/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ // HAL for SPI Flash (non-IRAM part) // The IRAM part is in spi_flash_hal_iram.c, spi_flash_hal_gpspi.c, spi_flash_hal_common.inc. #include #include #include #include "soc/soc_caps.h" #include "hal/gpio_ll.h" //for GPIO_LL_MATRIX_DELAY_NS #include "hal/spi_flash_hal.h" #include "hal/assert.h" #include "hal/log.h" #include "hal/spi_flash_types.h" #define APB_CYCLE_NS (1000*1000*1000LL/APB_CLK_FREQ) static const char *TAG = "flash_hal"; static uint32_t get_flash_clock_divider(const spi_flash_hal_config_t *cfg) { const int clk_source = cfg->clock_src_freq; const int clk_freq_mhz = cfg->freq_mhz; // On ESP32, ESP32-S2, ESP32-C3, we allow specific frequency 26.666MHz // If user passes freq_mhz like 26 or 27, it's allowed to use integer divider 3. // However on other chips or on other frequency, we only allow user pass frequency which // can be integer divided. If no, the following strategy is round up the division and // round down flash frequency to keep it safe. int best_div = 0; if (clk_source < clk_freq_mhz) { HAL_LOGE(TAG, "Target frequency %dMHz higher than supported.", clk_freq_mhz); abort(); } #if CONFIG_IDF_TARGET_ESP32 || CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32C3 if (clk_freq_mhz == 26 || clk_freq_mhz == 27) { best_div = 3; } else #endif { /* Do not use float/double as the FPU may not have been initialized yet on startup. * The values are in MHz, so for sure we won't have an overflow by adding them. */ best_div = (clk_source + clk_freq_mhz - 1) / clk_freq_mhz; /* Perform a division that returns both quotient and remainder */ const div_t res = div(clk_source, clk_freq_mhz); if (res.rem != 0) { HAL_LOGW(TAG, "Flash clock frequency round down to %d", res.quot); } } return best_div; } static uint32_t spi_flash_cal_clock(const spi_flash_hal_config_t *cfg) { uint32_t div_parameter = spi_flash_ll_calculate_clock_reg(cfg->host_id, get_flash_clock_divider(cfg)); return div_parameter; } static inline int get_dummy_n(bool gpio_is_used, int input_delay_ns, int eff_clk) { const int apbclk_kHz = APB_CLK_FREQ / 1000; //calculate how many apb clocks a period has const int apbclk_n = APB_CLK_FREQ / eff_clk; int gpio_delay_ns = 0; #if GPIO_LL_MATRIX_DELAY_NS gpio_delay_ns = gpio_is_used ? GPIO_LL_MATRIX_DELAY_NS : 0; #endif //calculate how many apb clocks the delay is, the 1 is to compensate in case ``input_delay_ns`` is rounded off. int apb_period_n = (1 + input_delay_ns + gpio_delay_ns) * apbclk_kHz / 1000 / 1000; if (apb_period_n < 0) { apb_period_n = 0; } return apb_period_n / apbclk_n; } #if SOC_SPI_MEM_SUPPORT_TIMING_TUNING static inline int extra_dummy_under_timing_tuning(const spi_flash_hal_config_t *cfg) { bool main_flash = (cfg->host_id == SPI1_HOST && cfg->cs_num == 0); int extra_dummy = 0; if (main_flash) { /** * For Octal Flash, the dummy is `usr_dummy` + `extra_dummy`, they are in two different regs, we don't touch `extra_dummy` here, so set extra_dummy 0. * Instead, for both Quad and Octal Flash, we use `usr_dummy` and set the whole dummy length (usr_dummy + extra_dummy) to this register. */ extra_dummy = cfg->extra_dummy; } else { // TODO: for other flash chips, dummy get logic implement here. Currently, still calculate extra dummy by itself. abort(); } return extra_dummy; } #endif //SOC_SPI_MEM_SUPPORT_TIMING_TUNING esp_err_t spi_flash_hal_init(spi_flash_hal_context_t *data_out, const spi_flash_hal_config_t *cfg) { if (cfg->cs_num >= SOC_SPI_PERIPH_CS_NUM(cfg->host_id)) { return ESP_ERR_INVALID_ARG; } *data_out = (spi_flash_hal_context_t) { .inst = data_out->inst, // Keeps the function pointer table .spi = spi_flash_ll_get_hw(cfg->host_id), .cs_num = cfg->cs_num, .cs_hold = cfg->cs_hold, .cs_setup = cfg->cs_setup, .base_io_mode = cfg->default_io_mode, .freq_mhz = cfg->freq_mhz, }; #if SOC_SPI_MEM_SUPPORT_TIMING_TUNING if (cfg->using_timing_tuning) { data_out->extra_dummy = extra_dummy_under_timing_tuning(cfg); data_out->clock_conf = cfg->clock_config; } else #endif // SOC_SPI_MEM_SUPPORT_TIMING_TUNING { data_out->extra_dummy = get_dummy_n(!cfg->iomux, cfg->input_delay_ns, APB_CLK_FREQ/get_flash_clock_divider(cfg)); data_out->clock_conf = (spi_flash_ll_clock_reg_t)spi_flash_cal_clock(cfg); } if (cfg->auto_sus_en) { data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_SUSPEND; data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_AUTO_RESUME; data_out->tsus_val = cfg->tsus_val; } #if SOC_SPI_MEM_SUPPORT_OPI_MODE if (cfg->octal_mode_en) { data_out->flags |= SPI_FLASH_HOST_CONTEXT_FLAG_OCTAL_MODE; } if (cfg->default_io_mode == SPI_FLASH_OPI_DTR) { data_out->slicer_flags |= SPI_FLASH_HOST_CONTEXT_SLICER_FLAG_DTR; } #endif return ESP_OK; } bool spi_flash_hal_supports_direct_write(spi_flash_host_inst_t *host, const void *p) { (void)p; bool direct_write = (((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST)); return direct_write; } bool spi_flash_hal_supports_direct_read(spi_flash_host_inst_t *host, const void *p) { (void)p; //currently the host doesn't support to read through dma, no word-aligned requirements bool direct_read = ( ((spi_flash_hal_context_t *)host)->spi != spi_flash_ll_get_hw(SPI1_HOST)); return direct_read; }