/* * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "sdkconfig.h" #if CONFIG_LCD_ENABLE_DEBUG_LOG // The local log level must be defined before including esp_log.h // Set the maximum log level for this source file #define LOG_LOCAL_LEVEL ESP_LOG_DEBUG #endif #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_pm.h" #include "esp_lcd_panel_io_interface.h" #include "esp_lcd_panel_io.h" #include "esp_rom_gpio.h" #include "soc/soc_caps.h" #include "esp_clk_tree.h" #include "esp_memory_utils.h" #include "esp_cache.h" #include "driver/gpio.h" #include "esp_private/esp_clk_tree_common.h" #include "esp_private/gpio.h" #include "esp_private/gdma.h" #include "esp_private/gdma_link.h" #include "esp_private/periph_ctrl.h" #include "esp_lcd_common.h" #include "soc/lcd_periph.h" #include "soc/io_mux_reg.h" #include "soc/gpio_sig_map.h" #include "hal/lcd_ll.h" #include "hal/lcd_hal.h" #include "hal/cache_ll.h" #include "hal/cache_hal.h" #define LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE 4095 #if defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AHB) #define LCD_GDMA_NEW_CHANNEL gdma_new_ahb_channel #define LCD_GDMA_DESCRIPTOR_ALIGN 4 #elif defined(SOC_GDMA_TRIG_PERIPH_LCD0_BUS) && (SOC_GDMA_TRIG_PERIPH_LCD0_BUS == SOC_GDMA_BUS_AXI) #define LCD_GDMA_NEW_CHANNEL gdma_new_axi_channel #define LCD_GDMA_DESCRIPTOR_ALIGN 8 #else #error "Unsupported GDMA bus type for LCD i80" #endif #if SOC_NON_CACHEABLE_OFFSET #define LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(addr) ((addr) + SOC_NON_CACHEABLE_OFFSET) #else #define LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(addr) (addr) #endif static const char *TAG = "lcd_panel.io.i80"; typedef struct esp_lcd_i80_bus_t esp_lcd_i80_bus_t; typedef struct lcd_panel_io_i80_t lcd_panel_io_i80_t; typedef struct lcd_i80_trans_descriptor_t lcd_i80_trans_descriptor_t; static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size); static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size); static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io); static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config); static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus); static esp_err_t lcd_i80_select_periph_clock(esp_lcd_i80_bus_handle_t bus, lcd_clock_source_t clk_src); static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config); static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device); static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descriptor_t *trans_desc); static void lcd_default_isr_handler(void *args); static esp_err_t panel_io_i80_register_event_callbacks(esp_lcd_panel_io_handle_t io, const esp_lcd_panel_io_callbacks_t *cbs, void *user_ctx); struct esp_lcd_i80_bus_t { int bus_id; // Bus ID, index from 0 portMUX_TYPE spinlock; // spinlock used to protect i80 bus members(hal, device_list, cur_trans) lcd_hal_context_t hal; // Hal object size_t bus_width; // Number of data lines intr_handle_t intr; // LCD peripheral interrupt handle esp_pm_lock_handle_t pm_lock; // Power management lock uint8_t *format_buffer; // The driver allocates an internal buffer for DMA to do data format transformer uint8_t *format_buffer_nc; // Non-cacheable version of format buffer size_t resolution_hz; // LCD_CLK resolution, determined by selected clock source size_t num_dma_nodes; // Number of DMA nodes (descriptors) gdma_channel_handle_t dma_chan; // DMA channel handle gdma_link_list_handle_t dma_link; // DMA link list handle size_t int_mem_align; // Alignment for internal memory size_t ext_mem_align; // Alignment for external memory lcd_i80_trans_descriptor_t *cur_trans; // Current transaction lcd_panel_io_i80_t *cur_device; // Current working device LIST_HEAD(i80_device_list, lcd_panel_io_i80_t) device_list; // Head of i80 device list struct { uint32_t exclusive: 1; // Indicate whether the I80 bus is owned by one device (whose CS GPIO is not assigned) exclusively } flags; }; struct lcd_i80_trans_descriptor_t { lcd_panel_io_i80_t *i80_device; // i80 device issuing this transaction int cmd_value; // Command value uint32_t cmd_cycles; // Command cycles const void *data; // Data buffer uint32_t data_length; // Data buffer size void *user_ctx; // private data used by trans_done_cb esp_lcd_panel_io_color_trans_done_cb_t trans_done_cb; // transaction done callback }; struct lcd_panel_io_i80_t { esp_lcd_panel_io_t base; // Base class of generic lcd panel io esp_lcd_i80_bus_t *bus; // Which bus the device is attached to int cs_gpio_num; // GPIO used for CS line unsigned int pclk_hz; // PCLK clock frequency size_t clock_prescale; // Prescaler coefficient, determined by user's configured PCLK frequency QueueHandle_t trans_queue; // Transaction queue, transactions in this queue are pending for scheduler to dispatch QueueHandle_t done_queue; // Transaction done queue, transactions in this queue are finished but not recycled by the caller size_t queue_size; // Size of transaction queue size_t num_trans_inflight; // Number of transactions that are undergoing (the descriptor not recycled yet) int lcd_cmd_bits; // Bit width of LCD command int lcd_param_bits; // Bit width of LCD parameter void *user_ctx; // private data used when transfer color data esp_lcd_panel_io_color_trans_done_cb_t on_color_trans_done; // color data trans done callback LIST_ENTRY(lcd_panel_io_i80_t) device_list_entry; // Entry of i80 device list struct { unsigned int dc_idle_level: 1; // Level of DC line in IDLE phase unsigned int dc_cmd_level: 1; // Level of DC line in CMD phase unsigned int dc_dummy_level: 1; // Level of DC line in DUMMY phase unsigned int dc_data_level: 1; // Level of DC line in DATA phase } dc_levels; struct { unsigned int cs_active_high: 1; // Whether the CS line is active on high level unsigned int reverse_color_bits: 1; // Reverse the data bits, D[N:0] -> D[0:N] unsigned int swap_color_bytes: 1; // Swap adjacent two data bytes before sending out unsigned int pclk_active_neg: 1; // The display will write data lines when there's a falling edge on WR line unsigned int pclk_idle_low: 1; // The WR line keeps at low level in IDLE phase } flags; lcd_i80_trans_descriptor_t trans_pool[]; // Transaction pool }; esp_err_t esp_lcd_new_i80_bus(const esp_lcd_i80_bus_config_t *bus_config, esp_lcd_i80_bus_handle_t *ret_bus) { #if CONFIG_LCD_ENABLE_DEBUG_LOG esp_log_level_set(TAG, ESP_LOG_DEBUG); #endif esp_err_t ret = ESP_OK; esp_lcd_i80_bus_t *bus = NULL; ESP_RETURN_ON_FALSE(bus_config && ret_bus, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // although LCD_CAM can support up to 24 data lines, we restrict users to only use 8 or 16 bit width ESP_RETURN_ON_FALSE(bus_config->bus_width == 8 || bus_config->bus_width == 16, ESP_ERR_INVALID_ARG, TAG, "invalid bus width:%d", bus_config->bus_width); // allocate i80 bus memory bus = heap_caps_calloc(1, sizeof(esp_lcd_i80_bus_t), LCD_I80_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(bus, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 bus"); size_t num_dma_nodes = bus_config->max_transfer_bytes / LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE + 1; // create DMA link list gdma_link_list_config_t dma_link_config = { .buffer_alignment = 1, // no special buffer alignment for LCD TX buffer .item_alignment = LCD_GDMA_DESCRIPTOR_ALIGN, .num_items = num_dma_nodes, .flags = { .check_owner = true, }, }; ESP_GOTO_ON_ERROR(gdma_new_link_list(&dma_link_config, &bus->dma_link), err, TAG, "create DMA link list failed"); bus->num_dma_nodes = num_dma_nodes; bus->bus_width = bus_config->bus_width; bus->bus_id = -1; // allocate the format buffer from internal memory, with DMA capability bus->format_buffer = heap_caps_calloc(1, LCD_I80_IO_FORMAT_BUF_SIZE, MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(bus->format_buffer, ESP_ERR_NO_MEM, err, TAG, "no mem for format buffer"); // if the buffer is behind the cache, write it back to the underlying memory if (cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA) > 0) { esp_cache_msync(bus->format_buffer, LCD_I80_IO_FORMAT_BUF_SIZE, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } bus->format_buffer_nc = LCD_CACHE_ADDR_TO_NON_CACHE_ADDR(bus->format_buffer); // register to platform int bus_id = lcd_com_register_device(LCD_COM_DEVICE_TYPE_I80, bus); ESP_GOTO_ON_FALSE(bus_id >= 0, ESP_ERR_NOT_FOUND, err, TAG, "no free i80 bus slot"); bus->bus_id = bus_id; // enable APB to access LCD registers PERIPH_RCC_ACQUIRE_ATOMIC(lcd_periph_i80_signals.buses[bus_id].module, ref_count) { if (ref_count == 0) { lcd_ll_enable_bus_clock(bus_id, true); lcd_ll_reset_register(bus_id); } } // initialize HAL layer, so we can call LL APIs later lcd_hal_init(&bus->hal, bus_id); LCD_CLOCK_SRC_ATOMIC() { lcd_ll_enable_clock(bus->hal.dev, true); } // set peripheral clock resolution ret = lcd_i80_select_periph_clock(bus, bus_config->clk_src); ESP_GOTO_ON_ERROR(ret, err, TAG, "select periph clock %d failed", bus_config->clk_src); // reset peripheral and FIFO after we select a correct clock source lcd_ll_reset(bus->hal.dev); lcd_ll_fifo_reset(bus->hal.dev); // install interrupt service, (LCD peripheral shares the same interrupt source with Camera peripheral with different mask) // interrupt is disabled by default int isr_flags = LCD_I80_INTR_ALLOC_FLAGS | ESP_INTR_FLAG_SHARED | ESP_INTR_FLAG_LOWMED; ret = esp_intr_alloc_intrstatus(lcd_periph_i80_signals.buses[bus_id].irq_id, isr_flags, (uint32_t)lcd_ll_get_interrupt_status_reg(bus->hal.dev), LCD_LL_EVENT_TRANS_DONE, lcd_default_isr_handler, bus, &bus->intr); ESP_GOTO_ON_ERROR(ret, err, TAG, "install interrupt failed"); lcd_ll_enable_interrupt(bus->hal.dev, LCD_LL_EVENT_TRANS_DONE, false); // disable all interrupts lcd_ll_clear_interrupt_status(bus->hal.dev, UINT32_MAX); // clear pending interrupt // install DMA service ret = lcd_i80_init_dma_link(bus, bus_config); ESP_GOTO_ON_ERROR(ret, err, TAG, "install DMA failed"); // disable RGB-LCD mode lcd_ll_enable_rgb_mode(bus->hal.dev, false); // disable YUV-RGB converter lcd_ll_enable_rgb_yuv_convert(bus->hal.dev, false); // set how much data to read from DMA each time lcd_ll_set_dma_read_stride(bus->hal.dev, bus->bus_width); // sometime, we need to change the output data order: ABAB->BABA lcd_ll_set_swizzle_mode(bus->hal.dev, LCD_LL_SWIZZLE_AB2BA); // number of data cycles is controlled by DMA buffer size lcd_ll_enable_output_always_on(bus->hal.dev, true); // enable trans done interrupt lcd_ll_enable_interrupt(bus->hal.dev, LCD_LL_EVENT_TRANS_DONE, true); // trigger a quick "trans done" event, and wait for the interrupt line goes active // this could ensure we go into ISR handler next time we call `esp_intr_enable` lcd_periph_trigger_quick_trans_done_event(bus); // configure GPIO ret = lcd_i80_bus_configure_gpio(bus, bus_config); ESP_GOTO_ON_ERROR(ret, err, TAG, "configure GPIO failed"); // fill other i80 bus runtime parameters LIST_INIT(&bus->device_list); // initialize device list head bus->spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED; *ret_bus = bus; ESP_LOGD(TAG, "new i80 bus(%d) @%p, %zu dma nodes", bus_id, bus, bus->num_dma_nodes); return ESP_OK; err: if (bus) { if (bus->intr) { esp_intr_free(bus->intr); } if (bus->dma_chan) { gdma_disconnect(bus->dma_chan); gdma_del_channel(bus->dma_chan); } if (bus->dma_link) { gdma_del_link_list(bus->dma_link); } if (bus->bus_id >= 0) { PERIPH_RCC_RELEASE_ATOMIC(lcd_periph_i80_signals.buses[bus->bus_id].module, ref_count) { if (ref_count == 0) { lcd_ll_enable_bus_clock(bus->bus_id, false); } } lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus->bus_id); } if (bus->format_buffer) { free(bus->format_buffer); } if (bus->pm_lock) { esp_pm_lock_delete(bus->pm_lock); } free(bus); } return ret; } esp_err_t esp_lcd_del_i80_bus(esp_lcd_i80_bus_handle_t bus) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(bus, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); ESP_GOTO_ON_FALSE(LIST_EMPTY(&bus->device_list), ESP_ERR_INVALID_STATE, err, TAG, "device list not empty"); int bus_id = bus->bus_id; lcd_com_remove_device(LCD_COM_DEVICE_TYPE_I80, bus_id); PERIPH_RCC_RELEASE_ATOMIC(lcd_periph_i80_signals.buses[bus_id].module, ref_count) { if (ref_count == 0) { lcd_ll_enable_bus_clock(bus_id, false); } } gdma_disconnect(bus->dma_chan); gdma_del_channel(bus->dma_chan); esp_intr_free(bus->intr); free(bus->format_buffer); if (bus->pm_lock) { esp_pm_lock_delete(bus->pm_lock); } gdma_del_link_list(bus->dma_link); free(bus); ESP_LOGD(TAG, "del i80 bus(%d)", bus_id); err: return ret; } esp_err_t esp_lcd_new_panel_io_i80(esp_lcd_i80_bus_handle_t bus, const esp_lcd_panel_io_i80_config_t *io_config, esp_lcd_panel_io_handle_t *ret_io) { esp_err_t ret = ESP_OK; lcd_panel_io_i80_t *i80_device = NULL; bool bus_exclusive = false; ESP_GOTO_ON_FALSE(bus && io_config && ret_io, ESP_ERR_INVALID_ARG, err, TAG, "invalid argument"); // check if the bus has been configured as exclusive portENTER_CRITICAL(&bus->spinlock); if (!bus->flags.exclusive) { bus->flags.exclusive = io_config->cs_gpio_num < 0; } else { bus_exclusive = true; } portEXIT_CRITICAL(&bus->spinlock); ESP_GOTO_ON_FALSE(!bus_exclusive, ESP_ERR_INVALID_STATE, err, TAG, "bus has been exclusively owned by device"); // check if pixel clock setting is valid uint32_t pclk_prescale = bus->resolution_hz / io_config->pclk_hz; ESP_GOTO_ON_FALSE(pclk_prescale > 0 && pclk_prescale <= LCD_LL_PCLK_DIV_MAX, ESP_ERR_NOT_SUPPORTED, err, TAG, "prescaler can't satisfy PCLK clock %"PRIu32"Hz", io_config->pclk_hz); i80_device = heap_caps_calloc(1, sizeof(lcd_panel_io_i80_t) + io_config->trans_queue_depth * sizeof(lcd_i80_trans_descriptor_t), LCD_I80_MEM_ALLOC_CAPS); ESP_GOTO_ON_FALSE(i80_device, ESP_ERR_NO_MEM, err, TAG, "no mem for i80 panel io"); // create two queues for i80 device i80_device->trans_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *)); ESP_GOTO_ON_FALSE(i80_device->trans_queue, ESP_ERR_NO_MEM, err, TAG, "create trans queue failed"); i80_device->done_queue = xQueueCreate(io_config->trans_queue_depth, sizeof(lcd_i80_trans_descriptor_t *)); ESP_GOTO_ON_FALSE(i80_device->done_queue, ESP_ERR_NO_MEM, err, TAG, "create done queue failed"); // adding device to list portENTER_CRITICAL(&bus->spinlock); LIST_INSERT_HEAD(&bus->device_list, i80_device, device_list_entry); portEXIT_CRITICAL(&bus->spinlock); // we don't initialize the i80 bus at the memont, but initialize the bus when start a transaction for a new device // so save these as i80 device runtime parameters i80_device->bus = bus; i80_device->lcd_cmd_bits = io_config->lcd_cmd_bits; i80_device->lcd_param_bits = io_config->lcd_param_bits; i80_device->queue_size = io_config->trans_queue_depth; i80_device->clock_prescale = pclk_prescale; i80_device->pclk_hz = bus->resolution_hz / pclk_prescale; i80_device->dc_levels.dc_cmd_level = io_config->dc_levels.dc_cmd_level; i80_device->dc_levels.dc_data_level = io_config->dc_levels.dc_data_level; i80_device->dc_levels.dc_dummy_level = io_config->dc_levels.dc_dummy_level; i80_device->dc_levels.dc_idle_level = io_config->dc_levels.dc_idle_level; i80_device->cs_gpio_num = io_config->cs_gpio_num; i80_device->flags.reverse_color_bits = io_config->flags.reverse_color_bits; i80_device->flags.swap_color_bytes = io_config->flags.swap_color_bytes; i80_device->flags.cs_active_high = io_config->flags.cs_active_high; i80_device->flags.pclk_idle_low = io_config->flags.pclk_idle_low; i80_device->flags.pclk_active_neg = io_config->flags.pclk_active_neg; i80_device->on_color_trans_done = io_config->on_color_trans_done; i80_device->user_ctx = io_config->user_ctx; // fill panel io function table i80_device->base.del = panel_io_i80_del; i80_device->base.tx_param = panel_io_i80_tx_param; i80_device->base.tx_color = panel_io_i80_tx_color; i80_device->base.register_event_callbacks = panel_io_i80_register_event_callbacks; // we only configure the CS GPIO as output, don't connect to the peripheral signal at the moment // we will connect the CS GPIO to peripheral signal when switching devices in lcd_i80_switch_devices() if (io_config->cs_gpio_num >= 0) { gpio_set_level(io_config->cs_gpio_num, !io_config->flags.cs_active_high); gpio_set_direction(io_config->cs_gpio_num, GPIO_MODE_OUTPUT); gpio_func_sel(io_config->cs_gpio_num, PIN_FUNC_GPIO); } *ret_io = &(i80_device->base); ESP_LOGD(TAG, "new i80 lcd panel io @%p on bus(%d)", i80_device, bus->bus_id); return ESP_OK; err: if (i80_device) { if (i80_device->trans_queue) { vQueueDelete(i80_device->trans_queue); } if (i80_device->done_queue) { vQueueDelete(i80_device->done_queue); } free(i80_device); } return ret; } static esp_err_t panel_io_i80_del(esp_lcd_panel_io_t *io) { lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base); esp_lcd_i80_bus_t *bus = i80_device->bus; lcd_i80_trans_descriptor_t *trans_desc = NULL; // wait all pending transaction to finish size_t num_trans_inflight = i80_device->num_trans_inflight; for (size_t i = 0; i < num_trans_inflight; i++) { ESP_RETURN_ON_FALSE(xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE, ESP_FAIL, TAG, "recycle inflight transactions failed"); i80_device->num_trans_inflight--; } // remove from device list portENTER_CRITICAL(&bus->spinlock); LIST_REMOVE(i80_device, device_list_entry); portEXIT_CRITICAL(&bus->spinlock); // reset CS to normal GPIO if (i80_device->cs_gpio_num >= 0) { gpio_reset_pin(i80_device->cs_gpio_num); } ESP_LOGD(TAG, "del i80 lcd panel io @%p", i80_device); vQueueDelete(i80_device->trans_queue); vQueueDelete(i80_device->done_queue); free(i80_device); return ESP_OK; } static esp_err_t panel_io_i80_register_event_callbacks(esp_lcd_panel_io_handle_t io, const esp_lcd_panel_io_callbacks_t *cbs, void *user_ctx) { lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base); if (i80_device->on_color_trans_done != NULL) { ESP_LOGW(TAG, "Callback on_color_trans_done was already set and now it was overwritten!"); } i80_device->on_color_trans_done = cbs->on_color_trans_done; i80_device->user_ctx = user_ctx; return ESP_OK; } static void i80_lcd_prepare_cmd_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, void *lcd_cmd) { uint8_t *from = (uint8_t *)lcd_cmd; if (bus->bus_width < i80_device->lcd_cmd_bits) { // LCD is big-endian, e.g. to send command 0x1234, byte 0x12 should appear on the bus first // However, the i80 peripheral will send 0x34 first, so we reversed the order below int start = 0; int end = i80_device->lcd_cmd_bits / 8 - 1; lcd_com_reverse_buffer_bytes(from, start, end); } } static uint32_t i80_lcd_prepare_param_buffer(esp_lcd_i80_bus_t *bus, lcd_panel_io_i80_t *i80_device, const void *lcd_param, size_t param_size) { int param_per_size = i80_device->lcd_param_bits / 8; int param_num = param_size / param_per_size; const uint8_t *from = (const uint8_t *)lcd_param; // we use non-cacheable address to write to the format buffer, for simplicity uint8_t *to = bus->format_buffer_nc; uint8_t step = bus->bus_width / 8; int param_cycle = i80_device->lcd_param_bits / bus->bus_width; // in case bus_width=16 and param_bits=8, we still need 1 param_cycle if (param_cycle * bus->bus_width < i80_device->lcd_param_bits) { param_cycle++; } int ele_cycles = param_cycle * param_num; int bytes_to_copy = MIN(bus->bus_width, i80_device->lcd_param_bits) / 8; int cnt_from = 0; // expand the width of parameters when necessary for (int i = 0; i < ele_cycles; i++) { for (int j = 0; j < bytes_to_copy; j++) { to[j] = from[cnt_from++]; } to += step; } return to - bus->format_buffer_nc; } static esp_err_t panel_io_i80_tx_param(esp_lcd_panel_io_t *io, int lcd_cmd, const void *param, size_t param_size) { lcd_panel_io_i80_t *next_device = __containerof(io, lcd_panel_io_i80_t, base); esp_lcd_i80_bus_t *bus = next_device->bus; lcd_panel_io_i80_t *cur_device = bus->cur_device; lcd_i80_trans_descriptor_t *trans_desc = NULL; assert(param_size <= (bus->num_dma_nodes * LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "parameter bytes too long, enlarge max_transfer_bytes"); assert(param_size <= LCD_I80_IO_FORMAT_BUF_SIZE && "format buffer too small, increase LCD_I80_IO_FORMAT_BUF_SIZE"); uint32_t cmd_cycles = next_device->lcd_cmd_bits / bus->bus_width; // in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle if (cmd_cycles * bus->bus_width < next_device->lcd_cmd_bits) { cmd_cycles++; } i80_lcd_prepare_cmd_buffer(bus, next_device, &lcd_cmd); uint32_t param_len = i80_lcd_prepare_param_buffer(bus, next_device, param, param_size); // wait all pending transaction in the queue to finish size_t num_trans_inflight = next_device->num_trans_inflight; for (size_t i = 0; i < num_trans_inflight; i++) { ESP_RETURN_ON_FALSE(xQueueReceive(next_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE, ESP_FAIL, TAG, "recycle inflight transactions failed"); next_device->num_trans_inflight--; } uint32_t intr_status = lcd_ll_get_interrupt_status(bus->hal.dev); lcd_ll_clear_interrupt_status(bus->hal.dev, intr_status); // switch devices if necessary lcd_i80_switch_devices(cur_device, next_device); // set data format lcd_ll_reverse_dma_data_bit_order(bus->hal.dev, false); // whether to swap the adjacent data bytes lcd_ll_enable_swizzle(bus->hal.dev, next_device->lcd_param_bits > bus->bus_width); bus->cur_trans = NULL; bus->cur_device = next_device; // package a transaction trans_desc = &next_device->trans_pool[0]; trans_desc->i80_device = next_device; trans_desc->cmd_cycles = cmd_cycles; trans_desc->cmd_value = lcd_cmd; // either the param is NULL or the param_size is zero, means there isn't a data phase in this transaction trans_desc->data = (param && param_len) ? bus->format_buffer : NULL; trans_desc->data_length = trans_desc->data ? param_len : 0; trans_desc->trans_done_cb = NULL; // no callback for parameter transaction // mount data to DMA links gdma_buffer_mount_config_t mount_config = { .buffer = (void *)trans_desc->data, .length = trans_desc->data_length, .flags = { .mark_eof = true, .mark_final = true, // singly link list, mark final descriptor } }; gdma_link_mount_buffers(bus->dma_link, 0, &mount_config, 1, NULL); // increase the pm lock reference count before starting a new transaction if (bus->pm_lock) { esp_pm_lock_acquire(bus->pm_lock); } lcd_start_transaction(bus, trans_desc); // polling the trans done event, but don't clear the event status while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {} // decrease pm lock reference count if (bus->pm_lock) { esp_pm_lock_release(bus->pm_lock); } return ESP_OK; } static esp_err_t panel_io_i80_tx_color(esp_lcd_panel_io_t *io, int lcd_cmd, const void *color, size_t color_size) { lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base); esp_lcd_i80_bus_t *bus = i80_device->bus; lcd_i80_trans_descriptor_t *trans_desc = NULL; assert(color_size <= (bus->num_dma_nodes * LCD_DMA_DESCRIPTOR_BUFFER_MAX_SIZE) && "color bytes too long, enlarge max_transfer_bytes"); uint32_t cache_line_size = 0; if (esp_ptr_external_ram(color)) { // check alignment ESP_RETURN_ON_FALSE(((uint32_t)color & (bus->ext_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color address not aligned"); ESP_RETURN_ON_FALSE((color_size & (bus->ext_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color size not aligned"); cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA); } else { // check alignment ESP_RETURN_ON_FALSE(((uint32_t)color & (bus->int_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color address not aligned"); ESP_RETURN_ON_FALSE((color_size & (bus->int_mem_align - 1)) == 0, ESP_ERR_INVALID_ARG, TAG, "color size not aligned"); cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA); } if (cache_line_size > 0) { // flush data from cache to the physical memory esp_cache_msync((void *)color, color_size, ESP_CACHE_MSYNC_FLAG_DIR_C2M | ESP_CACHE_MSYNC_FLAG_UNALIGNED); } // in case bus_width=16 and cmd_bits=8, we still need 1 cmd_cycle uint32_t cmd_cycles = i80_device->lcd_cmd_bits / bus->bus_width; if (cmd_cycles * bus->bus_width < i80_device->lcd_cmd_bits) { cmd_cycles++; } i80_lcd_prepare_cmd_buffer(bus, i80_device, &lcd_cmd); if (i80_device->num_trans_inflight < i80_device->queue_size) { trans_desc = &i80_device->trans_pool[i80_device->num_trans_inflight]; } else { // transaction pool has used up, recycle one from done_queue ESP_RETURN_ON_FALSE(xQueueReceive(i80_device->done_queue, &trans_desc, portMAX_DELAY) == pdTRUE, ESP_FAIL, TAG, "recycle inflight transactions failed"); i80_device->num_trans_inflight--; } trans_desc->i80_device = i80_device; trans_desc->cmd_cycles = cmd_cycles; trans_desc->cmd_value = lcd_cmd; trans_desc->data = color; trans_desc->data_length = color_size; trans_desc->trans_done_cb = i80_device->on_color_trans_done; trans_desc->user_ctx = i80_device->user_ctx; // send transaction to trans_queue xQueueSend(i80_device->trans_queue, &trans_desc, portMAX_DELAY); i80_device->num_trans_inflight++; // enable interrupt and go into isr handler, where we fetch the transactions from trans_queue and start it // we will go into `lcd_default_isr_handler` almost at once, because the "trans done" event is active at the moment esp_intr_enable(bus->intr); return ESP_OK; } static esp_err_t lcd_i80_select_periph_clock(esp_lcd_i80_bus_handle_t bus, lcd_clock_source_t clk_src) { // get clock source frequency uint32_t src_clk_hz = 0; ESP_RETURN_ON_ERROR(esp_clk_tree_src_get_freq_hz((soc_module_clk_t)clk_src, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &src_clk_hz), TAG, "get clock source frequency failed"); esp_clk_tree_enable_src((soc_module_clk_t)clk_src, true); LCD_CLOCK_SRC_ATOMIC() { lcd_ll_select_clk_src(bus->hal.dev, clk_src); // force to use integer division, as fractional division might lead to clock jitter lcd_ll_set_group_clock_coeff(bus->hal.dev, LCD_PERIPH_CLOCK_PRE_SCALE, 0, 0); } // save the resolution of the i80 bus bus->resolution_hz = src_clk_hz / LCD_PERIPH_CLOCK_PRE_SCALE; // create pm lock based on different clock source // clock sources like PLL and XTAL will be turned off in light sleep #if CONFIG_PM_ENABLE ESP_RETURN_ON_ERROR(esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "i80_bus_lcd", &bus->pm_lock), TAG, "create pm lock failed"); #endif return ESP_OK; } static esp_err_t lcd_i80_init_dma_link(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config) { esp_err_t ret = ESP_OK; // alloc DMA channel and connect to LCD peripheral gdma_channel_alloc_config_t dma_chan_config = { .direction = GDMA_CHANNEL_DIRECTION_TX, }; ret = LCD_GDMA_NEW_CHANNEL(&dma_chan_config, &bus->dma_chan); ESP_GOTO_ON_ERROR(ret, err, TAG, "alloc DMA channel failed"); gdma_connect(bus->dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_LCD, 0)); gdma_strategy_config_t strategy_config = { .auto_update_desc = true, .owner_check = true }; gdma_apply_strategy(bus->dma_chan, &strategy_config); // config DMA transfer parameters gdma_transfer_config_t trans_cfg = { .max_data_burst_size = bus_config->dma_burst_size ? bus_config->dma_burst_size : 16, // Enable DMA burst transfer for better performance .access_ext_mem = true, // the LCD can carry pixel buffer from the external memory }; ESP_GOTO_ON_ERROR(gdma_config_transfer(bus->dma_chan, &trans_cfg), err, TAG, "config DMA transfer failed"); gdma_get_alignment_constraints(bus->dma_chan, &bus->int_mem_align, &bus->ext_mem_align); return ESP_OK; err: if (bus->dma_chan) { gdma_del_channel(bus->dma_chan); } return ret; } void *esp_lcd_i80_alloc_draw_buffer(esp_lcd_panel_io_handle_t io, size_t size, uint32_t caps) { ESP_RETURN_ON_FALSE(io, NULL, TAG, "invalid argument"); lcd_panel_io_i80_t *i80_device = __containerof(io, lcd_panel_io_i80_t, base); esp_lcd_i80_bus_t *bus = i80_device->bus; void *buf = NULL; // alloc from external memory if (caps & MALLOC_CAP_SPIRAM) { buf = heap_caps_aligned_calloc(bus->ext_mem_align, 1, size, MALLOC_CAP_8BIT | MALLOC_CAP_SPIRAM | MALLOC_CAP_DMA); } else { buf = heap_caps_aligned_calloc(bus->int_mem_align, 1, size, MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA); } return buf; } static esp_err_t lcd_i80_bus_configure_gpio(esp_lcd_i80_bus_handle_t bus, const esp_lcd_i80_bus_config_t *bus_config) { int bus_id = bus->bus_id; // check validation of GPIO number bool valid_gpio = (bus_config->wr_gpio_num >= 0) && (bus_config->dc_gpio_num >= 0); for (size_t i = 0; i < bus_config->bus_width; i++) { valid_gpio = valid_gpio && (bus_config->data_gpio_nums[i] >= 0); } if (!valid_gpio) { return ESP_ERR_INVALID_ARG; } // Set the number of output data lines lcd_ll_set_data_wire_width(bus->hal.dev, bus_config->bus_width); // connect peripheral signals via GPIO matrix for (size_t i = 0; i < bus_config->bus_width; i++) { gpio_set_direction(bus_config->data_gpio_nums[i], GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->data_gpio_nums[i], lcd_periph_i80_signals.buses[bus_id].data_sigs[i], false, false); gpio_func_sel(bus_config->data_gpio_nums[i], PIN_FUNC_GPIO); } gpio_set_direction(bus_config->dc_gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->dc_gpio_num, lcd_periph_i80_signals.buses[bus_id].dc_sig, false, false); gpio_func_sel(bus_config->dc_gpio_num, PIN_FUNC_GPIO); gpio_set_direction(bus_config->wr_gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->wr_gpio_num, lcd_periph_i80_signals.buses[bus_id].wr_sig, false, false); gpio_func_sel(bus_config->wr_gpio_num, PIN_FUNC_GPIO); return ESP_OK; } static void lcd_periph_trigger_quick_trans_done_event(esp_lcd_i80_bus_handle_t bus) { // trigger a quick interrupt event by a dummy transaction, wait the LCD interrupt line goes active // next time when esp_intr_enable is invoked, we can go into interrupt handler immediately // where we dispatch transactions for i80 devices lcd_ll_set_phase_cycles(bus->hal.dev, 0, 1, 0); lcd_ll_start(bus->hal.dev); while (!(lcd_ll_get_interrupt_status(bus->hal.dev) & LCD_LL_EVENT_TRANS_DONE)) {} } static void lcd_start_transaction(esp_lcd_i80_bus_t *bus, lcd_i80_trans_descriptor_t *trans_desc) { // by default, the dummy phase is disabled because it's not common for most LCDs uint32_t dummy_cycles = 0; uint32_t cmd_cycles = trans_desc->cmd_value >= 0 ? trans_desc->cmd_cycles : 0; // Number of data phase cycles are controlled by DMA buffer length, we only need to enable/disable the phase here uint32_t data_cycles = trans_desc->data ? 1 : 0; if (trans_desc->cmd_value >= 0) { lcd_ll_set_command(bus->hal.dev, bus->bus_width, trans_desc->cmd_value); } lcd_ll_set_phase_cycles(bus->hal.dev, cmd_cycles, dummy_cycles, data_cycles); lcd_ll_set_blank_cycles(bus->hal.dev, 1, 1); // reset FIFO before starting a new transaction lcd_ll_fifo_reset(bus->hal.dev); if (trans_desc->data) { // some specific LCD commands can have no parameters gdma_start(bus->dma_chan, gdma_link_get_head_addr(bus->dma_link)); // delay 1us is sufficient for DMA to pass data to LCD FIFO // in fact, this is only needed when LCD pixel clock is set too high esp_rom_delay_us(1); } lcd_ll_start(bus->hal.dev); } static void lcd_i80_switch_devices(lcd_panel_io_i80_t *cur_device, lcd_panel_io_i80_t *next_device) { // we assume the next_device and cur_device are attached to the same bus esp_lcd_i80_bus_t *bus = next_device->bus; if (next_device != cur_device) { // reconfigure PCLK for the new device lcd_ll_set_pixel_clock_prescale(bus->hal.dev, next_device->clock_prescale); lcd_ll_set_clock_idle_level(bus->hal.dev, !next_device->flags.pclk_idle_low); lcd_ll_set_pixel_clock_edge(bus->hal.dev, next_device->flags.pclk_active_neg); // configure DC line level for the new device lcd_ll_set_dc_level(bus->hal.dev, next_device->dc_levels.dc_idle_level, next_device->dc_levels.dc_cmd_level, next_device->dc_levels.dc_dummy_level, next_device->dc_levels.dc_data_level); if (cur_device && cur_device->cs_gpio_num >= 0) { // disconnect current CS GPIO from peripheral signal esp_rom_gpio_connect_out_signal(cur_device->cs_gpio_num, SIG_GPIO_OUT_IDX, false, false); } if (next_device->cs_gpio_num >= 0) { // connect CS signal to the new device esp_rom_gpio_connect_out_signal(next_device->cs_gpio_num, lcd_periph_i80_signals.buses[bus->bus_id].cs_sig, next_device->flags.cs_active_high, false); } } } IRAM_ATTR static void lcd_default_isr_handler(void *args) { esp_lcd_i80_bus_t *bus = (esp_lcd_i80_bus_t *)args; lcd_i80_trans_descriptor_t *trans_desc = NULL; lcd_panel_io_i80_t *cur_device = NULL; lcd_panel_io_i80_t *next_device = NULL; BaseType_t high_task_woken = pdFALSE; bool need_yield = false; uint32_t intr_status = lcd_ll_get_interrupt_status(bus->hal.dev); if (intr_status & LCD_LL_EVENT_TRANS_DONE) { // disable interrupt temporarily, only re-enable when there be remained transaction in the queue esp_intr_disable(bus->intr); trans_desc = bus->cur_trans; // the finished transaction cur_device = bus->cur_device;// the working device // process finished transaction if (trans_desc) { assert(trans_desc->i80_device == cur_device && "transaction device mismatch"); // decrease pm lock reference count if (bus->pm_lock) { esp_pm_lock_release(bus->pm_lock); } // device callback if (trans_desc->trans_done_cb) { if (trans_desc->trans_done_cb(&cur_device->base, NULL, trans_desc->user_ctx)) { need_yield = true; } } // move transaction to done_queue // there won't be case that will overflow the queue, so skip checking the return value high_task_woken = pdFALSE; xQueueSendFromISR(cur_device->done_queue, &trans_desc, &high_task_woken); if (high_task_woken == pdTRUE) { need_yield = true; } bus->cur_trans = NULL; } // fetch transactions from devices' trans_queue // Note: the first registered device will have the highest priority to be scheduled LIST_FOREACH(next_device, &bus->device_list, device_list_entry) { high_task_woken = pdFALSE; if (xQueueReceiveFromISR(next_device->trans_queue, &trans_desc, &high_task_woken) == pdTRUE) { if (high_task_woken == pdTRUE) { need_yield = true; } // sanity check assert(trans_desc); // only clear the interrupt status when we're sure there still remains transaction to handle lcd_ll_clear_interrupt_status(bus->hal.dev, intr_status); // switch devices if necessary lcd_i80_switch_devices(cur_device, next_device); // only reverse data bit/bytes for color data lcd_ll_reverse_dma_data_bit_order(bus->hal.dev, next_device->flags.reverse_color_bits); lcd_ll_enable_swizzle(bus->hal.dev, next_device->flags.swap_color_bytes); bus->cur_trans = trans_desc; bus->cur_device = next_device; // mount data to DMA links gdma_buffer_mount_config_t mount_config = { .buffer = (void *)trans_desc->data, .length = trans_desc->data_length, .flags = { .mark_eof = true, .mark_final = true, // singly link list, mark final descriptor } }; gdma_link_mount_buffers(bus->dma_link, 0, &mount_config, 1, NULL); // enable interrupt again, because the new transaction can trigger new trans done event esp_intr_enable(bus->intr); // increase the pm lock reference count before starting a new transaction if (bus->pm_lock) { esp_pm_lock_acquire(bus->pm_lock); } lcd_start_transaction(bus, trans_desc); break; // exit for-each loop } } } if (need_yield) { portYIELD_FROM_ISR(); } }