/* * SPDX-FileCopyrightText: 2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ /** * This file provides an abstract OS API for entering and exiting critical sections. * It furthermore provides macros to define and initialize an optional spinlock * if the used chip is a multi-core chip. If a single-core chip is used, just disabling interrupts * is sufficient to guarantee consecutive, non-interrupted execution of a critical section. * Hence, the spinlock is unneccessary and will be automatically ommitted by the macros. */ #pragma once #include "freertos/portmacro.h" #include "spinlock.h" #ifdef __cplusplus extern "C" { #endif #if CONFIG_FREERTOS_UNICORE && !CONFIG_IDF_TARGET_ESP32S2 /** * This macro also helps users switching between spinlock declarations/definitions for multi-/single core environments * if the macros below aren't sufficient. */ #define OS_SPINLOCK 0 #else #define OS_SPINLOCK 1 #endif #if OS_SPINLOCK == 1 typedef spinlock_t esp_os_spinlock_t; #endif /** * Define and initialize a static (internal linking) lock for entering critical sections. * * Use this when all the critical sections are local inside a file. * The lock will only be defined if built for a multi-core system, otherwise it is unnecessary. * * @note When using this macro, the critical section macros esp_os_enter_critical* and esp_os_exit_critical* * MUST be used, otherwise normal functions would be passed an undefined variable when build for single-core systems. * * @param lock_name Variable name of the lock. This will later be used to reference the declared lock. * @param optional_qualifiers Qualifiers such as DRAM_ATTR and other attributes. Can be omitted if no qualifiers are * required. * * Example usage: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * ... * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define DEFINE_CRIT_SECTION_LOCK_STATIC(lock_name, optional_qualifiers...) static optional_qualifiers esp_os_spinlock_t lock_name = SPINLOCK_INITIALIZER #else #define DEFINE_CRIT_SECTION_LOCK_STATIC(lock_name, optional_qualifiers...) #endif /** * Define and initialize a non-static (external linking) lock for entering critical sections. * * Locks defined by this macro can be linked among object files but this rather exceptional. * Prefer the static lock definition whenever possible. * The lock will only be defined if built for a multi-core system, otherwise it is unnecessary. * * @note When using this macro, the critical section macros esp_os_enter_critical* and esp_os_exit_critical* * MUST be used, otherwise normal functions would be passed an undefined variable when build for single-core systems. * * @param lock_name Variable name of the lock. This will later be used to reference the declared lock. * @param optional_qualifiers Qualifiers such as DRAM_ATTR and other attributes. Can be omitted if no qualifiers are * required. * * Example usage: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK(my_lock); // will have external linking (non-static) * ... * esp_os_enter_critical(&my_lock); * ... * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define DEFINE_CRIT_SECTION_LOCK(lock_name, optional_qualifiers...) optional_qualifiers esp_os_spinlock_t lock_name = SPINLOCK_INITIALIZER #else #define DEFINE_CRIT_SECTION_LOCK(lock_name, optional_qualifiers...) #endif /** * @brief This macro initializes a critical section lock at runtime. * * This macro basically creates a member of the initialization list, including the trailing comma. * If the lock is unnecessary because the architecture is single-core, this macro will not do anything. * This is incompatible with a lock created by DEFINE_CRIT_SECTION_LOCK_STATIC from above. * * @param lock_name Pointer to the lock. * * @note When using this macro, the critical section macros esp_os_enter_critical* and esp_os_exit_critical* * MUST be used, otherwise normal functions would be passed an undefined variable when build for single-core * systems. * * Example usage: * @code{c} * ... * #include "os/critical_section.h" * ... * typedef struct protected_struct_t { * int member1; * DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(my_lock) * int another_member; * }; * ... * protected_struct_t my_protected; * INIT_CRIT_SECTION_LOCK_IN_STRUCT(&(my_protected.my_lock)); * }; * @endcode */ #if OS_SPINLOCK == 1 #define INIT_CRIT_SECTION_LOCK_RUNTIME(lock_name) spinlock_initialize(lock_name) #else #define INIT_CRIT_SECTION_LOCK_RUNTIME(lock_name) #endif /** * @brief This macro declares a critical section lock as a member of a struct. * * The critical section lock member is only declared if built for multi-core systems, otherwise it is omitted. * * @note When using this macro, the critical section macros esp_os_enter_critical* and esp_os_exit_critical* * MUST be used, otherwise normal functions would be passed an undefined variable when build for single-core * systems. * @note Do NOT add any semicolon after declaring the member with this macro. * The trailing semicolon is included in the macro, otherwise -Wpedantic would complain about * superfluous ";" if OS_SPINLOCK == 0. * * Example usage: * @code{c} * ... * #include "os/critical_section.h" * ... * typedef struct protected_struct_t { * int member1; * DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(my_lock) // no semicolon! * int another_member; * }; * @endcode */ #if OS_SPINLOCK == 1 #define DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(lock_name) esp_os_spinlock_t lock_name; #else #define DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(lock_name) #endif /** * @brief This macro initializes a critical section lock as a member of a struct when using an list initialization. * It has to be used together with \c DECLARE_CRIT_SECTION_LOCK_IN_STRUCT() to work. * * This macro basically creates a member of the initialization list, including the trailing comma. * If the lock is unnecessary because the architecture is single-core, this macro will not do anything. * This means that if \c lock_name is still a member of the struct, \c lock_name will be uninitialized. * Hence, this macro has to be used together with \c DECLARE_CRIT_SECTION_LOCK_IN_STRUCT() to correctly to declare * or omit the struct member \c lock_name. * * @param lock_name The field name of the lock inside the struct. * * @note When using this macro, the critical section macros esp_os_enter_critical* and esp_os_exit_critical* * MUST be used, otherwise normal functions would be passed an undefined variable when build for single-core * systems. * @note Do NOT add any comma in the initializer list after using this macro. * * Example usage: * @code{c} * ... * #include "os/critical_section.h" * ... * typedef struct protected_struct_t { * int member1; * DECLARE_CRIT_SECTION_LOCK_IN_STRUCT(my_lock) * int another_member; * }; * ... * protected_struct_t my_protected = { * .member1 = 0, * INIT_CRIT_SECTION_LOCK_IN_STRUCT(my_lock) // no comma! * another_member = 47, * }; * @endcode */ #if OS_SPINLOCK == 1 #define INIT_CRIT_SECTION_LOCK_IN_STRUCT(lock_name) .lock_name = portMUX_INITIALIZER_UNLOCKED, #else #define INIT_CRIT_SECTION_LOCK_IN_STRUCT(lock_name) #endif /** * @brief Enter a critical section, i.e., a section that will not be interrupted by any other task or interrupt. * * On multi-core systems, this will disable interrupts and take the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are disabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_enter_critical(lock) portENTER_CRITICAL(lock) #else #define esp_os_enter_critical(lock) vPortEnterCritical() #endif /** * @brief Exit a critical section. * * On multi-core systems, this will enable interrupts and release the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are enabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_exit_critical(lock) portEXIT_CRITICAL(lock) #else #define esp_os_exit_critical(lock) vPortExitCritical() #endif /** * @brief Enter a critical section while from ISR. * * On multi-core systems, this will disable interrupts and take the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are disabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_enter_critical_isr(lock) portENTER_CRITICAL_ISR(lock) #else #define esp_os_enter_critical_isr(lock) vPortEnterCritical() #endif /** * @brief Exit a critical section after entering from ISR. * * On multi-core systems, this will enable interrupts and release the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are enabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_exit_critical_isr(lock) portEXIT_CRITICAL_ISR(lock) #else #define esp_os_exit_critical_isr(lock) vPortExitCritical() #endif /** * @brief Enter a critical section from normal task or ISR. This macro will check if the current CPU is processing * an ISR or not and enter the critical section accordingly. * * On multi-core systems, this will disable interrupts and take the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are disabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_enter_critical_safe(lock) portENTER_CRITICAL_SAFE(lock) #else #define esp_os_enter_critical_safe(lock) vPortEnterCritical() #endif /** * @brief Exit a critical section after entering via esp_os_enter_critical_safe. * * On multi-core systems, this will enable interrupts and release the spinlock \c lock. On single core systems, a * spinlock is unncessary, hence \c lock is ignored and interrupts are enabled only. * * @note This macro MUST be used together with any of the initialization macros, e.g. * DEFINE_CRIT_SECTION_LOCK_STATIC. If not, there may be unused variables. * * @param lock Pointer to the critical section lock. Ignored if build for single core system. * * Example usage with static locks: * @code{c} * ... * #include "os/critical_section.h" * ... * DEFINE_CRIT_SECTION_LOCK_STATIC(my_lock); // will have internal linking (static) * ... * esp_os_enter_critical(&my_lock); * // code inside critical section * esp_os_exit_critical(&my_lock); * @endcode */ #if OS_SPINLOCK == 1 #define esp_os_exit_critical_safe(lock) portEXIT_CRITICAL_SAFE(lock) #else #define esp_os_exit_critical_safe(lock) vPortExitCritical() #endif #ifdef __cplusplus } #endif