/* mbedTLS GCM test * * SPDX-FileCopyrightText: 2021-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "mbedtls/aes.h" #include "mbedtls/gcm.h" #include "unity.h" #include "sdkconfig.h" #include "esp_heap_caps.h" #include "test_utils.h" #include "ccomp_timer.h" #include "sys/param.h" #if CONFIG_MBEDTLS_HARDWARE_AES /* Python example code for generating test vectors import os, binascii from cryptography.hazmat.primitives.ciphers.aead import AESGCM def as_c_array(byte_arr): hex_str = '' for idx, byte in enumerate(byte_arr): hex_str += "0x{:02x}, ".format(byte) bytes_per_line = 8 if idx % bytes_per_line == bytes_per_line - 1: hex_str += '\n' return hex_str key = b'\x44' * 16 iv = b'\xEE' * 16 data = b'\xAA' * 3200 aad = b'\x76' * 16 aesgcm = AESGCM(key) ct = aesgcm.encrypt(iv, data, aad) print(as_c_array(ct)) */ TEST_CASE("mbedtls GCM stream test", "[aes-gcm]") { const unsigned SZ = 100; mbedtls_gcm_context ctx; uint8_t nonce[16]; uint8_t key[16]; uint8_t tag[16]; mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES; const uint8_t expected_cipher[] = { 0x03, 0x92, 0x13, 0x49, 0x1f, 0x1f, 0x24, 0x41, 0xe8, 0xeb, 0x89, 0x47, 0x50, 0x0a, 0xce, 0xa3, 0xc7, 0x1c, 0x10, 0x70, 0xb0, 0x89, 0x82, 0x5e, 0x0f, 0x4a, 0x23, 0xee, 0xd2, 0xfc, 0xff, 0x45, 0x61, 0x4c, 0xd1, 0xfb, 0x6d, 0xe2, 0xbe, 0x67, 0x6f, 0x94, 0x72, 0xa3, 0xe7, 0x04, 0x99, 0xb3, 0x4a, 0x46, 0xf9, 0x2b, 0xaf, 0xac, 0xa9, 0x0e, 0x43, 0x7e, 0x8b, 0xc4, 0xbf, 0x49, 0xa4, 0x83, 0x9c, 0x31, 0x11, 0x1c, 0x09, 0xac, 0x90, 0xdf, 0x00, 0x34, 0x08, 0xe5, 0x70, 0xa3, 0x7e, 0x4b, 0x36, 0x48, 0x5a, 0x3f, 0x28, 0xc7, 0x1c, 0xd9, 0x1b, 0x1b, 0x49, 0x96, 0xe9, 0x7c, 0xea, 0x54, 0x7c, 0x71, 0x29, 0x0d }; const uint8_t expected_tag[] = { 0x35, 0x1c, 0x21, 0xc6, 0xbc, 0x6b, 0x18, 0x52, 0x90, 0xe1, 0xf2, 0x5b, 0xe1, 0xf6, 0x15, 0xee, }; memset(nonce, 0x89, 16); memset(key, 0x56, 16); // allocate internal memory uint8_t *ciphertext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); uint8_t *plaintext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); uint8_t *decryptedtext = heap_caps_malloc(SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT_NOT_NULL(ciphertext); TEST_ASSERT_NOT_NULL(plaintext); TEST_ASSERT_NOT_NULL(decryptedtext); memset(plaintext, 0xAB, SZ); /* Test that all the end results are the same no matter how many bytes we encrypt each call */ for (int bytes_to_process = 16; bytes_to_process < SZ; bytes_to_process = bytes_to_process + 16) { memset(nonce, 0x89, 16); memset(ciphertext, 0x0, SZ); memset(decryptedtext, 0x0, SZ); memset(tag, 0x0, 16); mbedtls_gcm_init(&ctx); mbedtls_gcm_setkey(&ctx, cipher, key, 128); mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, nonce, sizeof(nonce) ); mbedtls_gcm_update_ad( &ctx, NULL, 0 ); size_t olen; // Encrypt for (int idx = 0; idx < SZ; idx = idx + bytes_to_process) { // Limit length of last call to avoid exceeding buffer size size_t length = (idx + bytes_to_process > SZ) ? (SZ - idx) : bytes_to_process; mbedtls_gcm_update(&ctx, plaintext + idx, length, ciphertext + idx, length, &olen); } mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag, sizeof(tag) ); TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_cipher, ciphertext, SZ); TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag, sizeof(tag)); // Decrypt memset(nonce, 0x89, 16); mbedtls_gcm_free( &ctx ); mbedtls_gcm_init(&ctx); mbedtls_gcm_setkey(&ctx, cipher, key, 128); mbedtls_gcm_starts( &ctx, MBEDTLS_AES_DECRYPT, nonce, sizeof(nonce)); mbedtls_gcm_update_ad( &ctx, NULL, 0 ); for (int idx = 0; idx < SZ; idx = idx + bytes_to_process) { // Limit length of last call to avoid exceeding buffer size size_t length = (idx + bytes_to_process > SZ) ? (SZ - idx) : bytes_to_process; mbedtls_gcm_update(&ctx, ciphertext + idx, length, decryptedtext + idx, length, &olen); } mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag, sizeof(tag) ); TEST_ASSERT_EQUAL_HEX8_ARRAY(plaintext, decryptedtext, SZ); mbedtls_gcm_free( &ctx ); } free(plaintext); free(ciphertext); free(decryptedtext); } TEST_CASE("mbedtls AES GCM self-tests", "[aes-gcm]") { TEST_ASSERT_FALSE_MESSAGE(mbedtls_gcm_self_test(1), "AES GCM self-test should pass."); } typedef struct { uint8_t *plaintext; size_t plaintext_length; uint32_t output_caps; uint8_t *add_buf; size_t add_length; uint8_t *iv; size_t iv_length; uint8_t *key; size_t key_bits; size_t tag_len; } aes_gcm_test_cfg_t; typedef struct { const uint8_t *expected_tag; const uint8_t *ciphertext_last_block; // Last block of the ciphertext } aes_gcm_test_expected_res_t; typedef enum { AES_GCM_TEST_CRYPT_N_TAG, AES_GCM_TEST_START_UPDATE_FINISH, } aes_gcm_test_type_t; static void aes_gcm_test(aes_gcm_test_cfg_t *cfg, aes_gcm_test_expected_res_t *res, aes_gcm_test_type_t aes_gcm_type) { mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES; mbedtls_gcm_context ctx; uint8_t tag_buf_encrypt[16] = {}; uint8_t tag_buf_decrypt[16] = {}; uint8_t iv_buf[16] = {}; uint8_t *ciphertext = heap_caps_malloc(cfg->plaintext_length, cfg->output_caps); uint8_t *output = heap_caps_malloc(cfg->plaintext_length, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); if (cfg->plaintext_length != 0) { TEST_ASSERT_NOT_NULL(ciphertext); TEST_ASSERT_NOT_NULL(output); } memset(ciphertext, 0, cfg->plaintext_length); memset(output, 0, cfg->plaintext_length); memcpy(iv_buf, cfg->iv, cfg->iv_length); mbedtls_gcm_init(&ctx); mbedtls_gcm_setkey(&ctx, cipher, cfg->key, cfg->key_bits); size_t olen; /* Encrypt and tag */ if (aes_gcm_type == AES_GCM_TEST_CRYPT_N_TAG) { mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_AES_ENCRYPT, cfg->plaintext_length, iv_buf, cfg->iv_length, cfg->add_buf, cfg->add_length, cfg->plaintext, ciphertext, cfg->tag_len, tag_buf_encrypt); } else if (aes_gcm_type == AES_GCM_TEST_START_UPDATE_FINISH) { TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, iv_buf, cfg->iv_length) == 0 ); TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, cfg->add_buf, cfg->add_length) == 0 ); TEST_ASSERT(mbedtls_gcm_update( &ctx, cfg->plaintext, cfg->plaintext_length, ciphertext, cfg->plaintext_length, &olen) == 0 ); TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf_encrypt, cfg->tag_len) == 0 ); } size_t offset = cfg->plaintext_length > 16 ? cfg->plaintext_length - 16 : 0; /* Sanity check: make sure the last ciphertext block matches what we expect to see. */ TEST_ASSERT_EQUAL_HEX8_ARRAY(res->ciphertext_last_block, ciphertext + offset, MIN(16, cfg->plaintext_length)); TEST_ASSERT_EQUAL_HEX8_ARRAY(res->expected_tag, tag_buf_encrypt, cfg->tag_len); /* Decrypt and authenticate */ if (aes_gcm_type == AES_GCM_TEST_CRYPT_N_TAG) { TEST_ASSERT(mbedtls_gcm_auth_decrypt(&ctx, cfg->plaintext_length, iv_buf, cfg->iv_length, cfg->add_buf, cfg->add_length, res->expected_tag, cfg->tag_len, ciphertext, output) == 0); } else if (aes_gcm_type == AES_GCM_TEST_START_UPDATE_FINISH) { TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_DECRYPT, iv_buf, cfg->iv_length) == 0 ); TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, cfg->add_buf, cfg->add_length) == 0 ); TEST_ASSERT(mbedtls_gcm_update( &ctx, ciphertext, cfg->plaintext_length, output, cfg->plaintext_length, &olen) == 0 ); TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf_decrypt, cfg->tag_len) == 0 ); /* mbedtls_gcm_auth_decrypt already checks tag so only needed for AES_GCM_TEST_START_UPDATE_FINISH */ TEST_ASSERT_EQUAL_HEX8_ARRAY(res->expected_tag, tag_buf_decrypt, cfg->tag_len); } TEST_ASSERT_EQUAL_HEX8_ARRAY(cfg->plaintext, output, cfg->plaintext_length); mbedtls_gcm_free( &ctx ); free(ciphertext); free(output); } TEST_CASE("mbedtls AES GCM", "[aes-gcm]") { uint8_t iv[16]; uint8_t key[16]; uint8_t add[30]; memset(iv, 0xB1, sizeof(iv)); memset(key, 0x27, sizeof(key)); memset(add, 0x90, sizeof(add)); size_t length[] = {10, 16, 500, 5000, 12345}; const uint8_t expected_last_block[][16] = { { 0x37, 0x99, 0x4b, 0x16, 0x5f, 0x8d, 0x27, 0xb1, 0x60, 0x72 }, { 0x37, 0x99, 0x4b, 0x16, 0x5f, 0x8d, 0x27, 0xb1, 0x60, 0x72, 0x9a, 0x81, 0x8d, 0x3c, 0x69, 0x66 }, { 0x9d, 0x7a, 0xac, 0x84, 0xe3, 0x70, 0x43, 0x0f, 0xa7, 0x83, 0x43, 0xc9, 0x04, 0xf8, 0x7d, 0x48 }, { 0xee, 0xfd, 0xab, 0x2a, 0x09, 0x44, 0x41, 0x6a, 0x91, 0xb0, 0x74, 0x24, 0xee, 0x35, 0xb1, 0x39 }, { 0x51, 0xf7, 0x1f, 0x67, 0x1a, 0x4a, 0x12, 0x37, 0x60, 0x3b, 0x68, 0x01, 0x20, 0x4f, 0xf3, 0xd9 }, }; const uint8_t expected_tag[][16] = { { 0x06, 0x4f, 0xb5, 0x91, 0x12, 0x24, 0xb4, 0x24, 0x0b, 0xc2, 0x85, 0x59, 0x6a, 0x7c, 0x1f, 0xc9 }, { 0x45, 0xc2, 0xa8, 0xfe, 0xff, 0x49, 0x1f, 0x45, 0x8e, 0x29, 0x74, 0x41, 0xed, 0x9b, 0x54, 0x28 }, { 0xe1, 0xf9, 0x40, 0xfa, 0x29, 0x6f, 0x30, 0xae, 0xb6, 0x9b, 0x33, 0xdb, 0x8a, 0xf9, 0x70, 0xc4 }, { 0x22, 0xe1, 0x22, 0x34, 0x0c, 0x91, 0x0b, 0xcf, 0xa3, 0x42, 0xe0, 0x48, 0xe6, 0xfe, 0x2e, 0x28 }, { 0xfb, 0xfe, 0x5a, 0xed, 0x26, 0x5c, 0x5e, 0x66, 0x4e, 0xb2, 0x48, 0xce, 0xe9, 0x88, 0x1c, 0xe0 }, }; aes_gcm_test_cfg_t cfg = { .output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL, .iv = iv, .iv_length = sizeof(iv), .key = key, .key_bits = 8 * sizeof(key), .add_buf = add, .add_length = sizeof(add), .tag_len = 16 }; aes_gcm_test_expected_res_t res = { }; for (int i = 0; i < sizeof(length) / sizeof(length[0]); i++) { printf("Test AES-GCM with plaintext length = %d\n", length[i]); uint8_t *input = heap_caps_malloc(length[i], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT(input != NULL || length[i] == 0); memset(input, 0x36, length[i]); cfg.plaintext = input; cfg.plaintext_length = length[i]; res.expected_tag = expected_tag[i]; res.ciphertext_last_block = expected_last_block[i], aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG); aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH); free(input); } } TEST_CASE("mbedtls AES GCM - Different add messages", "[aes-gcm]") { const unsigned CALL_SZ = 160; uint8_t iv[16]; uint8_t key[16]; uint8_t *input = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT_NOT_NULL(input); memset(input, 0x67, CALL_SZ); memset(iv, 0xA2, sizeof(iv)); memset(key, 0x48, sizeof(key)); const uint8_t expected_last_block[] = { 0xcd, 0xb9, 0xad, 0x6f, 0xc9, 0x35, 0x21, 0x0d, 0xc9, 0x5d, 0xea, 0xd9, 0xf7, 0x1d, 0x43, 0xed }; size_t add_len[] = {0, 10, 16, 500, 5000}; const uint8_t expected_tag[][16] = { { 0xe3, 0x91, 0xad, 0x40, 0x96, 0xb7, 0x8c, 0x53, 0x4d, 0x15, 0x7d, 0x55, 0x15, 0xdf, 0x10, 0x69 }, { 0xc2, 0x38, 0x36, 0xe9, 0x12, 0x72, 0x5b, 0x31, 0x0c, 0xde, 0xb5, 0xc9, 0x8c, 0xa3, 0xcb, 0xe7 }, { 0x57, 0x10, 0x22, 0x91, 0x65, 0xfa, 0x89, 0xba, 0x0a, 0x3e, 0xc1, 0x7c, 0x93, 0x6e, 0x35, 0xac }, { 0x3c, 0x28, 0x03, 0xc2, 0x14, 0x40, 0xec, 0xb6, 0x25, 0xfb, 0xdd, 0x55, 0xa0, 0xb2, 0x47, 0x7b }, { 0xfa, 0x66, 0x4a, 0x97, 0x2d, 0x02, 0x32, 0x5b, 0x92, 0x94, 0xf1, 0x00, 0x1c, 0xfa, 0xe3, 0x07 } }; aes_gcm_test_cfg_t cfg = { .plaintext = input, .plaintext_length = CALL_SZ, .output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL, .iv = iv, .iv_length = sizeof(iv), .key = key, .key_bits = 8 * sizeof(key), .tag_len = 16 }; aes_gcm_test_expected_res_t res = { .ciphertext_last_block = expected_last_block, }; for (int i = 0; i < sizeof(add_len) / sizeof(add_len[0]); i++) { printf("Test AES-GCM with add length = %d\n", add_len[i]); uint8_t *add = heap_caps_malloc(add_len[i], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT(add != NULL || add_len[i] == 0); memset(add, 0x12, add_len[i]); cfg.add_buf = add; cfg.add_length = add_len[i]; res.expected_tag = expected_tag[i]; aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG); aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH); free(add); } free(input); } TEST_CASE("mbedtls AES GCM performance, start, update, ret", "[aes-gcm]") { const unsigned CALL_SZ = 16 * 3200; mbedtls_gcm_context ctx; float elapsed_usec; unsigned char tag_buf[16]; mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES; uint8_t iv[16]; uint8_t key[16]; uint8_t aad[16]; size_t olen; memset(iv, 0xEE, 16); memset(key, 0x44, 16); memset(aad, 0x76, 16); // allocate internal memory uint8_t *buf = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT_NOT_NULL(buf); mbedtls_gcm_init(&ctx); mbedtls_gcm_setkey( &ctx, cipher, key, 128); ccomp_timer_start(); memset(buf, 0xAA, CALL_SZ); TEST_ASSERT(mbedtls_gcm_starts( &ctx, MBEDTLS_AES_ENCRYPT, iv, sizeof(iv) ) == 0 ); TEST_ASSERT(mbedtls_gcm_update_ad( &ctx, aad, sizeof(aad)) == 0 ); TEST_ASSERT(mbedtls_gcm_update( &ctx, buf, CALL_SZ, buf, CALL_SZ, &olen) == 0 ); TEST_ASSERT(mbedtls_gcm_finish( &ctx, NULL, 0, &olen, tag_buf, 16 ) == 0 ); elapsed_usec = ccomp_timer_stop(); /* Sanity check: make sure the last ciphertext block matches what we expect to see. */ const uint8_t expected_last_block[] = { 0xd4, 0x25, 0x88, 0xd4, 0x32, 0x52, 0x3d, 0x6f, 0xae, 0x49, 0x19, 0xb5, 0x95, 0x01, 0xde, 0x7d, }; const uint8_t expected_tag[] = { 0xf5, 0x10, 0x1f, 0x21, 0x5b, 0x07, 0x0d, 0x3f, 0xac, 0xc9, 0xd0, 0x42, 0x45, 0xef, 0xc7, 0xfa, }; TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, buf + CALL_SZ - 16, 16); TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf, 16); free(buf); // bytes/usec = MB/sec float mb_sec = CALL_SZ / elapsed_usec; printf("GCM encryption rate %.3fMB/sec\n", mb_sec); #ifdef CONFIG_MBEDTLS_HARDWARE_GCM // Don't put a hard limit on software AES performance TEST_PERFORMANCE_GREATER_THAN(AES_GCM_UPDATE_THROUGHPUT_MBSEC, "%.3fMB/sec", mb_sec); #endif } TEST_CASE("mbedtls AES GCM performance, crypt-and-tag", "[aes-gcm]") { const unsigned CALL_SZ = 16 * 3200; mbedtls_gcm_context ctx; float elapsed_usec; unsigned char tag_buf[16] = {}; mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES; uint8_t iv[16]; uint8_t key[16]; uint8_t aad[16]; memset(iv, 0xEE, 16); memset(key, 0x44, 16); memset(aad, 0x76, 16); // allocate internal memory uint8_t *buf = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT_NOT_NULL(buf); mbedtls_gcm_init(&ctx); mbedtls_gcm_setkey( &ctx, cipher, key, 128); memset(buf, 0xAA, CALL_SZ); ccomp_timer_start(); mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_AES_ENCRYPT, CALL_SZ, iv, sizeof(iv), aad, sizeof(aad), buf, buf, 16, tag_buf); elapsed_usec = ccomp_timer_stop(); /* Sanity check: make sure the last ciphertext block matches what we expect to see. */ const uint8_t expected_last_block[] = { 0xd4, 0x25, 0x88, 0xd4, 0x32, 0x52, 0x3d, 0x6f, 0xae, 0x49, 0x19, 0xb5, 0x95, 0x01, 0xde, 0x7d, }; const uint8_t expected_tag[] = { 0xf5, 0x10, 0x1f, 0x21, 0x5b, 0x07, 0x0d, 0x3f, 0xac, 0xc9, 0xd0, 0x42, 0x45, 0xef, 0xc7, 0xfa, }; TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_last_block, buf + CALL_SZ - 16, 16); TEST_ASSERT_EQUAL_HEX8_ARRAY(expected_tag, tag_buf, 16); free(buf); // bytes/usec = MB/sec float mb_sec = CALL_SZ / elapsed_usec; printf("GCM encryption rate %.3fMB/sec\n", mb_sec); #ifdef CONFIG_MBEDTLS_HARDWARE_GCM // Don't put a hard limit on software AES performance TEST_PERFORMANCE_GREATER_THAN(AES_GCM_CRYPT_TAG_THROUGHPUT_MBSEC, "%.3fMB/sec", mb_sec); #endif } TEST_CASE("mbedtls AES GCM - Combine different IV/Key/Plaintext/AAD lengths", "[aes-gcm]") { #define IV_BYTES_VALUE 0xA2 #define KEY_BYTES_VALUE 0x48 #define INPUT_BYTES_VALUE 0x36 #define ADD_BYTES_VALUE 0x12 uint8_t iv[16]; uint8_t key[32]; memset(iv, IV_BYTES_VALUE, sizeof(iv)); memset(key, KEY_BYTES_VALUE, sizeof(key)); /* Key length is: 16 bytes, 32 bytes */ size_t key_length[] = {16, 32}; /* IV length is: 12 bytes (standard), 16 bytes */ size_t iv_length[] = {12, 16}; /* Plaintext length is: a multiple of 16 bytes, a non-multiple of 16 bytes */ size_t length[] = {160, 321}; /* Add len is: 0, a multiple of 16 bytes, a non-multiple of 16 bytes */ size_t add_len[] = {0, 160, 321}; /*indexes: Key - IV - Plaintext */ const uint8_t expected_last_block[2][2][2][16] = { { /* 16 byte key */ { { 0xa2, 0x1e, 0x23, 0x3c, 0xfc, 0x7c, 0xec, 0x9a, 0x91, 0xe5, 0xdb, 0x3a, 0xe5, 0x0c, 0x3f, 0xc2, }, { 0xa8, 0xeb, 0x40, 0x9b, 0x7b, 0x87, 0x07, 0x68, 0x17, 0x5c, 0xc0, 0xb7, 0xb4, 0xb3, 0x81, 0xbe, } }, { { 0x9c, 0xe8, 0xfc, 0x3e, 0x98, 0x64, 0x70, 0x5c, 0x98, 0x0c, 0xbb, 0x88, 0xa6, 0x4c, 0x12, 0xbc }, { 0x8b, 0x66, 0xf5, 0xbc, 0x56, 0x59, 0xae, 0xf0, 0x9e, 0x5c, 0xdb, 0x6d, 0xfc, 0x1f, 0x2e, 0x00 } }, }, { /* 32 byte key */ { { 0xde, 0xc2, 0xd3, 0xeb, 0x5e, 0x03, 0x53, 0x4b, 0x04, 0x0d, 0x63, 0xf1, 0xd8, 0x5b, 0x1f, 0x85, }, { 0xb5, 0x53, 0x8e, 0xd3, 0xab, 0x10, 0xf1, 0x77, 0x41, 0x92, 0xea, 0xdd, 0xdd, 0x9e, 0x5d, 0x40, } }, { { 0x3b, 0xc7, 0xf0, 0x3f, 0xba, 0x97, 0xbd, 0xa0, 0xa5, 0x48, 0xf3, 0x7a, 0xde, 0x23, 0x19, 0x7a, }, { 0x57, 0xc7, 0x4d, 0xe3, 0x79, 0x5e, 0xbd, 0x0d, 0xd7, 0x6a, 0xef, 0x1f, 0x54, 0x29, 0xa6, 0xd7, } }, }, }; /*indexes: Key - IV - Plaintext - Add len*/ const uint8_t expected_tag[2][2][2][3][16] = { { { { // Plaintext 160 bytes { 0x67, 0x92, 0xb1, 0x7f, 0x44, 0x1f, 0x95, 0xfb, 0x33, 0x76, 0x66, 0xb7, 0x4f, 0x3e, 0xec, 0x4d, }, { 0xb1, 0x99, 0xed, 0x1b, 0x4e, 0x12, 0x87, 0x5e, 0xf4, 0xe3, 0x81, 0xd8, 0x96, 0x07, 0xda, 0xff, }, { 0x73, 0x35, 0x0c, 0xf5, 0x70, 0x1e, 0xc0, 0x99, 0x34, 0xba, 0x1a, 0x50, 0x23, 0xac, 0x21, 0x33, }, }, { // Plaintext 321 bytes { 0x2d, 0xf6, 0xd0, 0x7a, 0x75, 0x4d, 0x9d, 0xb5, 0x9d, 0x43, 0xbf, 0x57, 0x10, 0xa3, 0xff, 0x3d }, { 0x06, 0x91, 0xe4, 0x38, 0x3a, 0xe1, 0x6e, 0x2d, 0x83, 0x68, 0x2e, 0xb0, 0x26, 0x2f, 0xe4, 0x78 }, { 0x1b, 0x58, 0x2f, 0x9b, 0xe9, 0xe0, 0xe0, 0x43, 0x83, 0x08, 0xec, 0x58, 0x3a, 0x78, 0xe9, 0x69, } } }, { { // Plaintext 160 bytes { 0x77, 0xe5, 0x2e, 0x2d, 0x94, 0xb8, 0x03, 0x61, 0x7a, 0xd5, 0x0c, 0x3c, 0x9c, 0x40, 0x92, 0x9b }, { 0xa1, 0xee, 0x72, 0x49, 0x9e, 0xb5, 0x11, 0xc4, 0xbd, 0x40, 0xeb, 0x53, 0x45, 0x79, 0xa4, 0x29 }, { 0x63, 0x42, 0x93, 0xa7, 0xa0, 0xb9, 0x56, 0x03, 0x7d, 0x19, 0x70, 0xdb, 0xf0, 0xd2, 0x5f, 0xe5 }, }, { // Plaintext 321 bytes { 0x50, 0xa3, 0x79, 0xfc, 0x17, 0xb8, 0xf4, 0xf6, 0x14, 0xaa, 0x4a, 0xe7, 0xd4, 0xa0, 0xea, 0xee }, { 0x7b, 0xc4, 0x4d, 0xbe, 0x58, 0x14, 0x07, 0x6e, 0x0a, 0x81, 0xdb, 0x00, 0xe2, 0x2c, 0xf1, 0xab }, { 0x66, 0x0d, 0x86, 0x1d, 0x8b, 0x15, 0x89, 0x00, 0x0a, 0xe1, 0x19, 0xe8, 0xfe, 0x7b, 0xfc, 0xba } } }, }, { { { // Plaintext 160 bytes { 0x04, 0x04, 0x15, 0xb1, 0xd3, 0x98, 0x15, 0x45, 0xa2, 0x44, 0xba, 0x4a, 0xde, 0xc2, 0x8d, 0xd6, }, { 0x94, 0x3e, 0xc3, 0x5d, 0xdc, 0x42, 0xf6, 0x4c, 0x80, 0x15, 0xe4, 0xb9, 0x0b, 0xc9, 0x87, 0x01, }, { 0x93, 0x6e, 0x26, 0x5b, 0x7e, 0x17, 0xc8, 0x73, 0x9b, 0x71, 0x31, 0x7a, 0x8b, 0x0e, 0x19, 0x89, } }, { // Plaintext 321 bytes { 0x99, 0x5e, 0x77, 0x28, 0x8b, 0xa8, 0x9b, 0xb3, 0x35, 0xc3, 0x99, 0x90, 0xd4, 0x5d, 0x63, 0xa7, }, { 0xbc, 0xc2, 0x9f, 0xe6, 0x38, 0xef, 0xf5, 0x11, 0x76, 0x09, 0x17, 0x3a, 0xd4, 0x91, 0xee, 0xfe, }, { 0x9f, 0xa6, 0x23, 0x5a, 0x4d, 0x78, 0xae, 0xce, 0x10, 0x35, 0xc1, 0x0c, 0x6e, 0xc2, 0x4e, 0xe8, } } }, { { // Plaintext 160 bytes { 0xfb, 0x74, 0x7e, 0x21, 0xf2, 0xe7, 0xe3, 0xf5, 0xfa, 0xc8, 0x23, 0xab, 0x54, 0x9a, 0xb9, 0xcf, }, { 0x6b, 0x4e, 0xa8, 0xcd, 0xfd, 0x3d, 0x00, 0xfc, 0xd8, 0x99, 0x7d, 0x58, 0x81, 0x91, 0xb3, 0x18, }, { 0x6c, 0x1e, 0x4d, 0xcb, 0x5f, 0x68, 0x3e, 0xc3, 0xc3, 0xfd, 0xa8, 0x9b, 0x01, 0x56, 0x2d, 0x90, }, }, { // Plaintext 321 bytes { 0xcd, 0x49, 0x75, 0x4c, 0x2a, 0x62, 0x65, 0x6f, 0xfe, 0x14, 0xc2, 0x5d, 0x41, 0x07, 0x24, 0x55 }, { 0xe8, 0xd5, 0x9d, 0x82, 0x99, 0x25, 0x0b, 0xcd, 0xbd, 0xde, 0x4c, 0xf7, 0x41, 0xcb, 0xa9, 0x0c, }, { 0xcb, 0xb1, 0x21, 0x3e, 0xec, 0xb2, 0x50, 0x12, 0xdb, 0xe2, 0x9a, 0xc1, 0xfb, 0x98, 0x09, 0x1a, } } }, }, }; aes_gcm_test_cfg_t cfg = { .output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL, .tag_len = 16 }; for (int i_key = 0; i_key < sizeof(key_length) / sizeof(key_length[0]); i_key++) { printf("Test AES-GCM with key length = %d\n", key_length[i_key]); cfg.key = key; cfg.key_bits = 8 * key_length[i_key]; for (int i_iv = 0; i_iv < sizeof(iv_length) / sizeof(iv_length[0]); i_iv++) { printf("Test AES-GCM with IV length = %d\n", iv_length[i_iv]); cfg.iv = iv; cfg.iv_length = iv_length[i_iv]; for (int i_len = 0; i_len < sizeof(length) / sizeof(length[0]); i_len++) { printf("Test AES-GCM with plaintext length = %d\n", length[i_len]); uint8_t *input = heap_caps_malloc(length[i_len], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT(input != NULL || length[i_len] == 0); memset(input, INPUT_BYTES_VALUE, length[i_len]); cfg.plaintext = input; cfg.plaintext_length = length[i_len]; aes_gcm_test_expected_res_t res = {0}; for (int i_add = 0; i_add < sizeof(add_len) / sizeof(add_len[0]); i_add++) { printf("Test AES-GCM with add length = %d\n", add_len[i_add]); uint8_t *add = heap_caps_malloc(add_len[i_add], MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT(add != NULL || add_len[i_add] == 0); memset(add, ADD_BYTES_VALUE, add_len[i_add]); cfg.add_buf = add; cfg.add_length = add_len[i_add]; res.expected_tag = expected_tag[i_key][i_iv][i_len][i_add]; res.ciphertext_last_block = expected_last_block[i_key][i_iv][i_len], aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG); free(add); } free(input); } } } } TEST_CASE("mbedtls AES GCM - Different Authentication Tag lengths", "[aes-gcm]") { const unsigned CALL_SZ = 160; uint8_t iv[16]; uint8_t key[16]; uint8_t aad[16]; uint8_t *input = heap_caps_malloc(CALL_SZ, MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); TEST_ASSERT_NOT_NULL(input); memset(input, 0x67, CALL_SZ); memset(iv, 0xA2, sizeof(iv)); memset(key, 0x48, sizeof(key)); memset(aad, 0x12, sizeof(aad)); size_t tag_len[] = {4, 8, 11, 16}; const uint8_t expected_last_block[] = { 0xcd, 0xb9, 0xad, 0x6f, 0xc9, 0x35, 0x21, 0x0d, 0xc9, 0x5d, 0xea, 0xd9, 0xf7, 0x1d, 0x43, 0xed }; const uint8_t expected_tag[16] = { 0x57, 0x10, 0x22, 0x91, 0x65, 0xfa, 0x89, 0xba, 0x0a, 0x3e, 0xc1, 0x7c, 0x93, 0x6e, 0x35, 0xac }; aes_gcm_test_cfg_t cfg = { .plaintext = input, .plaintext_length = CALL_SZ, .output_caps = MALLOC_CAP_DMA | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL, .add_buf = aad, .add_length = sizeof(aad), .iv = iv, .iv_length = sizeof(iv), .key = key, .key_bits = 8 * sizeof(key), }; aes_gcm_test_expected_res_t res = { .expected_tag = expected_tag, .ciphertext_last_block = expected_last_block, }; for (int i = 0; i < sizeof(tag_len) / sizeof(tag_len[0]); i++) { printf("Test AES-GCM with tag length = %d\n", tag_len[i]); cfg.tag_len = tag_len[i]; aes_gcm_test(&cfg, &res, AES_GCM_TEST_CRYPT_N_TAG); aes_gcm_test(&cfg, &res, AES_GCM_TEST_START_UPDATE_FINISH); } free(input); } #endif //CONFIG_MBEDTLS_HARDWARE_AES