// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "sdkconfig.h" #include "esp_heap_caps.h" #include "esp_heap_caps_init.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "freertos/semphr.h" #include "freertos/xtensa_api.h" #include "freertos/portmacro.h" #include "xtensa/core-macros.h" #include "esp_types.h" #include "esp_system.h" #include "esp_task.h" #include "esp_intr_alloc.h" #include "esp_attr.h" #include "esp_phy_init.h" #include "esp_bt.h" #include "esp_err.h" #include "esp_log.h" #include "esp_pm.h" #include "driver/periph_ctrl.h" #include "soc/rtc.h" #include "soc/soc_memory_layout.h" #include "esp32/clk.h" #include "esp_coexist_internal.h" #if !CONFIG_FREERTOS_UNICORE #include "esp_ipc.h" #endif #if CONFIG_BT_ENABLED /* Macro definition ************************************************************************ */ #define BTDM_LOG_TAG "BTDM_INIT" #define BTDM_INIT_PERIOD (5000) /* ms */ /* Bluetooth system and controller config */ #define BTDM_CFG_BT_DATA_RELEASE (1<<0) #define BTDM_CFG_HCI_UART (1<<1) #define BTDM_CFG_CONTROLLER_RUN_APP_CPU (1<<2) #define BTDM_CFG_SCAN_DUPLICATE_OPTIONS (1<<3) #define BTDM_CFG_SEND_ADV_RESERVED_SIZE (1<<4) #define BTDM_CFG_BLE_FULL_SCAN_SUPPORTED (1<<5) /* Sleep mode */ #define BTDM_MODEM_SLEEP_MODE_NONE (0) #define BTDM_MODEM_SLEEP_MODE_ORIG (1) #define BTDM_MODEM_SLEEP_MODE_EVED (2) // sleep mode for BLE controller, used only for internal test. /* Low Power Clock Selection */ #define BTDM_LPCLK_SEL_XTAL (0) #define BTDM_LPCLK_SEL_XTAL32K (1) #define BTDM_LPCLK_SEL_RTC_SLOW (2) #define BTDM_LPCLK_SEL_8M (3) /* Sleep and wakeup interval control */ #define BTDM_MIN_SLEEP_DURATION (12) // threshold of interval in slots to allow to fall into modem sleep #define BTDM_MODEM_WAKE_UP_DELAY (4) // delay in slots of modem wake up procedure, including re-enable PHY/RF #define BT_DEBUG(...) #define BT_API_CALL_CHECK(info, api_call, ret) \ do{\ esp_err_t __err = (api_call);\ if ((ret) != __err) {\ BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\ return __err;\ }\ } while(0) #define OSI_FUNCS_TIME_BLOCKING 0xffffffff #define OSI_VERSION 0x00010002 #define OSI_MAGIC_VALUE 0xFADEBEAD /* SPIRAM Configuration */ #if CONFIG_SPIRAM_USE_MALLOC #define BTDM_MAX_QUEUE_NUM (5) #endif /* Types definition ************************************************************************ */ /* VHCI function interface */ typedef struct vhci_host_callback { void (*notify_host_send_available)(void); /*!< callback used to notify that the host can send packet to controller */ int (*notify_host_recv)(uint8_t *data, uint16_t len); /*!< callback used to notify that the controller has a packet to send to the host*/ } vhci_host_callback_t; /* Dram region */ typedef struct { esp_bt_mode_t mode; intptr_t start; intptr_t end; } btdm_dram_available_region_t; /* PSRAM configuration */ #if CONFIG_SPIRAM_USE_MALLOC typedef struct { QueueHandle_t handle; void *storage; void *buffer; } btdm_queue_item_t; #endif /* OSI function */ struct osi_funcs_t { uint32_t _version; xt_handler (*_set_isr)(int n, xt_handler f, void *arg); void (*_ints_on)(unsigned int mask); void (*_interrupt_disable)(void); void (*_interrupt_restore)(void); void (*_task_yield)(void); void (*_task_yield_from_isr)(void); void *(*_semphr_create)(uint32_t max, uint32_t init); void (*_semphr_delete)(void *semphr); int32_t (*_semphr_take_from_isr)(void *semphr, void *hptw); int32_t (*_semphr_give_from_isr)(void *semphr, void *hptw); int32_t (*_semphr_take)(void *semphr, uint32_t block_time_ms); int32_t (*_semphr_give)(void *semphr); void *(*_mutex_create)(void); void (*_mutex_delete)(void *mutex); int32_t (*_mutex_lock)(void *mutex); int32_t (*_mutex_unlock)(void *mutex); void *(* _queue_create)(uint32_t queue_len, uint32_t item_size); void (* _queue_delete)(void *queue); int32_t (* _queue_send)(void *queue, void *item, uint32_t block_time_ms); int32_t (* _queue_send_from_isr)(void *queue, void *item, void *hptw); int32_t (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms); int32_t (* _queue_recv_from_isr)(void *queue, void *item, void *hptw); int32_t (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); void (* _task_delete)(void *task_handle); bool (* _is_in_isr)(void); int (* _cause_sw_intr_to_core)(int core_id, int intr_no); void *(* _malloc)(uint32_t size); void *(* _malloc_internal)(uint32_t size); void (* _free)(void *p); int32_t (* _read_efuse_mac)(uint8_t mac[6]); void (* _srand)(unsigned int seed); int (* _rand)(void); uint32_t (* _btdm_lpcycles_2_us)(uint32_t cycles); uint32_t (* _btdm_us_2_lpcycles)(uint32_t us); bool (* _btdm_sleep_check_duration)(uint32_t *slot_cnt); void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles); /* called when interrupt is disabled */ void (* _btdm_sleep_enter_phase2)(void); void (* _btdm_sleep_exit_phase1)(void); /* called from ISR */ void (* _btdm_sleep_exit_phase2)(void); /* called from ISR */ void (* _btdm_sleep_exit_phase3)(void); /* called from task */ bool (* _coex_bt_wakeup_request)(void); void (* _coex_bt_wakeup_request_end)(void); int (* _coex_bt_request)(uint32_t event, uint32_t latency, uint32_t duration); int (* _coex_bt_release)(uint32_t event); int (* _coex_register_bt_cb)(coex_func_cb_t cb); uint32_t (* _coex_bb_reset_lock)(void); void (* _coex_bb_reset_unlock)(uint32_t restore); uint32_t _magic; }; typedef void (*workitem_handler_t)(void* arg); /* External functions or values ************************************************************************ */ /* not for user call, so don't put to include file */ /* OSI */ extern int btdm_osi_funcs_register(void *osi_funcs); /* Initialise and De-initialise */ extern int btdm_controller_init(uint32_t config_mask, esp_bt_controller_config_t *config_opts); extern void btdm_controller_deinit(void); extern int btdm_controller_enable(esp_bt_mode_t mode); extern void btdm_controller_disable(void); extern uint8_t btdm_controller_get_mode(void); extern const char *btdm_controller_get_compile_version(void); extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled extern int btdm_dispatch_work_to_controller(workitem_handler_t callback, void *arg, bool blocking); /* Sleep */ extern void btdm_controller_enable_sleep(bool enable); extern void btdm_controller_set_sleep_mode(uint8_t mode); extern uint8_t btdm_controller_get_sleep_mode(void); extern bool btdm_power_state_active(void); extern void btdm_wakeup_request(void); extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting); /* Low Power Clock */ extern bool btdm_lpclk_select_src(uint32_t sel); extern bool btdm_lpclk_set_div(uint32_t div); /* VHCI */ extern bool API_vhci_host_check_send_available(void); extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len); extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback); /* TX power */ extern int ble_txpwr_set(int power_type, int power_level); extern int ble_txpwr_get(int power_type); extern int bredr_txpwr_set(int min_power_level, int max_power_level); extern int bredr_txpwr_get(int *min_power_level, int *max_power_level); extern void bredr_sco_datapath_set(uint8_t data_path); extern void btdm_controller_scan_duplicate_list_clear(void); /* Coexistence */ extern int coex_bt_request_wrapper(uint32_t event, uint32_t latency, uint32_t duration); extern int coex_bt_release_wrapper(uint32_t event); extern int coex_register_bt_cb_wrapper(coex_func_cb_t cb); extern uint32_t coex_bb_reset_lock_wrapper(void); extern void coex_bb_reset_unlock_wrapper(uint32_t restore); extern void coex_ble_adv_priority_high_set(bool high); extern char _bss_start_btdm; extern char _bss_end_btdm; extern char _data_start_btdm; extern char _data_end_btdm; extern uint32_t _data_start_btdm_rom; extern uint32_t _data_end_btdm_rom; extern uint32_t _bt_bss_start; extern uint32_t _bt_bss_end; extern uint32_t _nimble_bss_start; extern uint32_t _nimble_bss_end; extern uint32_t _btdm_bss_start; extern uint32_t _btdm_bss_end; extern uint32_t _bt_data_start; extern uint32_t _bt_data_end; extern uint32_t _nimble_data_start; extern uint32_t _nimble_data_end; extern uint32_t _btdm_data_start; extern uint32_t _btdm_data_end; /* Local Function Declare ********************************************************************* */ #if CONFIG_SPIRAM_USE_MALLOC static bool btdm_queue_generic_register(const btdm_queue_item_t *queue); static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue); #endif /* CONFIG_SPIRAM_USE_MALLOC */ static void IRAM_ATTR interrupt_disable(void); static void IRAM_ATTR interrupt_restore(void); static void IRAM_ATTR task_yield_from_isr(void); static void *semphr_create_wrapper(uint32_t max, uint32_t init); static void semphr_delete_wrapper(void *semphr); static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw); static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw); static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms); static int32_t semphr_give_wrapper(void *semphr); static void *mutex_create_wrapper(void); static void mutex_delete_wrapper(void *mutex); static int32_t mutex_lock_wrapper(void *mutex); static int32_t mutex_unlock_wrapper(void *mutex); static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size); static void queue_delete_wrapper(void *queue); static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms); static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw); static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms); static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw); static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id); static void task_delete_wrapper(void *task_handle); static bool IRAM_ATTR is_in_isr_wrapper(void); static void IRAM_ATTR cause_sw_intr(void *arg); static int IRAM_ATTR cause_sw_intr_to_core_wrapper(int core_id, int intr_no); static void *malloc_internal_wrapper(size_t size); static int32_t IRAM_ATTR read_mac_wrapper(uint8_t mac[6]); static void IRAM_ATTR srand_wrapper(unsigned int seed); static int IRAM_ATTR rand_wrapper(void); static uint32_t IRAM_ATTR btdm_lpcycles_2_us(uint32_t cycles); static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us); static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt); static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles); static void btdm_sleep_enter_phase2_wrapper(void); static void btdm_sleep_exit_phase3_wrapper(void); static bool coex_bt_wakeup_request(void); static void coex_bt_wakeup_request_end(void); /* Local variable definition *************************************************************************** */ /* OSI funcs */ static const struct osi_funcs_t osi_funcs_ro = { ._version = OSI_VERSION, ._set_isr = xt_set_interrupt_handler, ._ints_on = xt_ints_on, ._interrupt_disable = interrupt_disable, ._interrupt_restore = interrupt_restore, ._task_yield = vPortYield, ._task_yield_from_isr = task_yield_from_isr, ._semphr_create = semphr_create_wrapper, ._semphr_delete = semphr_delete_wrapper, ._semphr_take_from_isr = semphr_take_from_isr_wrapper, ._semphr_give_from_isr = semphr_give_from_isr_wrapper, ._semphr_take = semphr_take_wrapper, ._semphr_give = semphr_give_wrapper, ._mutex_create = mutex_create_wrapper, ._mutex_delete = mutex_delete_wrapper, ._mutex_lock = mutex_lock_wrapper, ._mutex_unlock = mutex_unlock_wrapper, ._queue_create = queue_create_wrapper, ._queue_delete = queue_delete_wrapper, ._queue_send = queue_send_wrapper, ._queue_send_from_isr = queue_send_from_isr_wrapper, ._queue_recv = queue_recv_wrapper, ._queue_recv_from_isr = queue_recv_from_isr_wrapper, ._task_create = task_create_wrapper, ._task_delete = task_delete_wrapper, ._is_in_isr = is_in_isr_wrapper, ._cause_sw_intr_to_core = cause_sw_intr_to_core_wrapper, ._malloc = malloc, ._malloc_internal = malloc_internal_wrapper, ._free = free, ._read_efuse_mac = read_mac_wrapper, ._srand = srand_wrapper, ._rand = rand_wrapper, ._btdm_lpcycles_2_us = btdm_lpcycles_2_us, ._btdm_us_2_lpcycles = btdm_us_2_lpcycles, ._btdm_sleep_check_duration = btdm_sleep_check_duration, ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper, ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper, ._btdm_sleep_exit_phase1 = NULL, ._btdm_sleep_exit_phase2 = NULL, ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper, ._coex_bt_wakeup_request = coex_bt_wakeup_request, ._coex_bt_wakeup_request_end = coex_bt_wakeup_request_end, ._coex_bt_request = coex_bt_request_wrapper, ._coex_bt_release = coex_bt_release_wrapper, ._coex_register_bt_cb = coex_register_bt_cb_wrapper, ._coex_bb_reset_lock = coex_bb_reset_lock_wrapper, ._coex_bb_reset_unlock = coex_bb_reset_unlock_wrapper, ._magic = OSI_MAGIC_VALUE, }; /* the mode column will be modified by release function to indicate the available region */ static btdm_dram_available_region_t btdm_dram_available_region[] = { //following is .data {ESP_BT_MODE_BTDM, SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END }, //following is memory which HW will use {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM0_START, SOC_MEM_BT_EM_BTDM0_END }, {ESP_BT_MODE_BLE, SOC_MEM_BT_EM_BLE_START, SOC_MEM_BT_EM_BLE_END }, {ESP_BT_MODE_BTDM, SOC_MEM_BT_EM_BTDM1_START, SOC_MEM_BT_EM_BTDM1_END }, {ESP_BT_MODE_CLASSIC_BT, SOC_MEM_BT_EM_BREDR_START, SOC_MEM_BT_EM_BREDR_REAL_END}, //following is .bss {ESP_BT_MODE_BTDM, SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END }, {ESP_BT_MODE_BTDM, SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END }, }; /* Reserve the full memory region used by Bluetooth Controller, * some may be released later at runtime. */ SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_EM_START, SOC_MEM_BT_EM_BREDR_REAL_END, rom_bt_em); SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_BSS_START, SOC_MEM_BT_BSS_END, rom_bt_bss); SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_MISC_START, SOC_MEM_BT_MISC_END, rom_bt_misc); SOC_RESERVE_MEMORY_REGION(SOC_MEM_BT_DATA_START, SOC_MEM_BT_DATA_END, rom_bt_data); static DRAM_ATTR struct osi_funcs_t *osi_funcs_p; #if CONFIG_SPIRAM_USE_MALLOC static DRAM_ATTR btdm_queue_item_t btdm_queue_table[BTDM_MAX_QUEUE_NUM]; static DRAM_ATTR SemaphoreHandle_t btdm_queue_table_mux = NULL; #endif /* #if CONFIG_SPIRAM_USE_MALLOC */ /* Static variable declare */ // timestamp when PHY/RF was switched on static DRAM_ATTR int64_t s_time_phy_rf_just_enabled = 0; static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED; // measured average low power clock period in micro seconds static DRAM_ATTR uint32_t btdm_lpcycle_us = 0; static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0; // number of fractional bit for btdm_lpcycle_us #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG // used low power clock static DRAM_ATTR uint8_t btdm_lpclk_sel; #endif /* #ifdef CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG */ static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL; #ifdef CONFIG_PM_ENABLE static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr; static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock; static bool s_pm_lock_acquired = true; static DRAM_ATTR bool s_btdm_allow_light_sleep; // pm_lock to prevent light sleep when using main crystal as Bluetooth low power clock static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock; static void btdm_slp_tmr_callback(void *arg); #endif /* #ifdef CONFIG_PM_ENABLE */ static inline void btdm_check_and_init_bb(void) { /* init BT-BB if PHY/RF has been switched off since last BT-BB init */ int64_t latest_ts = esp_phy_rf_get_on_ts(); if (latest_ts != s_time_phy_rf_just_enabled || s_time_phy_rf_just_enabled == 0) { btdm_rf_bb_init_phase2(); s_time_phy_rf_just_enabled = latest_ts; } } #if CONFIG_SPIRAM_USE_MALLOC static bool btdm_queue_generic_register(const btdm_queue_item_t *queue) { if (!btdm_queue_table_mux || !queue) { return NULL; } bool ret = false; btdm_queue_item_t *item; xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY); for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) { item = &btdm_queue_table[i]; if (item->handle == NULL) { memcpy(item, queue, sizeof(btdm_queue_item_t)); ret = true; break; } } xSemaphoreGive(btdm_queue_table_mux); return ret; } static bool btdm_queue_generic_deregister(btdm_queue_item_t *queue) { if (!btdm_queue_table_mux || !queue) { return false; } bool ret = false; btdm_queue_item_t *item; xSemaphoreTake(btdm_queue_table_mux, portMAX_DELAY); for (int i = 0; i < BTDM_MAX_QUEUE_NUM; ++i) { item = &btdm_queue_table[i]; if (item->handle == queue->handle) { memcpy(queue, item, sizeof(btdm_queue_item_t)); memset(item, 0, sizeof(btdm_queue_item_t)); ret = true; break; } } xSemaphoreGive(btdm_queue_table_mux); return ret; } #endif /* CONFIG_SPIRAM_USE_MALLOC */ static void IRAM_ATTR interrupt_disable(void) { if (xPortInIsrContext()) { portENTER_CRITICAL_ISR(&global_int_mux); } else { portENTER_CRITICAL(&global_int_mux); } } static void IRAM_ATTR interrupt_restore(void) { if (xPortInIsrContext()) { portEXIT_CRITICAL_ISR(&global_int_mux); } else { portEXIT_CRITICAL(&global_int_mux); } } static void IRAM_ATTR task_yield_from_isr(void) { portYIELD_FROM_ISR(); } static void *semphr_create_wrapper(uint32_t max, uint32_t init) { #if !CONFIG_SPIRAM_USE_MALLOC return (void *)xSemaphoreCreateCounting(max, init); #else StaticQueue_t *queue_buffer = NULL; QueueHandle_t handle = NULL; queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue_buffer) { goto error; } handle = xSemaphoreCreateCountingStatic(max, init, queue_buffer); if (!handle) { goto error; } btdm_queue_item_t item = { .handle = handle, .storage = NULL, .buffer = queue_buffer, }; if (!btdm_queue_generic_register(&item)) { goto error; } return handle; error: if (handle) { vSemaphoreDelete(handle); } if (queue_buffer) { free(queue_buffer); } return NULL; #endif } static void semphr_delete_wrapper(void *semphr) { #if !CONFIG_SPIRAM_USE_MALLOC vSemaphoreDelete(semphr); #else btdm_queue_item_t item = { .handle = semphr, .storage = NULL, .buffer = NULL, }; if (btdm_queue_generic_deregister(&item)) { vSemaphoreDelete(item.handle); free(item.buffer); } return; #endif } static int32_t IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw) { return (int32_t)xSemaphoreTakeFromISR(semphr, hptw); } static int32_t IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw) { return (int32_t)xSemaphoreGiveFromISR(semphr, hptw); } static int32_t semphr_take_wrapper(void *semphr, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xSemaphoreTake(semphr, portMAX_DELAY); } else { return (int32_t)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS); } } static int32_t semphr_give_wrapper(void *semphr) { return (int32_t)xSemaphoreGive(semphr); } static void *mutex_create_wrapper(void) { #if CONFIG_SPIRAM_USE_MALLOC StaticQueue_t *queue_buffer = NULL; QueueHandle_t handle = NULL; queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue_buffer) { goto error; } handle = xSemaphoreCreateMutexStatic(queue_buffer); if (!handle) { goto error; } btdm_queue_item_t item = { .handle = handle, .storage = NULL, .buffer = queue_buffer, }; if (!btdm_queue_generic_register(&item)) { goto error; } return handle; error: if (handle) { vSemaphoreDelete(handle); } if (queue_buffer) { free(queue_buffer); } return NULL; #else return (void *)xSemaphoreCreateMutex(); #endif } static void mutex_delete_wrapper(void *mutex) { #if !CONFIG_SPIRAM_USE_MALLOC vSemaphoreDelete(mutex); #else btdm_queue_item_t item = { .handle = mutex, .storage = NULL, .buffer = NULL, }; if (btdm_queue_generic_deregister(&item)) { vSemaphoreDelete(item.handle); free(item.buffer); } return; #endif } static int32_t mutex_lock_wrapper(void *mutex) { return (int32_t)xSemaphoreTake(mutex, portMAX_DELAY); } static int32_t mutex_unlock_wrapper(void *mutex) { return (int32_t)xSemaphoreGive(mutex); } static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size) { #if CONFIG_SPIRAM_USE_MALLOC StaticQueue_t *queue_buffer = NULL; uint8_t *queue_storage = NULL; QueueHandle_t handle = NULL; queue_buffer = heap_caps_malloc(sizeof(StaticQueue_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue_buffer) { goto error; } queue_storage = heap_caps_malloc((queue_len*item_size), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT); if (!queue_storage ) { goto error; } handle = xQueueCreateStatic(queue_len, item_size, queue_storage, queue_buffer); if (!handle) { goto error; } btdm_queue_item_t item = { .handle = handle, .storage = queue_storage, .buffer = queue_buffer, }; if (!btdm_queue_generic_register(&item)) { goto error; } return handle; error: if (handle) { vQueueDelete(handle); } if (queue_storage) { free(queue_storage); } if (queue_buffer) { free(queue_buffer); } return NULL; #else return (void *)xQueueCreate(queue_len, item_size); #endif } static void queue_delete_wrapper(void *queue) { #if !CONFIG_SPIRAM_USE_MALLOC vQueueDelete(queue); #else btdm_queue_item_t item = { .handle = queue, .storage = NULL, .buffer = NULL, }; if (btdm_queue_generic_deregister(&item)) { vQueueDelete(item.handle); free(item.storage); free(item.buffer); } return; #endif } static int32_t queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xQueueSend(queue, item, portMAX_DELAY); } else { return (int32_t)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS); } } static int32_t IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw) { return (int32_t)xQueueSendFromISR(queue, item, hptw); } static int32_t queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms) { if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) { return (int32_t)xQueueReceive(queue, item, portMAX_DELAY); } else { return (int32_t)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS); } } static int32_t IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw) { return (int32_t)xQueueReceiveFromISR(queue, item, hptw); } static int32_t task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id) { return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY)); } static void task_delete_wrapper(void *task_handle) { vTaskDelete(task_handle); } static bool IRAM_ATTR is_in_isr_wrapper(void) { return !xPortCanYield(); } static void IRAM_ATTR cause_sw_intr(void *arg) { /* just convert void * to int, because the width is the same */ uint32_t intr_no = (uint32_t)arg; XTHAL_SET_INTSET((1<> btdm_lpcycle_us_frac; return (uint32_t)us; } /* * @brief Converts a duration in slots into a number of low power clock cycles. */ static uint32_t IRAM_ATTR btdm_us_2_lpcycles(uint32_t us) { // The number of sleep duration(us) should not lead to overflow. Thrs: 100s // Compute the sleep duration in us to low power clock cycles, with calibration result applied // clock measurement is conducted uint64_t cycles = ((uint64_t)(us) << btdm_lpcycle_us_frac) / btdm_lpcycle_us; return (uint32_t)cycles; } static bool IRAM_ATTR btdm_sleep_check_duration(uint32_t *slot_cnt) { if (*slot_cnt < BTDM_MIN_SLEEP_DURATION) { return false; } /* wake up in advance considering the delay in enabling PHY/RF */ *slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY; return true; } static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles) { #ifdef CONFIG_PM_ENABLE // start a timer to wake up and acquire the pm_lock before modem_sleep awakes uint32_t us_to_sleep = btdm_lpcycles_2_us(lpcycles); #define BTDM_MIN_TIMER_UNCERTAINTY_US (500) assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US); // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift // and set the timer in advance uint32_t uncertainty = (us_to_sleep >> 11); if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) { uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US; } if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) != ESP_OK) { ESP_LOGW(BTDM_LOG_TAG, "timer start failed"); } #endif } static void btdm_sleep_enter_phase2_wrapper(void) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_enter(MODEM_BLE_MODULE); esp_modem_sleep_enter(MODEM_CLASSIC_BT_MODULE); #ifdef CONFIG_PM_ENABLE if (s_pm_lock_acquired) { esp_pm_lock_release(s_pm_lock); s_pm_lock_acquired = false; } #endif } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_enter(MODEM_BLE_MODULE); // pause bluetooth baseband periph_module_disable(PERIPH_BT_BASEBAND_MODULE); } } static void btdm_sleep_exit_phase3_wrapper(void) { #ifdef CONFIG_PM_ENABLE if (!s_pm_lock_acquired) { s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } #endif if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_exit(MODEM_BLE_MODULE); esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE); btdm_check_and_init_bb(); #ifdef CONFIG_PM_ENABLE esp_timer_stop(s_btdm_slp_tmr); #endif } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { // resume bluetooth baseband periph_module_enable(PERIPH_BT_BASEBAND_MODULE); esp_modem_sleep_exit(MODEM_BLE_MODULE); } } #ifdef CONFIG_PM_ENABLE static void btdm_slp_tmr_customer_callback(void * arg) { (void)(arg); if (!s_pm_lock_acquired) { s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } } static void IRAM_ATTR btdm_slp_tmr_callback(void *arg) { (void)(arg); btdm_dispatch_work_to_controller(btdm_slp_tmr_customer_callback, NULL, true); } #endif #define BTDM_ASYNC_WAKEUP_REQ_HCI 0 #define BTDM_ASYNC_WAKEUP_REQ_COEX 1 #define BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA 2 #define BTDM_ASYNC_WAKEUP_REQMAX 3 static void btdm_wakeup_request_callback(void * arg) { (void)(arg); #if CONFIG_PM_ENABLE if (!s_pm_lock_acquired) { s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } esp_timer_stop(s_btdm_slp_tmr); #endif btdm_wakeup_request(); semphr_give_wrapper(s_wakeup_req_sem); } static bool async_wakeup_request(int event) { bool do_wakeup_request = false; switch (event) { case BTDM_ASYNC_WAKEUP_REQ_HCI: btdm_in_wakeup_requesting_set(true); // NO break case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA: if (!btdm_power_state_active()) { do_wakeup_request = true; btdm_dispatch_work_to_controller(btdm_wakeup_request_callback, NULL, true); semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING); } break; case BTDM_ASYNC_WAKEUP_REQ_COEX: if (!btdm_power_state_active()) { do_wakeup_request = true; #if CONFIG_PM_ENABLE if (!s_pm_lock_acquired) { s_pm_lock_acquired = true; esp_pm_lock_acquire(s_pm_lock); } esp_timer_stop(s_btdm_slp_tmr); #endif btdm_wakeup_request(); } break; default: return false; } return do_wakeup_request; } static void async_wakeup_request_end(int event) { bool request_lock = false; switch (event) { case BTDM_ASYNC_WAKEUP_REQ_HCI: request_lock = true; break; case BTDM_ASYNC_WAKEUP_REQ_COEX: case BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA: request_lock = false; break; default: return; } if (request_lock) { btdm_in_wakeup_requesting_set(false); } return; } static bool coex_bt_wakeup_request(void) { return async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_COEX); } static void coex_bt_wakeup_request_end(void) { async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_COEX); return; } bool esp_vhci_host_check_send_available(void) { return API_vhci_host_check_send_available(); } void esp_vhci_host_send_packet(uint8_t *data, uint16_t len) { async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_HCI); API_vhci_host_send_packet(data, len); async_wakeup_request_end(BTDM_ASYNC_WAKEUP_REQ_HCI); } esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback) { return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL; } static uint32_t btdm_config_mask_load(void) { uint32_t mask = 0x0; #if CONFIG_BTDM_CTRL_HCI_MODE_UART_H4 mask |= BTDM_CFG_HCI_UART; #endif #if CONFIG_BTDM_CTRL_PINNED_TO_CORE == 1 mask |= BTDM_CFG_CONTROLLER_RUN_APP_CPU; #endif #if CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED mask |= BTDM_CFG_BLE_FULL_SCAN_SUPPORTED; #endif /* CONFIG_BTDM_CTRL_FULL_SCAN_SUPPORTED */ mask |= BTDM_CFG_SCAN_DUPLICATE_OPTIONS; mask |= BTDM_CFG_SEND_ADV_RESERVED_SIZE; return mask; } static void btdm_controller_mem_init(void) { /* initialise .data section */ memcpy(&_data_start_btdm, (void *)_data_start_btdm_rom, &_data_end_btdm - &_data_start_btdm); ESP_LOGD(BTDM_LOG_TAG, ".data initialise [0x%08x] <== [0x%08x]", (uint32_t)&_data_start_btdm, _data_start_btdm_rom); //initial em, .bss section for (int i = 1; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) { if (btdm_dram_available_region[i].mode != ESP_BT_MODE_IDLE) { memset((void *)btdm_dram_available_region[i].start, 0x0, btdm_dram_available_region[i].end - btdm_dram_available_region[i].start); ESP_LOGD(BTDM_LOG_TAG, ".bss initialise [0x%08x] - [0x%08x]", btdm_dram_available_region[i].start, btdm_dram_available_region[i].end); } } } static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end) { int ret = heap_caps_add_region(start, end); /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is * is too small to fit a heap. This cannot be termed as a fatal error and hence * we replace it by ESP_OK */ if (ret == ESP_ERR_INVALID_SIZE) { return ESP_OK; } return ret; } esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode) { bool update = true; intptr_t mem_start=(intptr_t) NULL, mem_end=(intptr_t) NULL; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } //already released if (!(mode & btdm_dram_available_region[0].mode)) { return ESP_ERR_INVALID_STATE; } for (int i = 0; i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t); i++) { //skip the share mode, idle mode and other mode if (btdm_dram_available_region[i].mode == ESP_BT_MODE_IDLE || (mode & btdm_dram_available_region[i].mode) != btdm_dram_available_region[i].mode) { //clear the bit of the mode which will be released btdm_dram_available_region[i].mode &= ~mode; continue; } else { //clear the bit of the mode which will be released btdm_dram_available_region[i].mode &= ~mode; } if (update) { mem_start = btdm_dram_available_region[i].start; mem_end = btdm_dram_available_region[i].end; update = false; } if (i < sizeof(btdm_dram_available_region)/sizeof(btdm_dram_available_region_t) - 1) { mem_end = btdm_dram_available_region[i].end; if (btdm_dram_available_region[i+1].mode != ESP_BT_MODE_IDLE && (mode & btdm_dram_available_region[i+1].mode) == btdm_dram_available_region[i+1].mode && mem_end == btdm_dram_available_region[i+1].start) { continue; } else { ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); update = true; } } else { mem_end = btdm_dram_available_region[i].end; ESP_LOGD(BTDM_LOG_TAG, "Release DRAM [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); update = true; } } if (mode == ESP_BT_MODE_BTDM) { mem_start = (intptr_t)&_btdm_bss_start; mem_end = (intptr_t)&_btdm_bss_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release BTDM BSS [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } mem_start = (intptr_t)&_btdm_data_start; mem_end = (intptr_t)&_btdm_data_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release BTDM Data [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } } return ESP_OK; } esp_err_t esp_bt_mem_release(esp_bt_mode_t mode) { int ret; intptr_t mem_start, mem_end; ret = esp_bt_controller_mem_release(mode); if (ret != ESP_OK) { return ret; } if (mode == ESP_BT_MODE_BTDM) { mem_start = (intptr_t)&_bt_bss_start; mem_end = (intptr_t)&_bt_bss_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release BT BSS [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } mem_start = (intptr_t)&_bt_data_start; mem_end = (intptr_t)&_bt_data_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release BT Data [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } mem_start = (intptr_t)&_nimble_bss_start; mem_end = (intptr_t)&_nimble_bss_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE BSS [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } mem_start = (intptr_t)&_nimble_data_start; mem_end = (intptr_t)&_nimble_data_end; if (mem_start != mem_end) { ESP_LOGD(BTDM_LOG_TAG, "Release NimBLE Data [0x%08x] - [0x%08x]", mem_start, mem_end); ESP_ERROR_CHECK(try_heap_caps_add_region(mem_start, mem_end)); } } return ESP_OK; } esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg) { esp_err_t err; uint32_t btdm_cfg_mask = 0; //if all the bt available memory was already released, cannot initialize bluetooth controller if (btdm_dram_available_region[0].mode == ESP_BT_MODE_IDLE) { return ESP_ERR_INVALID_STATE; } osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t)); if (osi_funcs_p == NULL) { return ESP_ERR_NO_MEM; } memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t)); if (btdm_osi_funcs_register(osi_funcs_p) != 0) { return ESP_ERR_INVALID_ARG; } if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) { return ESP_ERR_INVALID_STATE; } if (cfg == NULL) { return ESP_ERR_INVALID_ARG; } if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) { return ESP_ERR_INVALID_ARG; } //overwrite some parameters cfg->bt_max_sync_conn = CONFIG_BTDM_CTRL_BR_EDR_MAX_SYNC_CONN_EFF; cfg->magic = ESP_BT_CONTROLLER_CONFIG_MAGIC_VAL; if (((cfg->mode & ESP_BT_MODE_BLE) && (cfg->ble_max_conn <= 0 || cfg->ble_max_conn > BTDM_CONTROLLER_BLE_MAX_CONN_LIMIT)) || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_acl_conn <= 0 || cfg->bt_max_acl_conn > BTDM_CONTROLLER_BR_EDR_MAX_ACL_CONN_LIMIT)) || ((cfg->mode & ESP_BT_MODE_CLASSIC_BT) && (cfg->bt_max_sync_conn > BTDM_CONTROLLER_BR_EDR_MAX_SYNC_CONN_LIMIT))) { return ESP_ERR_INVALID_ARG; } ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version()); #if CONFIG_SPIRAM_USE_MALLOC btdm_queue_table_mux = xSemaphoreCreateMutex(); if (btdm_queue_table_mux == NULL) { return ESP_ERR_NO_MEM; } memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM); #endif s_wakeup_req_sem = semphr_create_wrapper(1, 0); if (s_wakeup_req_sem == NULL) { err = ESP_ERR_NO_MEM; goto error; } btdm_controller_mem_init(); periph_module_enable(PERIPH_BT_MODULE); #ifdef CONFIG_PM_ENABLE s_btdm_allow_light_sleep = false; #endif // set default sleep clock cycle and its fractional bits btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac); #if CONFIG_BTDM_MODEM_SLEEP_MODE_ORIG btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value #if CONFIG_BTDM_LPCLK_SEL_EXT_32K_XTAL // check whether or not EXT_CRYS is working if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) { btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // set default value #ifdef CONFIG_PM_ENABLE s_btdm_allow_light_sleep = true; #endif } else { ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n" "light sleep mode will not be able to apply when bluetooth is enabled"); btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value } #else btdm_lpclk_sel = BTDM_LPCLK_SEL_XTAL; // set default value #endif bool select_src_ret, set_div_ret; if (btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL) { select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL); set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2 - 1); assert(select_src_ret && set_div_ret); btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac); } else { // btdm_lpclk_sel == BTDM_LPCLK_SEL_XTAL32K select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K); set_div_ret = btdm_lpclk_set_div(0); assert(select_src_ret && set_div_ret); btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT; btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) : (1000000 >> (15 - RTC_CLK_CAL_FRACT)); assert(btdm_lpcycle_us != 0); } btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_ORIG); #elif CONFIG_BTDM_MODEM_SLEEP_MODE_EVED btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_EVED); #else btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE); #endif #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) { goto error; } } if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) { goto error; } esp_timer_create_args_t create_args = { .callback = btdm_slp_tmr_callback, .arg = NULL, .name = "btSlp" }; if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) { goto error; } s_pm_lock_acquired = true; #endif btdm_cfg_mask = btdm_config_mask_load(); if (btdm_controller_init(btdm_cfg_mask, cfg) != 0) { err = ESP_ERR_NO_MEM; goto error; } #ifdef CONFIG_BTDM_COEX_BLE_ADV_HIGH_PRIORITY coex_ble_adv_priority_high_set(true); #else coex_ble_adv_priority_high_set(false); #endif btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; return ESP_OK; error: #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { if (s_light_sleep_pm_lock != NULL) { esp_pm_lock_delete(s_light_sleep_pm_lock); s_light_sleep_pm_lock = NULL; } } if (s_pm_lock != NULL) { esp_pm_lock_delete(s_pm_lock); s_pm_lock = NULL; } if (s_btdm_slp_tmr != NULL) { esp_timer_delete(s_btdm_slp_tmr); s_btdm_slp_tmr = NULL; } #endif if (s_wakeup_req_sem) { semphr_delete_wrapper(s_wakeup_req_sem); s_wakeup_req_sem = NULL; } return err; } esp_err_t esp_bt_controller_deinit(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) { return ESP_ERR_INVALID_STATE; } btdm_controller_deinit(); periph_module_disable(PERIPH_BT_MODULE); #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { esp_pm_lock_delete(s_light_sleep_pm_lock); s_light_sleep_pm_lock = NULL; } esp_timer_stop(s_btdm_slp_tmr); esp_timer_delete(s_btdm_slp_tmr); s_btdm_slp_tmr = NULL; s_pm_lock_acquired = false; #endif semphr_delete_wrapper(s_wakeup_req_sem); s_wakeup_req_sem = NULL; #if CONFIG_SPIRAM_USE_MALLOC vSemaphoreDelete(btdm_queue_table_mux); btdm_queue_table_mux = NULL; memset(btdm_queue_table, 0, sizeof(btdm_queue_item_t) * BTDM_MAX_QUEUE_NUM); #endif free(osi_funcs_p); osi_funcs_p = NULL; btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE; btdm_lpcycle_us = 0; btdm_controller_set_sleep_mode(BTDM_MODEM_SLEEP_MODE_NONE); return ESP_OK; } static void bt_shutdown(void) { esp_err_t ret = ESP_OK; ESP_LOGD(BTDM_LOG_TAG, "stop/deinit bt"); ret = esp_bt_controller_disable(); if (ESP_OK != ret) { ESP_LOGW(BTDM_LOG_TAG, "controller disable ret=%d", ret); } ret = esp_bt_controller_deinit(); if (ESP_OK != ret) { ESP_LOGW(BTDM_LOG_TAG, "controller deinit ret=%d", ret); } return; } esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode) { int ret; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) { return ESP_ERR_INVALID_STATE; } //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init() if (mode != btdm_controller_get_mode()) { return ESP_ERR_INVALID_ARG; } #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { esp_pm_lock_acquire(s_light_sleep_pm_lock); } esp_pm_lock_acquire(s_pm_lock); #endif esp_phy_load_cal_and_init(PHY_BT_MODULE); if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE) { //Just register to sleep module, make the modem sleep modules check BT sleep status when sleep enter. //Thus, it will prevent WIFI from disabling RF when BT is not in sleep but is using RF. esp_modem_sleep_register(MODEM_BLE_MODULE); esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE); esp_modem_sleep_exit(MODEM_BLE_MODULE); esp_modem_sleep_exit(MODEM_CLASSIC_BT_MODULE); } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_register(MODEM_BLE_MODULE); esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE); } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_register(MODEM_BLE_MODULE); } if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { btdm_controller_enable_sleep(true); } // inititalize bluetooth baseband btdm_check_and_init_bb(); ret = btdm_controller_enable(mode); if (ret) { if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE); } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); } esp_phy_rf_deinit(PHY_BT_MODULE); #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { esp_pm_lock_release(s_light_sleep_pm_lock); } esp_pm_lock_release(s_pm_lock); #endif return ESP_ERR_INVALID_STATE; } btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED; ret = esp_register_shutdown_handler(bt_shutdown); if (ret != ESP_OK) { ESP_LOGW(BTDM_LOG_TAG, "Register shutdown handler failed, ret = 0x%x", ret); } return ESP_OK; } esp_err_t esp_bt_controller_disable(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } // disable modem sleep and wake up from sleep mode if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { btdm_controller_enable_sleep(false); async_wakeup_request(BTDM_ASYNC_WAKEUP_REQ_CTRL_DISA); while (!btdm_power_state_active()) { ets_delay_us(1000); } } btdm_controller_disable(); if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_NONE || btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE); } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); } esp_phy_rf_deinit(PHY_BT_MODULE); btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED; esp_unregister_shutdown_handler(bt_shutdown); #ifdef CONFIG_PM_ENABLE if (!s_btdm_allow_light_sleep) { esp_pm_lock_release(s_light_sleep_pm_lock); } esp_pm_lock_release(s_pm_lock); #endif return ESP_OK; } esp_bt_controller_status_t esp_bt_controller_get_status(void) { return btdm_controller_status; } /* extra functions */ esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level) { if (ble_txpwr_set(power_type, power_level) != 0) { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type) { return (esp_power_level_t)ble_txpwr_get(power_type); } esp_err_t esp_bredr_tx_power_set(esp_power_level_t min_power_level, esp_power_level_t max_power_level) { esp_err_t err; int ret; ret = bredr_txpwr_set(min_power_level, max_power_level); if (ret == 0) { err = ESP_OK; } else if (ret == -1) { err = ESP_ERR_INVALID_ARG; } else { err = ESP_ERR_INVALID_STATE; } return err; } esp_err_t esp_bredr_tx_power_get(esp_power_level_t *min_power_level, esp_power_level_t *max_power_level) { if (bredr_txpwr_get((int *)min_power_level, (int *)max_power_level) != 0) { return ESP_ERR_INVALID_ARG; } return ESP_OK; } esp_err_t esp_bt_sleep_enable (void) { esp_err_t status; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_register(MODEM_BLE_MODULE); esp_modem_sleep_register(MODEM_CLASSIC_BT_MODULE); btdm_controller_enable_sleep (true); status = ESP_OK; } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_register(MODEM_BLE_MODULE); btdm_controller_enable_sleep (true); status = ESP_OK; } else { status = ESP_ERR_NOT_SUPPORTED; } return status; } esp_err_t esp_bt_sleep_disable (void) { esp_err_t status; if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_ORIG) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); esp_modem_sleep_deregister(MODEM_CLASSIC_BT_MODULE); btdm_controller_enable_sleep (false); status = ESP_OK; } else if (btdm_controller_get_sleep_mode() == BTDM_MODEM_SLEEP_MODE_EVED) { esp_modem_sleep_deregister(MODEM_BLE_MODULE); btdm_controller_enable_sleep (false); status = ESP_OK; } else { status = ESP_ERR_NOT_SUPPORTED; } return status; } esp_err_t esp_bredr_sco_datapath_set(esp_sco_data_path_t data_path) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } bredr_sco_datapath_set(data_path); return ESP_OK; } esp_err_t esp_ble_scan_dupilcate_list_flush(void) { if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) { return ESP_ERR_INVALID_STATE; } btdm_controller_scan_duplicate_list_clear(); return ESP_OK; } #endif /* CONFIG_BT_ENABLED */