/* * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "esp_types.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "esp_pm.h" #include "esp_cache.h" #include "esp_heap_caps.h" #include "esp_rom_sys.h" #include "soc/lldesc.h" #include "soc/soc_caps.h" #include "soc/spi_periph.h" #include "soc/soc_memory_layout.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/task.h" #include "sdkconfig.h" #include "driver/gpio.h" #include "driver/spi_slave.h" #include "hal/gpio_hal.h" #include "hal/spi_slave_hal.h" #include "esp_private/spi_slave_internal.h" #include "esp_private/spi_common_internal.h" #include "esp_private/esp_cache_private.h" static const char *SPI_TAG = "spi_slave"; #define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, SPI_TAG, str) #ifdef CONFIG_SPI_SLAVE_ISR_IN_IRAM #define SPI_SLAVE_ISR_ATTR IRAM_ATTR #else #define SPI_SLAVE_ISR_ATTR #endif #ifdef CONFIG_SPI_SLAVE_IN_IRAM #define SPI_SLAVE_ATTR IRAM_ATTR #else #define SPI_SLAVE_ATTR #endif /// struct to hold private transaction data (like tx and rx buffer for DMA). typedef struct { spi_slave_transaction_t *trans; //original trans void *tx_buffer; //actually tx buffer (re-malloced if needed) void *rx_buffer; //actually rx buffer (re-malloced if needed) } spi_slave_trans_priv_t; typedef struct { int id; spi_bus_config_t bus_config; spi_slave_interface_config_t cfg; intr_handle_t intr; spi_slave_hal_context_t hal; spi_slave_trans_priv_t cur_trans; uint32_t flags; uint32_t intr_flags; int max_transfer_sz; QueueHandle_t trans_queue; QueueHandle_t ret_queue; bool dma_enabled; bool cs_iomux; uint8_t cs_in_signal; uint16_t internal_mem_align_size; uint32_t tx_dma_chan; uint32_t rx_dma_chan; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } spi_slave_t; static spi_slave_t *spihost[SOC_SPI_PERIPH_NUM]; static void spi_intr(void *arg); __attribute__((always_inline)) static inline bool is_valid_host(spi_host_device_t host) { //SPI1 can be used as GPSPI only on ESP32 #if CONFIG_IDF_TARGET_ESP32 return host >= SPI1_HOST && host <= SPI3_HOST; #elif (SOC_SPI_PERIPH_NUM == 2) return host == SPI2_HOST; #elif (SOC_SPI_PERIPH_NUM == 3) return host >= SPI2_HOST && host <= SPI3_HOST; #endif } static inline bool SPI_SLAVE_ISR_ATTR bus_is_iomux(spi_slave_t *host) { return host->flags&SPICOMMON_BUSFLAG_IOMUX_PINS; } static void SPI_SLAVE_ISR_ATTR freeze_cs(spi_slave_t *host) { esp_rom_gpio_connect_in_signal(GPIO_MATRIX_CONST_ONE_INPUT, host->cs_in_signal, false); } // Use this function instead of cs_initial to avoid overwrite the output config // This is used in test by internal gpio matrix connections static inline void SPI_SLAVE_ISR_ATTR restore_cs(spi_slave_t *host) { if (host->cs_iomux) { gpio_ll_iomux_in(GPIO_HAL_GET_HW(GPIO_PORT_0), host->cfg.spics_io_num, host->cs_in_signal); } else { esp_rom_gpio_connect_in_signal(host->cfg.spics_io_num, host->cs_in_signal, false); } } #if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE) typedef struct { spi_slave_t *host; esp_err_t *err; } spi_ipc_param_t; static void ipc_isr_reg_to_core(void *args) { spi_slave_t *host = ((spi_ipc_param_t *)args)->host; *((spi_ipc_param_t *)args)->err = esp_intr_alloc(spicommon_irqsource_for_host(host->id), host->intr_flags | ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void *)host, &host->intr); } #endif esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const spi_slave_interface_config_t *slave_config, spi_dma_chan_t dma_chan) { bool spi_chan_claimed; uint32_t actual_tx_dma_chan = 0; uint32_t actual_rx_dma_chan = 0; esp_err_t ret = ESP_OK; esp_err_t err; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG ); #elif CONFIG_IDF_TARGET_ESP32S2 SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG ); #elif SOC_GDMA_SUPPORTED SPI_CHECK( dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG ); #endif SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH|ESP_INTR_FLAG_EDGE|ESP_INTR_FLAG_INTRDISABLED))==0, "intr flag not allowed", ESP_ERR_INVALID_ARG); #ifndef CONFIG_SPI_SLAVE_ISR_IN_IRAM SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM)==0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_SLAVE_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG); #endif SPI_CHECK(slave_config->spics_io_num < 0 || GPIO_IS_VALID_GPIO(slave_config->spics_io_num), "spics pin invalid", ESP_ERR_INVALID_ARG); //Check post_trans_cb status when `SPI_SLAVE_NO_RETURN_RESULT` flag is set. if(slave_config->flags & SPI_SLAVE_NO_RETURN_RESULT) { SPI_CHECK(slave_config->post_trans_cb != NULL, "use feature flag 'SPI_SLAVE_NO_RETURN_RESULT' but no post_trans_cb function sets", ESP_ERR_INVALID_ARG); } spi_chan_claimed=spicommon_periph_claim(host, "spi slave"); SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); spihost[host] = malloc(sizeof(spi_slave_t)); if (spihost[host] == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } memset(spihost[host], 0, sizeof(spi_slave_t)); memcpy(&spihost[host]->cfg, slave_config, sizeof(spi_slave_interface_config_t)); memcpy(&spihost[host]->bus_config, bus_config, sizeof(spi_bus_config_t)); spihost[host]->id = host; spi_slave_hal_context_t *hal = &spihost[host]->hal; spihost[host]->dma_enabled = (dma_chan != SPI_DMA_DISABLED); if (spihost[host]->dma_enabled) { ret = spicommon_dma_chan_alloc(host, dma_chan, &actual_tx_dma_chan, &actual_rx_dma_chan); if (ret != ESP_OK) { goto cleanup; } spihost[host]->tx_dma_chan = actual_tx_dma_chan; spihost[host]->rx_dma_chan = actual_rx_dma_chan; //See how many dma descriptors we need and allocate them int dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN; if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given spihost[host]->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN; #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE esp_cache_get_alignment(ESP_CACHE_MALLOC_FLAG_DMA, (size_t *)&spihost[host]->internal_mem_align_size); #else spihost[host]->internal_mem_align_size = 4; #endif hal->dmadesc_tx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA); hal->dmadesc_rx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (!hal->dmadesc_tx || !hal->dmadesc_rx) { ret = ESP_ERR_NO_MEM; goto cleanup; } hal->dmadesc_n = dma_desc_ct; } else { //We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most. spihost[host]->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE; } err = spicommon_bus_initialize_io(host, bus_config, SPICOMMON_BUSFLAG_SLAVE|bus_config->flags, &spihost[host]->flags); if (err!=ESP_OK) { ret = err; goto cleanup; } if (slave_config->spics_io_num >= 0) { spicommon_cs_initialize(host, slave_config->spics_io_num, 0, !bus_is_iomux(spihost[host])); // check and save where cs line really route through spihost[host]->cs_iomux = (slave_config->spics_io_num == spi_periph_signal[host].spics0_iomux_pin) && bus_is_iomux(spihost[host]); spihost[host]->cs_in_signal = spi_periph_signal[host].spics_in; } // The slave DMA suffers from unexpected transactions. Forbid reading if DMA is enabled by disabling the CS line. if (spihost[host]->dma_enabled) freeze_cs(spihost[host]); #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &spihost[host]->pm_lock); if (err != ESP_OK) { ret = err; goto cleanup; } // Lock APB frequency while SPI slave driver is in use esp_pm_lock_acquire(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE //Create queues spihost[host]->trans_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_trans_priv_t)); if (!spihost[host]->trans_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } if(!(slave_config->flags & SPI_SLAVE_NO_RETURN_RESULT)) { spihost[host]->ret_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_trans_priv_t)); if (!spihost[host]->ret_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } } #if (SOC_CPU_CORES_NUM > 1) && (!CONFIG_FREERTOS_UNICORE) if (bus_config->isr_cpu_id > ESP_INTR_CPU_AFFINITY_AUTO) { spihost[host]->intr_flags = bus_config->intr_flags; SPI_CHECK(bus_config->isr_cpu_id <= ESP_INTR_CPU_AFFINITY_1, "invalid core id", ESP_ERR_INVALID_ARG); spi_ipc_param_t ipc_args = { .host = spihost[host], .err = &err, }; esp_ipc_call_blocking(ESP_INTR_CPU_AFFINITY_TO_CORE_ID(bus_config->isr_cpu_id), ipc_isr_reg_to_core, (void *)&ipc_args); } else #endif { err = esp_intr_alloc(spicommon_irqsource_for_host(host), bus_config->intr_flags | ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void *)spihost[host], &spihost[host]->intr); } if (err != ESP_OK) { ret = err; goto cleanup; } //assign the SPI, RX DMA and TX DMA peripheral registers beginning address spi_slave_hal_config_t hal_config = { .host_id = host, .dma_in = SPI_LL_GET_HW(host), .dma_out = SPI_LL_GET_HW(host) }; spi_slave_hal_init(hal, &hal_config); hal->rx_lsbfirst = (slave_config->flags & SPI_SLAVE_RXBIT_LSBFIRST) ? 1 : 0; hal->tx_lsbfirst = (slave_config->flags & SPI_SLAVE_TXBIT_LSBFIRST) ? 1 : 0; hal->mode = slave_config->mode; hal->use_dma = spihost[host]->dma_enabled; hal->tx_dma_chan = actual_tx_dma_chan; hal->rx_dma_chan = actual_rx_dma_chan; spi_slave_hal_setup_device(hal); return ESP_OK; cleanup: if (spihost[host]) { if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); #ifdef CONFIG_PM_ENABLE if (spihost[host]->pm_lock) { esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); } #endif } spi_slave_hal_deinit(&spihost[host]->hal); if (spihost[host]->dma_enabled) { spicommon_dma_chan_free(host); free(spihost[host]->hal.dmadesc_tx); free(spihost[host]->hal.dmadesc_rx); } free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); return ret; } esp_err_t spi_slave_free(spi_host_device_t host) { SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); if (spihost[host]->dma_enabled) { spicommon_dma_chan_free(host); free(spihost[host]->hal.dmadesc_tx); free(spihost[host]->hal.dmadesc_rx); } spicommon_bus_free_io_cfg(&spihost[host]->bus_config); esp_intr_free(spihost[host]->intr); #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); return ESP_OK; } static void SPI_SLAVE_ISR_ATTR spi_slave_uninstall_priv_trans(spi_host_device_t host, spi_slave_trans_priv_t *priv_trans) { #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE spi_slave_transaction_t *trans = (spi_slave_transaction_t *)priv_trans->trans; if (spihost[host]->dma_enabled) { if (trans->tx_buffer && (trans->tx_buffer != priv_trans->tx_buffer)) { free(priv_trans->tx_buffer); } if (trans->rx_buffer && (trans->rx_buffer != priv_trans->rx_buffer)) { memcpy(trans->rx_buffer, priv_trans->rx_buffer, (trans->length + 7) / 8); free(priv_trans->rx_buffer); } } #endif //SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE } static esp_err_t SPI_SLAVE_ISR_ATTR spi_slave_setup_priv_trans(spi_host_device_t host, spi_slave_trans_priv_t *priv_trans) { spi_slave_transaction_t *trans = (spi_slave_transaction_t *)priv_trans->trans; priv_trans->tx_buffer = (void *)trans->tx_buffer; priv_trans->rx_buffer = trans->rx_buffer; #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE uint16_t alignment = spihost[host]->internal_mem_align_size; uint32_t buffer_byte_len = (trans->length + 7) / 8; if (spihost[host]->dma_enabled && trans->tx_buffer) { if ((!esp_ptr_dma_capable( trans->tx_buffer ) || ((((uint32_t)trans->tx_buffer) | buffer_byte_len) & (alignment - 1)))) { ESP_RETURN_ON_FALSE_ISR(trans->flags & SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO, ESP_ERR_INVALID_ARG, SPI_TAG, "TX buffer addr&len not align to %d, or not dma_capable", alignment); //if txbuf in the desc not DMA-capable, or not align to "alignment", malloc a new one ESP_EARLY_LOGD(SPI_TAG, "Allocate TX buffer for DMA" ); buffer_byte_len = (buffer_byte_len + alignment - 1) & (~(alignment - 1)); // up align to "alignment" uint32_t *temp = heap_caps_aligned_alloc(alignment, buffer_byte_len, MALLOC_CAP_DMA); if (temp == NULL) { return ESP_ERR_NO_MEM; } memcpy(temp, trans->tx_buffer, (trans->length + 7) / 8); priv_trans->tx_buffer = temp; } esp_err_t ret = esp_cache_msync((void *)priv_trans->tx_buffer, buffer_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_C2M); ESP_RETURN_ON_FALSE_ISR(ESP_OK == ret, ESP_ERR_INVALID_STATE, SPI_TAG, "mem sync c2m(writeback) fail"); } if (spihost[host]->dma_enabled && trans->rx_buffer && (!esp_ptr_dma_capable(trans->rx_buffer) || ((((uint32_t)trans->rx_buffer) | (trans->length + 7) / 8) & (alignment - 1)))) { ESP_RETURN_ON_FALSE_ISR(trans->flags & SPI_SLAVE_TRANS_DMA_BUFFER_ALIGN_AUTO, ESP_ERR_INVALID_ARG, SPI_TAG, "RX buffer addr&len not align to %d, or not dma_capable", alignment); //if rxbuf in the desc not DMA-capable, or not align to "alignment", malloc a new one ESP_EARLY_LOGD(SPI_TAG, "Allocate RX buffer for DMA" ); buffer_byte_len = (buffer_byte_len + alignment - 1) & (~(alignment - 1)); // up align to "alignment" priv_trans->rx_buffer = heap_caps_aligned_alloc(alignment, buffer_byte_len, MALLOC_CAP_DMA); if (priv_trans->rx_buffer == NULL) { free (priv_trans->tx_buffer); return ESP_ERR_NO_MEM; } } #endif //SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer), "txdata not in DMA-capable memory", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_enabled == 0 || trans_desc->rx_buffer==NULL || (esp_ptr_dma_capable(trans_desc->rx_buffer) && esp_ptr_word_aligned(trans_desc->rx_buffer) && (trans_desc->length%4==0)), "rxdata not in DMA-capable memory or not WORD aligned", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->length <= spihost[host]->max_transfer_sz * 8, "data transfer > host maximum", ESP_ERR_INVALID_ARG); spi_slave_trans_priv_t priv_trans = {.trans = (spi_slave_transaction_t *)trans_desc}; SPI_CHECK(ESP_OK == spi_slave_setup_priv_trans(host, &priv_trans), "slave setup priv_trans failed", ESP_ERR_NO_MEM); r = xQueueSend(spihost[host]->trans_queue, (void *)&priv_trans, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; esp_intr_enable(spihost[host]->intr); return ESP_OK; } /** * @note * This API is used to reset SPI Slave transaction queue. After calling this function: * - The SPI Slave transaction queue will be reset. * * Therefore, this API shouldn't be called when the corresponding SPI Master is doing an SPI transaction. * * @note * We don't actually need to enter a critical section here. * SPI Slave ISR will only get triggered when its corresponding SPI Master's transaction is done. * As we don't expect this function to be called when its corresponding SPI Master is doing an SPI transaction, * so concurrent call to these registers won't happen * */ esp_err_t SPI_SLAVE_ATTR spi_slave_queue_reset(spi_host_device_t host) { SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); esp_intr_disable(spihost[host]->intr); spi_ll_set_int_stat(spihost[host]->hal.hw); spi_slave_trans_priv_t trans; while( uxQueueMessagesWaiting(spihost[host]->trans_queue)) { xQueueReceive(spihost[host]->trans_queue, &trans, 0); spi_slave_uninstall_priv_trans(host, &trans); } spihost[host]->cur_trans.trans = NULL; return ESP_OK; } esp_err_t SPI_SLAVE_ISR_ATTR spi_slave_queue_trans_isr(spi_host_device_t host, const spi_slave_transaction_t *trans_desc) { BaseType_t r; BaseType_t do_yield = pdFALSE; ESP_RETURN_ON_FALSE_ISR(is_valid_host(host), ESP_ERR_INVALID_ARG, SPI_TAG, "invalid host"); ESP_RETURN_ON_FALSE_ISR(spihost[host], ESP_ERR_INVALID_ARG, SPI_TAG, "host not slave"); ESP_RETURN_ON_FALSE_ISR(trans_desc->length <= spihost[host]->max_transfer_sz * 8, ESP_ERR_INVALID_ARG, SPI_TAG, "data transfer > host maximum"); if (spihost[host]->dma_enabled) { uint16_t alignment = spihost[host]->internal_mem_align_size; uint32_t buffer_byte_len = (trans_desc->length + 7) / 8; ESP_RETURN_ON_FALSE_ISR(\ (trans_desc->tx_buffer && \ esp_ptr_dma_capable(trans_desc->tx_buffer) && \ ((((uint32_t)trans_desc->tx_buffer) | buffer_byte_len) & (alignment - 1)) == 0), \ ESP_ERR_INVALID_ARG, SPI_TAG, "txdata addr & len not align to %d bytes or not dma_capable", alignment\ ); ESP_RETURN_ON_FALSE_ISR(\ (trans_desc->rx_buffer && \ esp_ptr_dma_capable(trans_desc->rx_buffer) && \ ((((uint32_t)trans_desc->rx_buffer) | buffer_byte_len) & (alignment - 1)) == 0), \ ESP_ERR_INVALID_ARG, SPI_TAG, "rxdata addr & len not align to %d bytes or not dma_capable", alignment\ ); } spi_slave_trans_priv_t priv_trans = { .trans = (spi_slave_transaction_t *)trans_desc, .tx_buffer = (void *)trans_desc->tx_buffer, .rx_buffer = trans_desc->rx_buffer, }; r = xQueueSendFromISR(spihost[host]->trans_queue, (void *)&priv_trans, &do_yield); if (!r) { return ESP_ERR_NO_MEM; } if (do_yield) { portYIELD_FROM_ISR(); } return ESP_OK; } esp_err_t SPI_SLAVE_ISR_ATTR spi_slave_queue_reset_isr(spi_host_device_t host) { ESP_RETURN_ON_FALSE_ISR(is_valid_host(host), ESP_ERR_INVALID_ARG, SPI_TAG, "invalid host"); ESP_RETURN_ON_FALSE_ISR(spihost[host], ESP_ERR_INVALID_ARG, SPI_TAG, "host not slave"); spi_slave_trans_priv_t trans; BaseType_t do_yield = pdFALSE; while( pdFALSE == xQueueIsQueueEmptyFromISR(spihost[host]->trans_queue)) { xQueueReceiveFromISR(spihost[host]->trans_queue, &trans, &do_yield); spi_slave_uninstall_priv_trans(host, &trans); } if (do_yield) { portYIELD_FROM_ISR(); } spihost[host]->cur_trans.trans = NULL; return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(is_valid_host(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); //if SPI_SLAVE_NO_RETURN_RESULT is set, ret_queue will always be empty SPI_CHECK(!(spihost[host]->cfg.flags & SPI_SLAVE_NO_RETURN_RESULT), "API not Supported!", ESP_ERR_NOT_SUPPORTED); spi_slave_trans_priv_t priv_trans; r = xQueueReceive(spihost[host]->ret_queue, (void *)&priv_trans, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; spi_slave_uninstall_priv_trans(host, &priv_trans); *trans_desc = priv_trans.trans; return ESP_OK; } esp_err_t SPI_SLAVE_ATTR spi_slave_transmit(spi_host_device_t host, spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { esp_err_t ret; spi_slave_transaction_t *ret_trans; //ToDo: check if any spi transfers in flight ret = spi_slave_queue_trans(host, trans_desc, ticks_to_wait); if (ret != ESP_OK) return ret; ret = spi_slave_get_trans_result(host, &ret_trans, ticks_to_wait); if (ret != ESP_OK) return ret; assert(ret_trans == trans_desc); return ESP_OK; } #if CONFIG_IDF_TARGET_ESP32 static void SPI_SLAVE_ISR_ATTR spi_slave_restart_after_dmareset(void *arg) { spi_slave_t *host = (spi_slave_t *)arg; esp_intr_enable(host->intr); } #endif //#if CONFIG_IDF_TARGET_ESP32 //This is run in interrupt context and apart from initialization and destruction, this is the only code //touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are //no muxes in this code. static void SPI_SLAVE_ISR_ATTR spi_intr(void *arg) { BaseType_t r; BaseType_t do_yield = pdFALSE; spi_slave_t *host = (spi_slave_t *)arg; spi_slave_hal_context_t *hal = &host->hal; assert(spi_slave_hal_usr_is_done(hal)); bool use_dma = host->dma_enabled; if (host->cur_trans.trans) { // When DMA is enabled, the slave rx dma suffers from unexpected transactions. Forbid reading until transaction ready. if (use_dma) freeze_cs(host); spi_slave_hal_store_result(hal); host->cur_trans.trans->trans_len = spi_slave_hal_get_rcv_bitlen(hal); #if CONFIG_IDF_TARGET_ESP32 //This workaround is only for esp32 if (spi_slave_hal_dma_need_reset(hal)) { //On ESP32, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_req_reset(host->tx_dma_chan, spi_slave_restart_after_dmareset, host); } #endif //#if CONFIG_IDF_TARGET_ESP32 #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE //invalidate here to let user access rx data in post_cb if possible if (use_dma && host->cur_trans.rx_buffer) { uint16_t alignment = host->internal_mem_align_size; uint32_t buffer_byte_len = (host->cur_trans.trans->length + 7) / 8; buffer_byte_len = (buffer_byte_len + alignment - 1) & (~(alignment - 1)); // invalidate priv_trans.buffer_to_rcv anyway, only user provide aligned buffer can rcv correct data in post_cb esp_err_t ret = esp_cache_msync((void *)host->cur_trans.rx_buffer, buffer_byte_len, ESP_CACHE_MSYNC_FLAG_DIR_M2C); assert(ret == ESP_OK); } #endif if (host->cfg.post_trans_cb) host->cfg.post_trans_cb(host->cur_trans.trans); if(!(host->cfg.flags & SPI_SLAVE_NO_RETURN_RESULT)) { xQueueSendFromISR(host->ret_queue, &host->cur_trans, &do_yield); } host->cur_trans.trans = NULL; } #if CONFIG_IDF_TARGET_ESP32 //This workaround is only for esp32 if (use_dma) { //On ESP32, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_idle(host->tx_dma_chan); if (spicommon_dmaworkaround_reset_in_progress()) { //We need to wait for the reset to complete. Disable int (will be re-enabled on reset callback) and exit isr. esp_intr_disable(host->intr); if (do_yield) portYIELD_FROM_ISR(); return; } } #endif //#if CONFIG_IDF_TARGET_ESP32 //Disable interrupt before checking to avoid concurrency issue. esp_intr_disable(host->intr); spi_slave_trans_priv_t priv_trans; //Grab next transaction r = xQueueReceiveFromISR(host->trans_queue, &priv_trans, &do_yield); if (r) { // sanity check assert(priv_trans.trans); //enable the interrupt again if there is packet to send esp_intr_enable(host->intr); //We have a transaction. Send it. host->cur_trans = priv_trans; hal->bitlen = priv_trans.trans->length; hal->rx_buffer = priv_trans.rx_buffer; hal->tx_buffer = priv_trans.tx_buffer; #if CONFIG_IDF_TARGET_ESP32 if (use_dma) { //This workaround is only for esp32 //On ESP32, actual_tx_dma_chan and actual_rx_dma_chan are always same spicommon_dmaworkaround_transfer_active(host->tx_dma_chan); } #endif //#if CONFIG_IDF_TARGET_ESP32 spi_slave_hal_prepare_data(hal); //The slave rx dma get disturbed by unexpected transaction. Only connect the CS when slave is ready. if (use_dma) { restore_cs(host); } //Kick off transfer spi_slave_hal_user_start(hal); if (host->cfg.post_setup_cb) host->cfg.post_setup_cb(priv_trans.trans); } if (do_yield) portYIELD_FROM_ISR(); }