/* * SPDX-FileCopyrightText: 2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "esp_crypto_lock.h" #include "esp_private/periph_ctrl.h" #include "bignum_impl.h" #include "mbedtls/bignum.h" #include "hal/mpi_hal.h" void esp_mpi_enable_hardware_hw_op( void ) { esp_crypto_mpi_lock_acquire(); /* Enable RSA hardware */ periph_module_enable(PERIPH_RSA_MODULE); mpi_hal_enable_hardware_hw_op(); } void esp_mpi_disable_hardware_hw_op( void ) { mpi_hal_disable_hardware_hw_op(); /* Disable RSA hardware */ periph_module_disable(PERIPH_RSA_MODULE); esp_crypto_mpi_lock_release(); } size_t esp_mpi_hardware_words(size_t words) { return mpi_hal_calc_hardware_words(words); } void esp_mpi_interrupt_enable(bool enable) { mpi_hal_interrupt_enable(enable); } void esp_mpi_interrupt_clear(void) { mpi_hal_clear_interrupt(); } /* Z = (X * Y) mod M */ void esp_mpi_mul_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words) { #if CONFIG_IDF_TARGET_ESP32 /* "mode" register loaded with number of 512-bit blocks, minus 1 */ mpi_hal_set_mode((num_words / 16) - 1); #else mpi_hal_set_mode(num_words - 1); #endif /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */ mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words); #if !CONFIG_IDF_TARGET_ESP32 mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); #endif mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_m_prime(Mprime); #if CONFIG_IDF_TARGET_ESP32 mpi_hal_start_op(MPI_MULT); mpi_hal_wait_op_complete(); /* execute second stage */ /* Load Y to X input memory block, rerun */ mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); mpi_hal_start_op(MPI_MULT); #else mpi_hal_start_op(MPI_MODMULT); #endif } /* Z = X * Y */ void esp_mpi_mul_mpi_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words) { /* Copy X (right-extended) & Y (left-extended) to memory block */ mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_to_mem_block(MPI_PARAM_Z, num_words * 4, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); /* NB: as Y is left-exte, we don't zero the bottom words_mult words of Y block. This is OK for now bec zeroing is done by hardware when we do esp_mpi_acquire_hardware(). */ #if CONFIG_IDF_TARGET_ESP32 mpi_hal_write_m_prime(0); /* "mode" register loaded with number of 512-bit blocks in result, plus 7 (for range 9-12). (this is ((N~ / 32) - 1) + 8)) */ mpi_hal_set_mode(((num_words * 2) / 16) + 7); #else mpi_hal_set_mode(num_words * 2 - 1); #endif mpi_hal_start_op(MPI_MULT); } /* Special-case of mbedtls_mpi_mult_mpi(), where we use hardware montgomery mod multiplication to calculate an mbedtls_mpi_mult_mpi result where either A or B are >2048 bits so can't use the standard multiplication method. Result (number of words, based on A bits + B bits) must still be less than 4096 bits. This case is simpler than the general case modulo multiply of esp_mpi_mul_mpi_mod() because we can control the other arguments: * Modulus is chosen with M=(2^num_bits - 1) (ie M=R-1), so output * Mprime and Rinv are therefore predictable as follows: isn't actually modulo anything. Mprime 1 Rinv 1 (See RSA Accelerator section in Technical Reference for more about Mprime, Rinv) */ void esp_mpi_mult_mpi_failover_mod_mult_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, size_t num_words) { /* M = 2^num_words - 1, so block is entirely FF */ for (int i = 0; i < num_words; i++) { mpi_hal_write_at_offset(MPI_PARAM_M, i * 4, UINT32_MAX); } /* Mprime = 1 */ mpi_hal_write_m_prime(1); #if CONFIG_IDF_TARGET_ESP32 /* "mode" register loaded with number of 512-bit blocks, minus 1 */ mpi_hal_set_mode((num_words / 16) - 1); #else mpi_hal_set_mode(num_words - 1); #endif /* Load X & Y */ mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words); #if !CONFIG_IDF_TARGET_ESP32 mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); #endif /* Rinv = 1, write first word */ mpi_hal_write_rinv(1); /* Zero out rest of the Rinv words */ for (int i = 1; i < num_words; i++) { mpi_hal_write_at_offset(MPI_PARAM_Z, i * 4, 0); } #if CONFIG_IDF_TARGET_ESP32 mpi_hal_start_op(MPI_MULT); mpi_hal_wait_op_complete(); mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); mpi_hal_start_op(MPI_MULT); #else mpi_hal_start_op(MPI_MODMULT); #endif } #ifdef ESP_MPI_USE_MONT_EXP int esp_mont_hw_op(mbedtls_mpi *Z, const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, mbedtls_mpi_uint Mprime, size_t hw_words, bool again) { // Note Z may be the same pointer as X or Y int ret = 0; // montgomery mult prepare if (again == false) { mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), hw_words); mpi_hal_write_m_prime(Mprime); mpi_hal_set_mode((hw_words / 16) - 1); } mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), hw_words); mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), hw_words); mpi_hal_start_op(MPI_MULT); Z->MBEDTLS_PRIVATE(s) = 1; // The sign of Z will be = M->s (but M->s is always 1) MBEDTLS_MPI_CHK( mbedtls_mpi_grow(Z, hw_words) ); /* Read back the result */ mpi_hal_read_result_hw_op(Z->MBEDTLS_PRIVATE(p), Z->MBEDTLS_PRIVATE(n), hw_words); /* from HAC 14.36 - 3. If Z >= M then Z = Z - M */ if (mbedtls_mpi_cmp_mpi(Z, M) >= 0) { MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Z, Z, M)); } cleanup: return ret; } #else /* Z = (X ^ Y) mod M */ void esp_mpi_exp_mpi_mod_hw_op(const mbedtls_mpi *X, const mbedtls_mpi *Y, const mbedtls_mpi *M, const mbedtls_mpi *Rinv, mbedtls_mpi_uint Mprime, size_t num_words) { size_t y_bits = mbedtls_mpi_bitlen(Y); mpi_hal_set_mode(num_words - 1); /* Load M, X, Rinv, Mprime (Mprime is mod 2^32) */ mpi_hal_write_to_mem_block(MPI_PARAM_X, 0, X->MBEDTLS_PRIVATE(p), X->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_to_mem_block(MPI_PARAM_Y, 0, Y->MBEDTLS_PRIVATE(p), Y->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_to_mem_block(MPI_PARAM_M, 0, M->MBEDTLS_PRIVATE(p), M->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_to_mem_block(MPI_PARAM_Z, 0, Rinv->MBEDTLS_PRIVATE(p), Rinv->MBEDTLS_PRIVATE(n), num_words); mpi_hal_write_m_prime(Mprime); /* Enable acceleration options */ mpi_hal_enable_constant_time(false); mpi_hal_enable_search(true); mpi_hal_set_search_position(y_bits - 1); /* Execute first stage montgomery multiplication */ mpi_hal_start_op(MPI_MODEXP); mpi_hal_enable_search(false); } #endif //ESP_MPI_USE_MONT_EXP