/* * SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sdkconfig.h" #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_private/periph_ctrl.h" #include "esp_private/mspi_timing_tuning.h" #include "../esp_psram_impl.h" #include "hal/psram_ctrlr_ll.h" #include "hal/mspi_timing_tuning_ll.h" #include "clk_ctrl_os.h" // Reset and Clock Control registers are mixing with other peripherals, so we need to use a critical section #define PSRAM_RCC_ATOMIC() PERIPH_RCC_ATOMIC() #define AP_HEX_PSRAM_SYNC_READ 0x0000 #define AP_HEX_PSRAM_SYNC_WRITE 0x8080 #define AP_HEX_PSRAM_BURST_READ 0x2020 #define AP_HEX_PSRAM_BURST_WRITE 0xA0A0 #define AP_HEX_PSRAM_REG_READ 0x4040 #define AP_HEX_PSRAM_REG_WRITE 0xC0C0 #define AP_HEX_PSRAM_RD_CMD_BITLEN 16 #define AP_HEX_PSRAM_WR_CMD_BITLEN 16 #define AP_HEX_PSRAM_ADDR_BITLEN 32 #if CONFIG_SPIRAM_SPEED_250M #define AP_HEX_PSRAM_RD_DUMMY_BITLEN (2*(18-1)) #define AP_HEX_PSRAM_WR_DUMMY_BITLEN (2*(9-1)) #define AP_HEX_PSRAM_RD_LATENCY 6 #define AP_HEX_PSRAM_WR_LATENCY 3 #elif CONFIG_SPIRAM_SPEED_200M #define AP_HEX_PSRAM_RD_DUMMY_BITLEN (2*(14-1)) #define AP_HEX_PSRAM_WR_DUMMY_BITLEN (2*(7-1)) #define AP_HEX_PSRAM_RD_LATENCY 4 #define AP_HEX_PSRAM_WR_LATENCY 1 #else #define AP_HEX_PSRAM_RD_DUMMY_BITLEN (2*(10-1)) #define AP_HEX_PSRAM_WR_DUMMY_BITLEN (2*(5-1)) #define AP_HEX_PSRAM_RD_LATENCY 2 #define AP_HEX_PSRAM_WR_LATENCY 2 #endif #define AP_HEX_PSRAM_VENDOR_ID 0xD #define AP_HEX_PSRAM_CS_SETUP_TIME 4 #define AP_HEX_PSRAM_CS_HOLD_TIME 4 #define AP_HEX_PSRAM_CS_ECC_HOLD_TIME 4 #define AP_HEX_PSRAM_CS_HOLD_DELAY 3 #define AP_HEX_PSRAM_MPLL_DEFAULT_FREQ_MHZ 400 typedef struct { union { struct { uint8_t drive_str: 2; uint8_t read_latency: 3; uint8_t lt: 1; uint8_t rsvd6: 1; uint8_t tso: 1; }; uint8_t val; } mr0; union { struct { uint8_t vendor_id: 5; uint8_t rsvd0_2: 2; uint8_t ulp: 1; }; uint8_t val; } mr1; union { struct { uint8_t density: 3; uint8_t dev_id: 2; uint8_t kgd: 3; }; uint8_t val; } mr2; union { struct { uint8_t rsvd3_7: 4; uint8_t srf: 2; uint8_t rsvd0: 1; uint8_t rbx_en: 1; }; uint8_t val; } mr3; union { struct { uint8_t pasr: 3; uint8_t rf: 2; uint8_t wr_latency: 3; }; uint8_t val; } mr4; union { struct { uint8_t bl: 2; uint8_t bt: 1; uint8_t rbx: 1; uint8_t rsvd5: 2; uint8_t x16: 1; uint8_t rsvd7: 1; }; uint8_t val; } mr8; } hex_psram_mode_reg_t; static const char* TAG = "hex_psram"; static uint32_t s_psram_size; //this stands for physical psram size in bytes /** * Common psram transaction */ static void s_psram_common_transaction(uint32_t mspi_id, uint32_t cmd, uint32_t cmd_bitlen, uint32_t addr, uint32_t addr_bitlen, uint32_t dummy_bits, uint8_t* mosi_data, uint32_t mosi_bitlen, uint8_t* miso_data, uint32_t miso_bitlen, bool is_write_erase_operation) { psram_ctrlr_ll_common_transaction(mspi_id, cmd, cmd_bitlen, addr, addr_bitlen, dummy_bits, mosi_data, mosi_bitlen, miso_data, miso_bitlen, is_write_erase_operation); } /** * Initialise mode registers of the PSRAM */ static void s_init_psram_mode_reg(int spi_num, hex_psram_mode_reg_t *mode_reg_config) { int cmd_len = 16; uint32_t addr = 0x0; int addr_bit_len = 32; int dummy = AP_HEX_PSRAM_RD_DUMMY_BITLEN; hex_psram_mode_reg_t mode_reg = {0}; int data_bit_len = 16; //read MR0 and MR1 s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, addr, addr_bit_len, dummy, NULL, 0, &mode_reg.mr0.val, data_bit_len, false); addr = 0x4; //read MR4 and MR8 s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, addr, addr_bit_len, dummy, NULL, 0, &mode_reg.mr4.val, data_bit_len, false); //modify mode_reg.mr0.lt = mode_reg_config->mr0.lt; mode_reg.mr0.read_latency = mode_reg_config->mr0.read_latency; mode_reg.mr0.drive_str = mode_reg_config->mr0.drive_str; mode_reg.mr4.wr_latency = mode_reg_config->mr4.wr_latency; //write addr = 0x0; s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_WRITE, cmd_len, addr, addr_bit_len, 0, &mode_reg.mr0.val, 16, NULL, 0, false); addr = 0x4; s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_WRITE, cmd_len, addr, addr_bit_len, 0, &mode_reg.mr4.val, 16, NULL, 0, false); //read addr = 0x8; data_bit_len = 8; s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, addr, addr_bit_len, dummy, NULL, 0, &mode_reg.mr8.val, data_bit_len, false); //modify mode_reg.mr8.bt = mode_reg_config->mr8.bt; mode_reg.mr8.bl = mode_reg_config->mr8.bl; mode_reg.mr8.rbx = mode_reg_config->mr8.rbx; mode_reg.mr8.x16 = mode_reg_config->mr8.x16; //write s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_WRITE, cmd_len, addr, addr_bit_len, 0, &mode_reg.mr8.val, 16, NULL, 0, false); } static void s_get_psram_mode_reg(int spi_num, hex_psram_mode_reg_t *out_reg) { int cmd_len = 16; int addr_bit_len = 32; int dummy = AP_HEX_PSRAM_RD_DUMMY_BITLEN; int data_bit_len = 16; //Read MR0~1 register s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, 0x0, addr_bit_len, dummy, NULL, 0, &out_reg->mr0.val, data_bit_len, false); //Read MR2~3 register s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, 0x2, addr_bit_len, dummy, NULL, 0, &out_reg->mr2.val, data_bit_len, false); data_bit_len = 8; //Read MR4 register s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, 0x4, addr_bit_len, dummy, NULL, 0, &out_reg->mr4.val, data_bit_len, false); //Read MR8 register s_psram_common_transaction(spi_num, AP_HEX_PSRAM_REG_READ, cmd_len, 0x8, addr_bit_len, dummy, NULL, 0, &out_reg->mr8.val, data_bit_len, false); } static void s_print_psram_info(hex_psram_mode_reg_t *reg_val) { ESP_EARLY_LOGI(TAG, "vendor id : 0x%02x (%s)", reg_val->mr1.vendor_id, reg_val->mr1.vendor_id == 0x0d ? "AP" : "UNKNOWN"); ESP_EARLY_LOGI(TAG, "Latency : 0x%02x (%s)", reg_val->mr0.lt, reg_val->mr0.lt == 1 ? "Fixed" : "Variable"); ESP_EARLY_LOGI(TAG, "DriveStr. : 0x%02x (%d Ohm)", reg_val->mr0.drive_str, reg_val->mr0.drive_str < 2 ? 25 * (reg_val->mr0.drive_str + 1) : 100 * (reg_val->mr0.drive_str - 1)); ESP_EARLY_LOGI(TAG, "dev id : 0x%02x (generation %d)", reg_val->mr2.dev_id, reg_val->mr2.dev_id + 1); ESP_EARLY_LOGI(TAG, "density : 0x%02x (%d Mbit)", reg_val->mr2.density, reg_val->mr2.density == 0x1 ? 32 : reg_val->mr2.density == 0X3 ? 64 : reg_val->mr2.density == 0x5 ? 128 : reg_val->mr2.density == 0x7 ? 256 : 0); ESP_EARLY_LOGI(TAG, "good-die : 0x%02x (%s)", reg_val->mr2.kgd, reg_val->mr2.kgd == 6 ? "Pass" : "Fail"); ESP_EARLY_LOGI(TAG, "SRF : 0x%02x (%s Refresh)", reg_val->mr3.srf, reg_val->mr3.srf == 0x1 ? "Fast" : "Slow"); ESP_EARLY_LOGI(TAG, "BurstType : 0x%02x (%s Wrap)", reg_val->mr8.bt, reg_val->mr8.bt == 1 && reg_val->mr8.bl != 3 ? "Hybrid" : ""); ESP_EARLY_LOGI(TAG, "BurstLen : 0x%02x (%d Byte)", reg_val->mr8.bl, reg_val->mr8.bl == 0x00 ? 16 : reg_val->mr8.bl == 0x01 ? 32 : reg_val->mr8.bl == 0x10 ? 64 : 2048); ESP_EARLY_LOGI(TAG, "BitMode : 0x%02x (%s Mode)", reg_val->mr8.x16, reg_val->mr8.x16 == 1 ? "X16" : "X8"); ESP_EARLY_LOGI(TAG, "Readlatency : 0x%02x (%d cycles@%s)", reg_val->mr0.read_latency, reg_val->mr0.read_latency * 2 + 6, reg_val->mr0.lt == 1 ? "Fixed" : "Variable"); ESP_EARLY_LOGI(TAG, "DriveStrength: 0x%02x (1/%d)", reg_val->mr0.drive_str, reg_val->mr0.drive_str == 0x00 ? 1 : reg_val->mr0.drive_str == 0x01 ? 2 : reg_val->mr0.drive_str == 0x02 ? 4 : 8); } static void s_config_mspi_for_psram(void) { //Config Write CMD phase for SPI0 to access PSRAM psram_ctrlr_ll_set_wr_cmd(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_WR_CMD_BITLEN, AP_HEX_PSRAM_SYNC_WRITE); //Config Read CMD phase for SPI0 to access PSRAM psram_ctrlr_ll_set_rd_cmd(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_RD_CMD_BITLEN, AP_HEX_PSRAM_SYNC_READ); //Config ADDR phase psram_ctrlr_ll_set_addr_bitlen(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_ADDR_BITLEN); psram_ctrlr_ll_enable_4byte_addr(PSRAM_CTRLR_LL_MSPI_ID_2, true); //Config RD/WR Dummy phase psram_ctrlr_ll_set_wr_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_WR_DUMMY_BITLEN); psram_ctrlr_ll_set_rd_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_RD_DUMMY_BITLEN); psram_ctrlr_ll_enable_variable_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_wr_dummy_level_control(PSRAM_CTRLR_LL_MSPI_ID_2, true); //DDR psram_ctrlr_ll_enable_ddr_wr_data_swap(PSRAM_CTRLR_LL_MSPI_ID_2, false); psram_ctrlr_ll_enable_ddr_rd_data_swap(PSRAM_CTRLR_LL_MSPI_ID_2, false); psram_ctrlr_ll_enable_ddr_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true); //Line mode psram_ctrlr_ll_enable_oct_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_hex_data_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, true); #if CONFIG_SPIRAM_USE_8LINE_MODE psram_ctrlr_ll_enable_hex_data_line_mode(PSRAM_CTRLR_LL_MSPI_ID_2, false); #endif //AXI psram_ctrlr_ll_enable_axi_access(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_wr_splice(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_rd_splice(PSRAM_CTRLR_LL_MSPI_ID_2, true); } static void s_set_psram_cs_timing(void) { psram_ctrlr_ll_set_cs_setup(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_SETUP_TIME); psram_ctrlr_ll_set_cs_hold(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_HOLD_TIME); psram_ctrlr_ll_set_cs_hold_delay(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_HOLD_DELAY); #if CONFIG_SPIRAM_ECC_ENABLE psram_ctrlr_ll_set_cs_hold_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_CS_ECC_HOLD_TIME); #endif } #if CONFIG_SPIRAM_ECC_ENABLE static void s_mspi_ecc_show_info(void) { for (int i = 0; i < PSRAM_CTRLR_LL_PMS_REGION_NUMS; i++) { ESP_EARLY_LOGV(TAG, "region[%d] addr: 0x%08x", i, psram_ctrlr_ll_get_pms_region_start_addr(PSRAM_CTRLR_LL_MSPI_ID_2, i)); ESP_EARLY_LOGV(TAG, "region[%d] size: 0x%08x", i, psram_ctrlr_ll_get_pms_region_size(PSRAM_CTRLR_LL_MSPI_ID_2, i)); } uint32_t page_size = psram_ctrlr_ll_get_page_size(PSRAM_CTRLR_LL_MSPI_ID_2); ESP_EARLY_LOGV(TAG, "ECC page size: %d", page_size); } /** * Enable error correcting code feature * * Can add an input parameter for selecting ECC mode if needed */ static void s_configure_psram_ecc(void) { psram_ctrlr_ll_enable_16to18_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_skip_page_corner(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_split_trans(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_set_page_size(PSRAM_CTRLR_LL_MSPI_ID_2, 2048); psram_ctrlr_ll_enable_ecc_addr_conversion(PSRAM_CTRLR_LL_MSPI_ID_2, 2048); /** * Enable ECC region 0 (ACE0) * Default: ACE0 range: 0 ~ 256MB * Current Hex PSRAM is 8MB, ACE0 is enough */ psram_ctrlr_ll_enable_pms_region_ecc(PSRAM_CTRLR_LL_MSPI_ID_2, 0, true); ESP_EARLY_LOGI(TAG, "ECC is enabled"); s_mspi_ecc_show_info(); } #endif //#if CONFIG_SPIRAM_ECC_ENABLE esp_err_t esp_psram_impl_enable(void) { #if SOC_CLK_MPLL_SUPPORTED periph_rtc_mpll_acquire(); periph_rtc_mpll_freq_set(AP_HEX_PSRAM_MPLL_DEFAULT_FREQ_MHZ * 1000000, NULL); #endif PSRAM_RCC_ATOMIC() { psram_ctrlr_ll_enable_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_reset_module_clock(PSRAM_CTRLR_LL_MSPI_ID_2); psram_ctrlr_ll_select_clk_source(PSRAM_CTRLR_LL_MSPI_ID_2, PSRAM_CLK_SRC_MPLL); psram_ctrlr_ll_select_clk_source(PSRAM_CTRLR_LL_MSPI_ID_3, PSRAM_CLK_SRC_MPLL); } mspi_timing_ll_pin_drv_set(2); mspi_timing_ll_enable_dqs(true); s_set_psram_cs_timing(); #if CONFIG_SPIRAM_ECC_ENABLE s_configure_psram_ecc(); #endif //enter MSPI slow mode to init PSRAM device registers psram_ctrlr_ll_set_bus_clock(PSRAM_CTRLR_LL_MSPI_ID_2, AP_HEX_PSRAM_MPLL_DEFAULT_FREQ_MHZ / CONFIG_SPIRAM_SPEED); psram_ctrlr_ll_set_bus_clock(PSRAM_CTRLR_LL_MSPI_ID_3, AP_HEX_PSRAM_MPLL_DEFAULT_FREQ_MHZ / CONFIG_SPIRAM_SPEED); psram_ctrlr_ll_enable_dll(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_dll(PSRAM_CTRLR_LL_MSPI_ID_3, true); static hex_psram_mode_reg_t mode_reg = {}; mode_reg.mr0.lt = 1; mode_reg.mr0.read_latency = AP_HEX_PSRAM_RD_LATENCY; mode_reg.mr0.drive_str = 0; mode_reg.mr4.wr_latency = AP_HEX_PSRAM_WR_LATENCY; mode_reg.mr8.bl = 3; mode_reg.mr8.bt = 0; mode_reg.mr8.rbx = 1; mode_reg.mr8.x16 = 1; #if CONFIG_SPIRAM_USE_8LINE_MODE mode_reg.mr8.x16 = 0; #endif s_init_psram_mode_reg(PSRAM_CTRLR_LL_MSPI_ID_3, &mode_reg); //Print PSRAM info s_get_psram_mode_reg(PSRAM_CTRLR_LL_MSPI_ID_3, &mode_reg); if (mode_reg.mr1.vendor_id != AP_HEX_PSRAM_VENDOR_ID) { ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x, PSRAM chip not found or not supported, or wrong PSRAM line mode", mode_reg.mr1.vendor_id); return ESP_ERR_NOT_SUPPORTED; } s_print_psram_info(&mode_reg); s_psram_size = mode_reg.mr2.density == 0x1 ? PSRAM_SIZE_4MB : mode_reg.mr2.density == 0X3 ? PSRAM_SIZE_8MB : mode_reg.mr2.density == 0x5 ? PSRAM_SIZE_16MB : mode_reg.mr2.density == 0x7 ? PSRAM_SIZE_32MB : mode_reg.mr2.density == 0x6 ? PSRAM_SIZE_64MB : 0; #if CONFIG_SPIRAM_SPEED_250M if (mode_reg.mr2.density == 0x7) { ESP_EARLY_LOGE(TAG, "PSRAM Not support 250MHz speed"); return ESP_ERR_NOT_SUPPORTED; } #endif s_config_mspi_for_psram(); mspi_timing_psram_tuning(); psram_ctrlr_ll_enable_variable_dummy(PSRAM_CTRLR_LL_MSPI_ID_2, true); psram_ctrlr_ll_enable_variable_dummy(PSRAM_CTRLR_LL_MSPI_ID_3, true); return ESP_OK; } uint8_t esp_psram_impl_get_cs_io(void) { ESP_EARLY_LOGI(TAG, "psram CS IO is dedicated"); return -1; } esp_err_t esp_psram_impl_get_physical_size(uint32_t *out_size_bytes) { if (!out_size_bytes) { return ESP_ERR_INVALID_ARG; } *out_size_bytes = s_psram_size; return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE); } /** * This function is to get the available physical psram size in bytes. * If ECC is enabled, available PSRAM size will be 7/8 times its physical size. */ esp_err_t esp_psram_impl_get_available_size(uint32_t *out_size_bytes) { if (!out_size_bytes) { return ESP_ERR_INVALID_ARG; } #if CONFIG_SPIRAM_ECC_ENABLE *out_size_bytes = s_psram_size * 7 / 8; #else *out_size_bytes = s_psram_size; #endif return (s_psram_size ? ESP_OK : ESP_ERR_INVALID_STATE); }