ERASE(target_addr, size)) { return ESP_FAIL; } //set all bits to 1 (NOR FLASH default) memset(target_addr, 0xFF, size); return ESP_OK; } /* * Exposes direct pointer to the memory mapped file created by esp_partition_file_mmap * No address alignment is performed * Default handle is always returned * Returns: * ESP_ERR_INVALID_ARG - offset exceeds size of partition * ESP_ERR_INVALID_SIZE - address range defined by offset + size is beyond the size of partition * ESP_ERR_NOT_SUPPORTED - flash_chip of partition is not NULL * ESP_OK - calculated out parameters hold pointer to the requested memory area and default handle respectively */ esp_err_t esp_partition_mmap(const esp_partition_t *partition, size_t offset, size_t size, esp_partition_mmap_memory_t memory, const void **out_ptr, esp_partition_mmap_handle_t *out_handle) { ESP_LOGV(TAG, "esp_partition_mmap(): partition=%s offset=%zu size=%zu", partition->label, offset, size); assert(partition != NULL); if (offset > partition->size) { return ESP_ERR_INVALID_ARG; } if (offset + size > partition->size) { return ESP_ERR_INVALID_SIZE; } if (partition->flash_chip != NULL) { return ESP_ERR_NOT_SUPPORTED; } // required starting address in flash aka offset from the flash beginning size_t req_flash_addr = (size_t)(partition->address) + offset; esp_err_t rc = ESP_OK; // check if memory mapped file is already present, if not, map it now if (s_spiflash_mem_file_buf == NULL) { ESP_LOGE(TAG, "esp_partition_mmap(): in esp_partition_file_mmap"); uint8_t *part_desc_addr_start = NULL; rc = esp_partition_file_mmap((const uint8_t **) &part_desc_addr_start); } // adjust memory mapped pointer to the required offset if (rc == ESP_OK) { *out_ptr = (void *) (s_spiflash_mem_file_buf + req_flash_addr); *out_handle = s_default_partition_mmap_handle; } else { *out_ptr = (void *) NULL; *out_handle = 0; } return rc; } // Intentionally does nothing. void esp_partition_munmap(esp_partition_mmap_handle_t handle) { ; } #ifdef CONFIG_ESP_PARTITION_ENABLE_STATS // timing data for ESP8266, 160MHz CPU frequency, 80MHz flash requency // all values in microseconds // values are for block sizes starting at 4 bytes and going up to 4096 bytes static size_t s_esp_partition_stat_read_times[] = {7, 5, 6, 7, 11, 18, 32, 60, 118, 231, 459}; static size_t s_esp_partition_stat_write_times[] = {19, 23, 35, 57, 106, 205, 417, 814, 1622, 3200, 6367}; static size_t s_esp_partition_stat_block_erase_time = 37142; static size_t esp_partition_stat_time_interpolate(uint32_t bytes, size_t *lut) { const int lut_size = sizeof(s_esp_partition_stat_read_times) / sizeof(s_esp_partition_stat_read_times[0]); int lz = __builtin_clz(bytes / 4); int log_size = 32 - lz; size_t x2 = 1 << (log_size + 2); size_t upper_index = (log_size < lut_size - 1) ? log_size : lut_size - 1; size_t y2 = lut[upper_index]; size_t x1 = 1 << (log_size + 1); size_t y1 = lut[log_size - 1]; return (bytes - x1) * (y2 - y1) / (x2 - x1) + y1; } // Registers read access statistics of emulated SPI FLASH device (Linux host) // Ffunction increases nmuber of read operations, accumulates number of read bytes // and accumulates emulated read operation time (size dependent) static void esp_partition_hook_read(const void *srcAddr, const size_t size) { ESP_LOGV(TAG, "esp_partition_hook_read()"); // stats ++s_esp_partition_stat_read_ops; s_esp_partition_stat_read_bytes += size; s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_read_times); } // Registers write access statistics of emulated SPI FLASH device (Linux host) // If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by // decrementing the s_esp_partition_emulated_life for each 4 bytes written // If zero threshold is reached, false is returned. // Else the function increases nmuber of write operations, accumulates number // of bytes written and accumulates emulated write operation time (size dependent) and returns true. static bool esp_partition_hook_write(const void *dstAddr, const size_t size) { ESP_LOGV(TAG, "esp_partition_hook_write()"); // wear emulation for (size_t i = 0; i < size / 4; ++i) { if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) { return false; } } // stats ++s_esp_partition_stat_write_ops; s_esp_partition_stat_write_bytes += size; s_esp_partition_stat_total_time += esp_partition_stat_time_interpolate((uint32_t) size, s_esp_partition_stat_write_times); return true; } // Registers erase access statistics of emulated SPI FLASH device (Linux host) // If enabled by the esp_partition_fail_after, function emulates physical limitation of write/erase operations by // decrementing the s_esp_partition_emulated_life for each erased virtual sector. // If zero threshold is reached, false is returned. // Else, for statistics purpose, the impacted virtual sectors are identified based on // ESP_PARTITION_EMULATED_SECTOR_SIZE and their respective counts of erase operations are incremented // Total number of erase operations is increased by the number of impacted virtual sectors static bool esp_partition_hook_erase(const void *dstAddr, const size_t size) { ESP_LOGV(TAG, "esp_partition_hook_erase()"); if (size == 0) { return true; } // cycle over virtual sectors ptrdiff_t offset = dstAddr - s_spiflash_mem_file_buf; size_t first_sector_idx = offset / ESP_PARTITION_EMULATED_SECTOR_SIZE; size_t last_sector_idx = (offset + size - 1) / ESP_PARTITION_EMULATED_SECTOR_SIZE; size_t sector_count = 1 + last_sector_idx - first_sector_idx; for (size_t sector_index = first_sector_idx; sector_index < first_sector_idx + sector_count; sector_index++) { // wear emulation if (s_esp_partition_emulated_flash_life != SIZE_MAX && s_esp_partition_emulated_flash_life-- == 0) { return false; } // stats ++s_esp_partition_stat_erase_ops; s_esp_partition_stat_sector_erase_count[sector_index]++; s_esp_partition_stat_total_time += s_esp_partition_stat_block_erase_time; } return true; } void esp_partition_clear_stats(void) { s_esp_partition_stat_read_bytes = 0; s_esp_partition_stat_write_bytes = 0; s_esp_partition_stat_erase_ops = 0; s_esp_partition_stat_read_ops = 0; s_esp_partition_stat_write_ops = 0; s_esp_partition_stat_total_time = 0; memset(s_esp_partition_stat_sector_erase_count, 0, sizeof(s_esp_partition_stat_sector_erase_count)); } size_t esp_partition_get_read_ops(void) { return s_esp_partition_stat_read_ops; } size_t esp_partition_get_write_ops(void) { return s_esp_partition_stat_write_ops; } size_t esp_partition_get_erase_ops(void) { return s_esp_partition_stat_erase_ops; } size_t esp_partition_get_read_bytes(void) { return s_esp_partition_stat_read_bytes; } size_t esp_partition_get_write_bytes(void) { return s_esp_partition_stat_write_bytes; } size_t esp_partition_get_total_time(void) { return s_esp_partition_stat_total_time; } void esp_partition_fail_after(size_t count) { s_esp_partition_emulated_flash_life = count; } size_t esp_partition_get_sector_erase_count(size_t sector) { return s_esp_partition_stat_sector_erase_count[sector]; } #endif