/* * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include "soc/mmu.h" #include "sdkconfig.h" #include "esp_attr.h" #include "esp_spi_flash.h" #include "esp_flash_encrypt.h" #include "esp_log.h" #include "cache_utils.h" #include "hal/mmu_ll.h" #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #include "esp32/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/cache.h" #include "soc/extmem_reg.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/cache.h" #include "soc/extmem_reg.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32H2 #include "esp32h2/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32C2 #include "esp32c2/rom/cache.h" #endif #if CONFIG_SPIRAM #include "esp_private/esp_psram_extram.h" #include "esp_private/mmu.h" #endif #ifndef NDEBUG // Enable built-in checks in queue.h in debug builds #define INVARIANTS #endif #include "sys/queue.h" #define IROM0_PAGES_NUM (SOC_MMU_IROM0_PAGES_END - SOC_MMU_IROM0_PAGES_START) #define DROM0_PAGES_NUM (SOC_MMU_DROM0_PAGES_END - SOC_MMU_DROM0_PAGES_START) #define PAGES_LIMIT ((SOC_MMU_IROM0_PAGES_END > SOC_MMU_DROM0_PAGES_END) ? SOC_MMU_IROM0_PAGES_END:SOC_MMU_DROM0_PAGES_END) #define INVALID_PHY_PAGE(page_size) ((page_size) - 1) #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS extern int _instruction_reserved_start; extern int _instruction_reserved_end; #endif #if CONFIG_SPIRAM_RODATA extern int _rodata_reserved_start; extern int _rodata_reserved_end; #endif #if !CONFIG_SPI_FLASH_ROM_IMPL typedef struct mmap_entry_{ uint32_t handle; int page; int count; LIST_ENTRY(mmap_entry_) entries; } mmap_entry_t; static LIST_HEAD(mmap_entries_head, mmap_entry_) s_mmap_entries_head = LIST_HEAD_INITIALIZER(s_mmap_entries_head); static uint8_t s_mmap_page_refcnt[SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION] = {0}; static uint32_t s_mmap_last_handle = 0; static void IRAM_ATTR spi_flash_mmap_init(void) { if (s_mmap_page_refcnt[SOC_MMU_DROM0_PAGES_START] != 0) { return; /* mmap data already initialised */ } for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) { uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i); #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i); if (entry_pro != entry_app) { // clean up entries used by boot loader mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i); } #endif bool entry_pro_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i); if (!entry_pro_invalid && (i == SOC_MMU_DROM0_PAGES_START || i == SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE || entry_pro != 0)) { s_mmap_page_refcnt[i] = 1; } else { mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i); #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i); #endif } } } static void IRAM_ATTR get_mmu_region(spi_flash_mmap_memory_t memory, int* out_begin, int* out_size,uint32_t* region_addr) { if (memory == SPI_FLASH_MMAP_DATA) { // Vaddr0 *out_begin = SOC_MMU_DROM0_PAGES_START; *out_size = DROM0_PAGES_NUM; *region_addr = SOC_MMU_VADDR0_START_ADDR; } else { // only part of VAddr1 is usable, so adjust for that *out_begin = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE; *out_size = SOC_MMU_IROM0_PAGES_END - *out_begin; *region_addr = SOC_MMU_VADDR1_FIRST_USABLE_ADDR; } } esp_err_t IRAM_ATTR spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret; if (src_addr & INVALID_PHY_PAGE(CONFIG_MMU_PAGE_SIZE)) { return ESP_ERR_INVALID_ARG; } if ((src_addr + size) > spi_flash_get_chip_size()) { return ESP_ERR_INVALID_ARG; } // region which should be mapped int phys_page = src_addr / SPI_FLASH_MMU_PAGE_SIZE; int page_count = (size + SPI_FLASH_MMU_PAGE_SIZE - 1) / SPI_FLASH_MMU_PAGE_SIZE; // prepare a linear pages array to feed into spi_flash_mmap_pages int *pages = heap_caps_malloc(sizeof(int)*page_count, MALLOC_CAP_INTERNAL); if (pages == NULL) { return ESP_ERR_NO_MEM; } for (int i = 0; i < page_count; i++) { pages[i] = (phys_page+i); } ret = spi_flash_mmap_pages(pages, page_count, memory, out_ptr, out_handle); free(pages); return ret; } esp_err_t IRAM_ATTR spi_flash_mmap_pages(const int *pages, size_t page_count, spi_flash_mmap_memory_t memory, const void** out_ptr, spi_flash_mmap_handle_t* out_handle) { esp_err_t ret; const void* temp_ptr = *out_ptr = NULL; spi_flash_mmap_handle_t temp_handle = *out_handle = (spi_flash_mmap_handle_t)NULL; bool need_flush = false; if (!page_count) { return ESP_ERR_INVALID_ARG; } if (!esp_ptr_internal(pages)) { return ESP_ERR_INVALID_ARG; } for (int i = 0; i < page_count; i++) { if (pages[i] < 0 || pages[i]*SPI_FLASH_MMU_PAGE_SIZE >= spi_flash_get_chip_size()) { return ESP_ERR_INVALID_ARG; } } mmap_entry_t* new_entry = (mmap_entry_t*) heap_caps_malloc(sizeof(mmap_entry_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (new_entry == 0) { return ESP_ERR_NO_MEM; } spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); // figure out the memory region where we should look for pages int region_begin; // first page to check int region_size; // number of pages to check uint32_t region_addr; // base address of memory region get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr); if (region_size < page_count) { spi_flash_enable_interrupts_caches_and_other_cpu(); return ESP_ERR_NO_MEM; } // The following part searches for a range of MMU entries which can be used. // Algorithm is essentially naïve strstr algorithm, except that unused MMU // entries are treated as wildcards. int start; // the " + 1" is a fix when loop the MMU table pages, because the last MMU page // is valid as well if it have not been used int end = region_begin + region_size - page_count + 1; for (start = region_begin; start < end; ++start) { int pageno = 0; int pos; for (pos = start; pos < start + page_count; ++pos, ++pageno) { int table_val = (int) mmu_ll_read_entry(MMU_TABLE_CORE0, pos); uint8_t refcnt = s_mmap_page_refcnt[pos]; if (refcnt != 0 && table_val != SOC_MMU_PAGE_IN_FLASH(pages[pageno])) { break; } } // whole mapping range matched, bail out if (pos - start == page_count) { break; } } // checked all the region(s) and haven't found anything? if (start == end) { ret = ESP_ERR_NO_MEM; } else { // set up mapping using pages uint32_t pageno = 0; for (int i = start; i != start + page_count; ++i, ++pageno) { // sanity check: we won't reconfigure entries with non-zero reference count uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i); #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 uint32_t entry_app = mmu_ll_read_entry(MMU_TABLE_CORE1, i); #endif assert(s_mmap_page_refcnt[i] == 0 || (entry_pro == SOC_MMU_PAGE_IN_FLASH(pages[pageno]) #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 && entry_app == SOC_MMU_PAGE_IN_FLASH(pages[pageno]) #endif )); if (s_mmap_page_refcnt[i] == 0) { if (entry_pro != SOC_MMU_PAGE_IN_FLASH(pages[pageno]) #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 || entry_app != SOC_MMU_PAGE_IN_FLASH(pages[pageno]) #endif ) { mmu_ll_write_entry(MMU_TABLE_CORE0, i, pages[pageno], 0); #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 mmu_ll_write_entry(MMU_TABLE_CORE1, i, pages[pageno], 0); #endif #if !CONFIG_IDF_TARGET_ESP32 Cache_Invalidate_Addr(region_addr + (i - region_begin) * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMU_PAGE_SIZE); #endif need_flush = true; } } ++s_mmap_page_refcnt[i]; } LIST_INSERT_HEAD(&s_mmap_entries_head, new_entry, entries); new_entry->page = start; new_entry->count = page_count; new_entry->handle = ++s_mmap_last_handle; temp_handle = new_entry->handle; temp_ptr = (void*) (region_addr + (start - region_begin) * SPI_FLASH_MMU_PAGE_SIZE); ret = ESP_OK; } /* This is a temporary fix for an issue where some cache reads may see stale data. Working on a long term fix that doesn't require invalidating entire cache. */ if (need_flush) { #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM esp_psram_extram_writeback_cache(); #endif // CONFIG_SPIRAM Cache_Flush(0); #if !CONFIG_FREERTOS_UNICORE Cache_Flush(1); #endif // !CONFIG_FREERTOS_UNICORE #endif // CONFIG_IDF_TARGET_ESP32 } spi_flash_enable_interrupts_caches_and_other_cpu(); if (temp_ptr == NULL) { free(new_entry); } *out_ptr = temp_ptr; *out_handle = temp_handle; return ret; } void IRAM_ATTR spi_flash_munmap(spi_flash_mmap_handle_t handle) { spi_flash_disable_interrupts_caches_and_other_cpu(); mmap_entry_t* it; // look for handle in linked list for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) { if (it->handle == handle) { // for each page, decrement reference counter // if reference count is zero, disable MMU table entry to // facilitate debugging of use-after-free conditions for (int i = it->page; i < it->page + it->count; ++i) { assert(s_mmap_page_refcnt[i] > 0); if (--s_mmap_page_refcnt[i] == 0) { mmu_ll_set_entry_invalid(MMU_TABLE_CORE0, i); #if !CONFIG_FREERTOS_UNICORE && CONFIG_IDF_TARGET_ESP32 mmu_ll_set_entry_invalid(MMU_TABLE_CORE1, i); #endif } } LIST_REMOVE(it, entries); break; } } spi_flash_enable_interrupts_caches_and_other_cpu(); if (it == NULL) { assert(0 && "invalid handle, or handle already unmapped"); } free(it); } static void IRAM_ATTR NOINLINE_ATTR spi_flash_protected_mmap_init(void) { spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); spi_flash_enable_interrupts_caches_and_other_cpu(); } static uint32_t IRAM_ATTR NOINLINE_ATTR spi_flash_protected_read_mmu_entry(int index) { uint32_t value; spi_flash_disable_interrupts_caches_and_other_cpu(); value = mmu_ll_read_entry(MMU_TABLE_CORE0, index); spi_flash_enable_interrupts_caches_and_other_cpu(); return value; } void spi_flash_mmap_dump(void) { spi_flash_protected_mmap_init(); mmap_entry_t* it; for (it = LIST_FIRST(&s_mmap_entries_head); it != NULL; it = LIST_NEXT(it, entries)) { printf("handle=%d page=%d count=%d\n", it->handle, it->page, it->count); } for (int i = 0; i < SOC_MMU_REGIONS_COUNT * SOC_MMU_PAGES_PER_REGION; ++i) { if (s_mmap_page_refcnt[i] != 0) { uint32_t paddr = spi_flash_protected_read_mmu_entry(i); printf("page %d: refcnt=%d paddr=%d\n", i, (int) s_mmap_page_refcnt[i], paddr); } } } uint32_t IRAM_ATTR spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory) { spi_flash_disable_interrupts_caches_and_other_cpu(); spi_flash_mmap_init(); int count = 0; int region_begin; // first page to check int region_size; // number of pages to check uint32_t region_addr; // base address of memory region get_mmu_region(memory,®ion_begin,®ion_size,®ion_addr); for (int i = region_begin; i < region_begin + region_size; ++i) { bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, i); if (s_mmap_page_refcnt[i] == 0 && entry_is_invalid) { count++; } } spi_flash_enable_interrupts_caches_and_other_cpu(); return count; } size_t spi_flash_cache2phys(const void *cached) { intptr_t c = (intptr_t)cached; size_t cache_page; int offset = 0; if (c >= SOC_MMU_VADDR1_START_ADDR && c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) { /* IRAM address, doesn't map to flash */ return SPI_FLASH_CACHE2PHYS_FAIL; } if (c < SOC_MMU_VADDR1_FIRST_USABLE_ADDR) { /* expect cache is in DROM */ cache_page = (c - SOC_MMU_VADDR0_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_DROM0_PAGES_START; #if CONFIG_SPIRAM_RODATA if (c >= (uint32_t)&_rodata_reserved_start && c <= (uint32_t)&_rodata_reserved_end) { offset = rodata_flash2spiram_offset(); } #endif } else { /* expect cache is in IROM */ cache_page = (c - SOC_MMU_VADDR1_START_ADDR) / SPI_FLASH_MMU_PAGE_SIZE + SOC_MMU_IROM0_PAGES_START; #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS if (c >= (uint32_t)&_instruction_reserved_start && c <= (uint32_t)&_instruction_reserved_end) { offset = instruction_flash2spiram_offset(); } #endif } if (cache_page >= PAGES_LIMIT) { /* cached address was not in IROM or DROM */ return SPI_FLASH_CACHE2PHYS_FAIL; } uint32_t phys_page = spi_flash_protected_read_mmu_entry(cache_page); bool entry_is_invalid = mmu_ll_get_entry_is_invalid(MMU_TABLE_CORE0, cache_page); if (entry_is_invalid) { /* page is not mapped */ return SPI_FLASH_CACHE2PHYS_FAIL; } uint32_t phys_offs = ((phys_page & SOC_MMU_ADDR_MASK) + offset) * SPI_FLASH_MMU_PAGE_SIZE; return phys_offs | (c & (SPI_FLASH_MMU_PAGE_SIZE-1)); } const void *IRAM_ATTR spi_flash_phys2cache(size_t phys_offs, spi_flash_mmap_memory_t memory) { uint32_t phys_page = phys_offs / SPI_FLASH_MMU_PAGE_SIZE; int start, end, page_delta; intptr_t base; if (memory == SPI_FLASH_MMAP_DATA) { start = SOC_MMU_DROM0_PAGES_START; end = SOC_MMU_DROM0_PAGES_END; base = SOC_MMU_VADDR0_START_ADDR; page_delta = SOC_MMU_DROM0_PAGES_START; } else { start = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE; end = SOC_MMU_IROM0_PAGES_END; base = SOC_MMU_VADDR1_START_ADDR; page_delta = SOC_MMU_IROM0_PAGES_START; } spi_flash_disable_interrupts_caches_and_other_cpu(); for (int i = start; i < end; i++) { uint32_t mmu_value = mmu_ll_read_entry(MMU_TABLE_CORE0, i); #if CONFIG_SPIRAM_FETCH_INSTRUCTIONS if (phys_page >= instruction_flash_start_page_get() && phys_page <= instruction_flash_end_page_get()) { if (mmu_value & MMU_ACCESS_SPIRAM) { mmu_value += instruction_flash2spiram_offset(); mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH; } } #endif #if CONFIG_SPIRAM_RODATA if (phys_page >= rodata_flash_start_page_get() && phys_page <= rodata_flash_start_page_get()) { if (mmu_value & MMU_ACCESS_SPIRAM) { mmu_value += rodata_flash2spiram_offset(); mmu_value = (mmu_value & SOC_MMU_ADDR_MASK) | MMU_ACCESS_FLASH; } } #endif if (mmu_value == SOC_MMU_PAGE_IN_FLASH(phys_page)) { i -= page_delta; intptr_t cache_page = base + (SPI_FLASH_MMU_PAGE_SIZE * i); spi_flash_enable_interrupts_caches_and_other_cpu(); return (const void *) (cache_page | (phys_offs & (SPI_FLASH_MMU_PAGE_SIZE-1))); } } spi_flash_enable_interrupts_caches_and_other_cpu(); return NULL; } static bool IRAM_ATTR is_page_mapped_in_cache(uint32_t phys_page, const void **out_ptr) { int start[2], end[2]; *out_ptr = NULL; /* SPI_FLASH_MMAP_DATA */ start[0] = SOC_MMU_DROM0_PAGES_START; end[0] = SOC_MMU_DROM0_PAGES_END; /* SPI_FLASH_MMAP_INST */ start[1] = SOC_MMU_PRO_IRAM0_FIRST_USABLE_PAGE; end[1] = SOC_MMU_IROM0_PAGES_END; for (int j = 0; j < 2; j++) { for (int i = start[j]; i < end[j]; i++) { uint32_t entry_pro = mmu_ll_read_entry(MMU_TABLE_CORE0, i); if (entry_pro == SOC_MMU_PAGE_IN_FLASH(phys_page)) { #if !CONFIG_IDF_TARGET_ESP32 if (j == 0) { /* SPI_FLASH_MMAP_DATA */ *out_ptr = (const void *)(SOC_MMU_VADDR0_START_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[0])); } else { /* SPI_FLASH_MMAP_INST */ *out_ptr = (const void *)(SOC_MMU_VADDR1_FIRST_USABLE_ADDR + SPI_FLASH_MMU_PAGE_SIZE * (i - start[1])); } #endif return true; } } } return false; } /* Validates if given flash address has corresponding cache mapping, if yes, flushes cache memories */ IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length) { bool ret = false; /* align start_addr & length to full MMU pages */ uint32_t page_start_addr = start_addr & ~(SPI_FLASH_MMU_PAGE_SIZE-1); length += (start_addr - page_start_addr); length = (length + SPI_FLASH_MMU_PAGE_SIZE - 1) & ~(SPI_FLASH_MMU_PAGE_SIZE-1); for (uint32_t addr = page_start_addr; addr < page_start_addr + length; addr += SPI_FLASH_MMU_PAGE_SIZE) { uint32_t page = addr / SPI_FLASH_MMU_PAGE_SIZE; // TODO: IDF-4969 if (page >= 256) { return false; /* invalid address */ } const void *vaddr = NULL; if (is_page_mapped_in_cache(page, &vaddr)) { #if CONFIG_IDF_TARGET_ESP32 #if CONFIG_SPIRAM esp_psram_extram_writeback_cache(); #endif Cache_Flush(0); #ifndef CONFIG_FREERTOS_UNICORE Cache_Flush(1); #endif return true; #else // CONFIG_IDF_TARGET_ESP32 if (vaddr != NULL) { Cache_Invalidate_Addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE); ret = true; } #endif // CONFIG_IDF_TARGET_ESP32 } } return ret; } #endif //!CONFIG_SPI_FLASH_ROM_IMPL