// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "sdkconfig.h" #include "soc/soc_caps.h" #if CONFIG_IDF_TARGET_ESP32 # include "soc/spi_struct.h" # include "soc/spi_reg.h" /* SPI flash controller */ # define SPIFLASH SPI1 #else # include "soc/spi_mem_struct.h" # include "soc/spi_mem_reg.h" /* SPI flash controller */ # define SPIFLASH SPIMEM1 #endif #if CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/spi_flash.h" #endif #ifndef BOOTLOADER_BUILD /* Normal app version maps to esp_spi_flash.h operations... */ static const char *TAG = "bootloader_mmap"; static spi_flash_mmap_handle_t map; uint32_t bootloader_mmap_get_free_pages(void) { return spi_flash_mmap_get_free_pages(SPI_FLASH_MMAP_DATA); } const void *bootloader_mmap(uint32_t src_addr, uint32_t size) { if (map) { ESP_LOGE(TAG, "tried to bootloader_mmap twice"); return NULL; /* existing mapping in use... */ } const void *result = NULL; uint32_t src_page = src_addr & ~(SPI_FLASH_MMU_PAGE_SIZE - 1); size += (src_addr - src_page); esp_err_t err = spi_flash_mmap(src_page, size, SPI_FLASH_MMAP_DATA, &result, &map); if (err != ESP_OK) { ESP_LOGE(TAG, "spi_flash_mmap failed: 0x%x", err); return NULL; } return (void *)((intptr_t)result + (src_addr - src_page)); } void bootloader_munmap(const void *mapping) { if (mapping && map) { spi_flash_munmap(map); } map = 0; } esp_err_t bootloader_flash_read(size_t src, void *dest, size_t size, bool allow_decrypt) { if (allow_decrypt && esp_flash_encryption_enabled()) { return spi_flash_read_encrypted(src, dest, size); } else { return spi_flash_read(src, dest, size); } } esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted) { if (write_encrypted) { #if CONFIG_IDF_TARGET_ESP32 return spi_flash_write_encrypted(dest_addr, src, size); #else return esp_rom_spiflash_write_encrypted(dest_addr, src, size); #endif } else { return spi_flash_write(dest_addr, src, size); } } esp_err_t bootloader_flash_erase_sector(size_t sector) { return spi_flash_erase_sector(sector); } esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size) { return spi_flash_erase_range(start_addr, size); } #else /* Bootloader version, uses ROM functions only */ #if CONFIG_IDF_TARGET_ESP32 #include "esp32/rom/spi_flash.h" #include "esp32/rom/cache.h" #elif CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/rom/spi_flash.h" #include "esp32s2/rom/cache.h" #include "soc/cache_memory.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/rom/spi_flash.h" #include "esp32s3/rom/cache.h" #include "soc/cache_memory.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/rom/spi_flash.h" #include "esp32c3/rom/cache.h" #include "soc/cache_memory.h" #endif static const char *TAG = "bootloader_flash"; #if CONFIG_IDF_TARGET_ESP32 /* Use first 50 blocks in MMU for bootloader_mmap, 50th block for bootloader_flash_read */ #define MMU_BLOCK0_VADDR SOC_DROM_LOW #define MMU_SIZE (0x320000) #define MMU_BLOCK50_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE) #define FLASH_READ_VADDR MMU_BLOCK50_VADDR #else // !CONFIG_IDF_TARGET_ESP32 /* Use first 63 blocks in MMU for bootloader_mmap, 63th block for bootloader_flash_read */ #define MMU_BLOCK0_VADDR SOC_DROM_LOW #define MMU_SIZE (0x3f0000) #define MMU_BLOCK63_VADDR (MMU_BLOCK0_VADDR + MMU_SIZE) #define FLASH_READ_VADDR MMU_BLOCK63_VADDR #endif #define MMU_FREE_PAGES (MMU_SIZE / FLASH_BLOCK_SIZE) static bool mapped; // Current bootloader mapping (ab)used for bootloader_read() static uint32_t current_read_mapping = UINT32_MAX; uint32_t bootloader_mmap_get_free_pages(void) { /** * Allow mapping up to 50 of the 51 available MMU blocks (last one used for reads) * Since, bootloader_mmap function below assumes it to be 0x320000 (50 pages), we can safely do this. */ return MMU_FREE_PAGES; } const void *bootloader_mmap(uint32_t src_addr, uint32_t size) { if (mapped) { ESP_LOGE(TAG, "tried to bootloader_mmap twice"); return NULL; /* can't map twice */ } if (size > MMU_SIZE) { ESP_LOGE(TAG, "bootloader_mmap excess size %x", size); return NULL; } uint32_t src_addr_aligned = src_addr & MMU_FLASH_MASK; uint32_t count = bootloader_cache_pages_to_map(size, src_addr); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #endif ESP_LOGD(TAG, "mmu set paddr=%08x count=%d size=%x src_addr=%x src_addr_aligned=%x", src_addr & MMU_FLASH_MASK, count, size, src_addr, src_addr_aligned ); #if CONFIG_IDF_TARGET_ESP32 int e = cache_flash_mmu_set(0, 0, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count); #elif CONFIG_IDF_TARGET_ESP32S2 int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0); #else // S3, C3 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK0_VADDR, src_addr_aligned, 64, count, 0); #endif if (e != 0) { ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #endif return NULL; } #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #endif mapped = true; return (void *)(MMU_BLOCK0_VADDR + (src_addr - src_addr_aligned)); } void bootloader_munmap(const void *mapping) { if (mapped) { #if CONFIG_IDF_TARGET_ESP32 /* Full MMU reset */ Cache_Read_Disable(0); Cache_Flush(0); mmu_init(0); #elif CONFIG_IDF_TARGET_ESP32S2 //TODO, save the autoload value. Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); Cache_MMU_Init(); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); Cache_MMU_Init(); #elif CONFIG_IDF_TARGET_ESP32C3 //TODO, save the autoload value. Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); Cache_MMU_Init(); #endif mapped = false; current_read_mapping = UINT32_MAX; } } static esp_err_t spi_to_esp_err(esp_rom_spiflash_result_t r) { switch (r) { case ESP_ROM_SPIFLASH_RESULT_OK: return ESP_OK; case ESP_ROM_SPIFLASH_RESULT_ERR: return ESP_ERR_FLASH_OP_FAIL; case ESP_ROM_SPIFLASH_RESULT_TIMEOUT: return ESP_ERR_FLASH_OP_TIMEOUT; default: return ESP_FAIL; } } static esp_err_t bootloader_flash_read_no_decrypt(size_t src_addr, void *dest, size_t size) { #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); #endif esp_rom_spiflash_result_t r = esp_rom_spiflash_read(src_addr, dest, size); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #endif return spi_to_esp_err(r); } static esp_err_t bootloader_flash_read_allow_decrypt(size_t src_addr, void *dest, size_t size) { uint32_t *dest_words = (uint32_t *)dest; for (int word = 0; word < size / 4; word++) { uint32_t word_src = src_addr + word * 4; /* Read this offset from flash */ uint32_t map_at = word_src & MMU_FLASH_MASK; /* Map this 64KB block from flash */ uint32_t *map_ptr; if (map_at != current_read_mapping) { /* Move the 64KB mmu mapping window to fit map_at */ #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Disable(0); Cache_Flush(0); #elif CONFIG_IDF_TARGET_ESP32S2 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #elif CONFIG_IDF_TARGET_ESP32S3 uint32_t autoload = Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); #elif CONFIG_IDF_TARGET_ESP32C3 uint32_t autoload = Cache_Suspend_ICache(); Cache_Invalidate_ICache_All(); #endif ESP_LOGD(TAG, "mmu set block paddr=0x%08x (was 0x%08x)", map_at, current_read_mapping); #if CONFIG_IDF_TARGET_ESP32 int e = cache_flash_mmu_set(0, 0, FLASH_READ_VADDR, map_at, 64, 1); #elif CONFIG_IDF_TARGET_ESP32S2 int e = Cache_Ibus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #elif CONFIG_IDF_TARGET_ESP32S3 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #elif CONFIG_IDF_TARGET_ESP32C3 int e = Cache_Dbus_MMU_Set(MMU_ACCESS_FLASH, MMU_BLOCK63_VADDR, map_at, 64, 1, 0); #endif if (e != 0) { ESP_LOGE(TAG, "cache_flash_mmu_set failed: %d\n", e); #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #endif return ESP_FAIL; } current_read_mapping = map_at; #if CONFIG_IDF_TARGET_ESP32 Cache_Read_Enable(0); #elif CONFIG_IDF_TARGET_ESP32S2 Cache_Resume_ICache(autoload); #elif CONFIG_IDF_TARGET_ESP32S3 Cache_Resume_DCache(autoload); #elif CONFIG_IDF_TARGET_ESP32C3 Cache_Resume_ICache(autoload); #endif } map_ptr = (uint32_t *)(FLASH_READ_VADDR + (word_src - map_at)); dest_words[word] = *map_ptr; } return ESP_OK; } esp_err_t bootloader_flash_read(size_t src_addr, void *dest, size_t size, bool allow_decrypt) { if (src_addr & 3) { ESP_LOGE(TAG, "bootloader_flash_read src_addr 0x%x not 4-byte aligned", src_addr); return ESP_FAIL; } if (size & 3) { ESP_LOGE(TAG, "bootloader_flash_read size 0x%x not 4-byte aligned", size); return ESP_FAIL; } if ((intptr_t)dest & 3) { ESP_LOGE(TAG, "bootloader_flash_read dest 0x%x not 4-byte aligned", (intptr_t)dest); return ESP_FAIL; } if (allow_decrypt) { return bootloader_flash_read_allow_decrypt(src_addr, dest, size); } else { return bootloader_flash_read_no_decrypt(src_addr, dest, size); } } esp_err_t bootloader_flash_write(size_t dest_addr, void *src, size_t size, bool write_encrypted) { esp_err_t err; size_t alignment = write_encrypted ? 32 : 4; if ((dest_addr % alignment) != 0) { ESP_LOGE(TAG, "bootloader_flash_write dest_addr 0x%x not %d-byte aligned", dest_addr, alignment); return ESP_FAIL; } if ((size % alignment) != 0) { ESP_LOGE(TAG, "bootloader_flash_write size 0x%x not %d-byte aligned", size, alignment); return ESP_FAIL; } if (((intptr_t)src % 4) != 0) { ESP_LOGE(TAG, "bootloader_flash_write src 0x%x not 4 byte aligned", (intptr_t)src); return ESP_FAIL; } err = spi_to_esp_err(esp_rom_spiflash_unlock()); if (err != ESP_OK) { return err; } if (write_encrypted) { #if CONFIG_IDF_TARGET_ESP32 return spi_to_esp_err(esp_rom_spiflash_write_encrypted(dest_addr, src, size)); #elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 // TODO: use the same ROM API here return spi_to_esp_err(SPI_Encrypt_Write(dest_addr, src, size)); #endif } else { return spi_to_esp_err(esp_rom_spiflash_write(dest_addr, src, size)); } } esp_err_t bootloader_flash_erase_sector(size_t sector) { return spi_to_esp_err(esp_rom_spiflash_erase_sector(sector)); } esp_err_t bootloader_flash_erase_range(uint32_t start_addr, uint32_t size) { if (start_addr % FLASH_SECTOR_SIZE != 0) { return ESP_ERR_INVALID_ARG; } if (size % FLASH_SECTOR_SIZE != 0) { return ESP_ERR_INVALID_SIZE; } size_t start = start_addr / FLASH_SECTOR_SIZE; size_t end = start + size / FLASH_SECTOR_SIZE; const size_t sectors_per_block = FLASH_BLOCK_SIZE / FLASH_SECTOR_SIZE; esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK; for (size_t sector = start; sector != end && rc == ESP_ROM_SPIFLASH_RESULT_OK; ) { if (sector % sectors_per_block == 0 && end - sector >= sectors_per_block) { rc = esp_rom_spiflash_erase_block(sector / sectors_per_block); sector += sectors_per_block; } else { rc = esp_rom_spiflash_erase_sector(sector); ++sector; } } return spi_to_esp_err(rc); } #endif extern uint8_t g_rom_spiflash_dummy_len_plus[]; uint32_t bootloader_execute_flash_command(uint8_t command, uint32_t mosi_data, uint8_t mosi_len, uint8_t miso_len) { uint32_t old_ctrl_reg = SPIFLASH.ctrl.val; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.ctrl.val = SPI_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode #else SPIFLASH.ctrl.val = SPI_MEM_WP_REG_M; // keep WP high while idle, otherwise leave DIO mode #endif SPIFLASH.user.usr_dummy = 0; SPIFLASH.user.usr_addr = 0; SPIFLASH.user.usr_command = 1; SPIFLASH.user2.usr_command_bitlen = 7; SPIFLASH.user2.usr_command_value = command; SPIFLASH.user.usr_miso = miso_len > 0; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.miso_dlen.usr_miso_dbitlen = miso_len ? (miso_len - 1) : 0; #else SPIFLASH.miso_dlen.usr_miso_bit_len = miso_len ? (miso_len - 1) : 0; #endif SPIFLASH.user.usr_mosi = mosi_len > 0; #if CONFIG_IDF_TARGET_ESP32 SPIFLASH.mosi_dlen.usr_mosi_dbitlen = mosi_len ? (mosi_len - 1) : 0; #else SPIFLASH.mosi_dlen.usr_mosi_bit_len = mosi_len ? (mosi_len - 1) : 0; #endif SPIFLASH.data_buf[0] = mosi_data; if (g_rom_spiflash_dummy_len_plus[1]) { /* When flash pins are mapped via GPIO matrix, need a dummy cycle before reading via MISO */ if (miso_len > 0) { SPIFLASH.user.usr_dummy = 1; SPIFLASH.user1.usr_dummy_cyclelen = g_rom_spiflash_dummy_len_plus[1] - 1; } else { SPIFLASH.user.usr_dummy = 0; SPIFLASH.user1.usr_dummy_cyclelen = 0; } } SPIFLASH.cmd.usr = 1; while (SPIFLASH.cmd.usr != 0) { } SPIFLASH.ctrl.val = old_ctrl_reg; return SPIFLASH.data_buf[0]; } void bootloader_enable_wp(void) { bootloader_execute_flash_command(CMD_WRDI, 0, 0, 0); /* Exit OTP mode */ } #if SOC_CACHE_SUPPORT_WRAP esp_err_t bootloader_flash_wrap_set(spi_flash_wrap_mode_t mode) { uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val; uint32_t reg_bkp_usr = SPIFLASH.user.val; SPIFLASH.user.fwrite_dio = 0; SPIFLASH.user.fwrite_dual = 0; SPIFLASH.user.fwrite_qio = 1; SPIFLASH.user.fwrite_quad = 0; SPIFLASH.ctrl.fcmd_dual = 0; SPIFLASH.ctrl.fcmd_quad = 0; SPIFLASH.user.usr_dummy = 0; SPIFLASH.user.usr_addr = 1; SPIFLASH.user.usr_command = 1; SPIFLASH.user2.usr_command_bitlen = 7; SPIFLASH.user2.usr_command_value = CMD_WRAP; SPIFLASH.user1.usr_addr_bitlen = 23; SPIFLASH.addr = 0; SPIFLASH.user.usr_miso = 0; SPIFLASH.user.usr_mosi = 1; SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7; SPIFLASH.data_buf[0] = (uint32_t) mode << 4;; SPIFLASH.cmd.usr = 1; while(SPIFLASH.cmd.usr != 0) { } SPIFLASH.ctrl.val = reg_bkp_ctrl; SPIFLASH.user.val = reg_bkp_usr; return ESP_OK; } #endif //SOC_CACHE_SUPPORT_WRAP