/** * \brief AES block cipher, ESP block hardware accelerated version * Based on mbedTLS FIPS-197 compliant version. * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. * * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf */ #include #include "mbedtls/aes.h" #include "mbedtls/platform_util.h" #include "esp_log.h" #include "aes/esp_aes.h" #include "soc/hwcrypto_periph.h" #include #include "hal/aes_hal.h" #include "aes/esp_aes_internal.h" #include #include #include "esp_private/periph_ctrl.h" static const char *TAG = "esp-aes"; /* AES uses a spinlock mux not a lock as the underlying block operation only takes 208 cycles (to write key & compute block), +600 cycles for DPORT protection but +3400 cycles again if you use a full sized lock. For CBC, CFB, etc. this may mean that interrupts are disabled for a longer period of time for bigger lengths. However at the moment this has to happen anyway due to DPORT protection... */ static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED; void esp_aes_acquire_hardware( void ) { portENTER_CRITICAL(&aes_spinlock); /* Enable AES hardware */ periph_module_enable(PERIPH_AES_MODULE); } void esp_aes_release_hardware( void ) { /* Disable AES hardware */ periph_module_disable(PERIPH_AES_MODULE); portEXIT_CRITICAL(&aes_spinlock); } /* Run a single 16 byte block of AES, using the hardware engine. * * Call only while holding esp_aes_acquire_hardware(). */ static int esp_aes_block(esp_aes_context *ctx, const void *input, void *output) { uint32_t i0, i1, i2, i3; const uint32_t *input_words = (uint32_t *)input; uint32_t *output_words = (uint32_t *)output; /* If no key is written to hardware yet, either the user hasn't called mbedtls_aes_setkey_enc/mbedtls_aes_setkey_dec - meaning we also don't know which mode to use - or a fault skipped the key write to hardware. Treat this as a fatal error and zero the output block. */ if (ctx->key_in_hardware != ctx->key_bytes) { bzero(output, 16); return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH; } i0 = input_words[0]; i1 = input_words[1]; i2 = input_words[2]; i3 = input_words[3]; aes_hal_transform_block(input, output); /* Physical security check: Verify the AES accelerator actually ran, and wasn't skipped due to external fault injection while starting the peripheral. Note that i0,i1,i2,i3 are copied from input buffer in case input==output. Bypassing this check requires at least one additional fault. */ if (i0 == output_words[0] && i1 == output_words[1] && i2 == output_words[2] && i3 == output_words[3]) { // calling zeroing functions to narrow the // window for a double-fault of the abort step, here memset(output, 0, 16); mbedtls_platform_zeroize(output, 16); abort(); } return 0; } static int esp_aes_validate_input(esp_aes_context *ctx, const unsigned char *input, const unsigned char *output ) { if (!ctx) { ESP_LOGD(TAG, "No AES context supplied"); return -1; } if (!input) { ESP_LOGD(TAG, "No input supplied"); return -1; } if (!output) { ESP_LOGD(TAG, "No output supplied"); return -1; } return 0; } void esp_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_encrypt(ctx, input, output); } /* * AES-ECB block encryption */ int esp_internal_aes_encrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); r = esp_aes_block(ctx, input, output); esp_aes_release_hardware(); return r; } void esp_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { esp_internal_aes_decrypt(ctx, input, output); } /* * AES-ECB block decryption */ int esp_internal_aes_decrypt(esp_aes_context *ctx, const unsigned char input[16], unsigned char output[16] ) { int r; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_DECRYPT); r = esp_aes_block(ctx, input, output); esp_aes_release_hardware(); return r; } /* * AES-ECB block encryption/decryption */ int esp_aes_crypt_ecb(esp_aes_context *ctx, int mode, const unsigned char input[16], unsigned char output[16] ) { int r; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); r = esp_aes_block(ctx, input, output); esp_aes_release_hardware(); return r; } /* * AES-CBC buffer encryption/decryption */ int esp_aes_crypt_cbc(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGD(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } uint32_t *output_words = (uint32_t *)output; const uint32_t *input_words = (const uint32_t *)input; uint32_t *iv_words = (uint32_t *)iv; unsigned char temp[16]; if ( length % 16 ) { return ( ERR_ESP_AES_INVALID_INPUT_LENGTH ); } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, mode); if ( mode == ESP_AES_DECRYPT ) { while ( length > 0 ) { memcpy(temp, input_words, 16); esp_aes_block(ctx, input_words, output_words); output_words[0] = output_words[0] ^ iv_words[0]; output_words[1] = output_words[1] ^ iv_words[1]; output_words[2] = output_words[2] ^ iv_words[2]; output_words[3] = output_words[3] ^ iv_words[3]; memcpy( iv_words, temp, 16 ); input_words += 4; output_words += 4; length -= 16; } } else { // ESP_AES_ENCRYPT while ( length > 0 ) { output_words[0] = input_words[0] ^ iv_words[0]; output_words[1] = input_words[1] ^ iv_words[1]; output_words[2] = input_words[2] ^ iv_words[2]; output_words[3] = input_words[3] ^ iv_words[3]; esp_aes_block(ctx, output_words, output_words); memcpy( iv_words, output_words, 16 ); input_words += 4; output_words += 4; length -= 16; } } esp_aes_release_hardware(); return 0; } /* * AES-CFB128 buffer encryption/decryption */ int esp_aes_crypt_cfb128(esp_aes_context *ctx, int mode, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int c; size_t n = *iv_off; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); if ( mode == ESP_AES_DECRYPT ) { while ( length-- ) { if ( n == 0 ) { esp_aes_block(ctx, iv, iv); } c = *input++; *output++ = (unsigned char)( c ^ iv[n] ); iv[n] = (unsigned char) c; n = ( n + 1 ) & 0x0F; } } else { while ( length-- ) { if ( n == 0 ) { esp_aes_block(ctx, iv, iv); } iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ ); n = ( n + 1 ) & 0x0F; } } *iv_off = n; esp_aes_release_hardware(); return 0; } /* * AES-CFB8 buffer encryption/decryption */ int esp_aes_crypt_cfb8(esp_aes_context *ctx, int mode, size_t length, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { unsigned char c; unsigned char ov[17]; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); while ( length-- ) { memcpy( ov, iv, 16 ); esp_aes_block(ctx, iv, iv); if ( mode == ESP_AES_DECRYPT ) { ov[16] = *input; } c = *output++ = (unsigned char)( iv[0] ^ *input++ ); if ( mode == ESP_AES_ENCRYPT ) { ov[16] = c; } memcpy( iv, ov + 1, 16 ); } esp_aes_release_hardware(); return 0; } /* * AES-CTR buffer encryption/decryption */ int esp_aes_crypt_ctr(esp_aes_context *ctx, size_t length, size_t *nc_off, unsigned char nonce_counter[16], unsigned char stream_block[16], const unsigned char *input, unsigned char *output ) { int c, i; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!stream_block) { ESP_LOGE(TAG, "No stream supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!nonce_counter) { ESP_LOGE(TAG, "No nonce supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!nc_off) { ESP_LOGE(TAG, "No nonce offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } size_t n = *nc_off; if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); while ( length-- ) { if ( n == 0 ) { esp_aes_block(ctx, nonce_counter, stream_block); for ( i = 16; i > 0; i-- ) { if ( ++nonce_counter[i - 1] != 0 ) { break; } } } c = *input++; *output++ = (unsigned char)( c ^ stream_block[n] ); n = ( n + 1 ) & 0x0F; } *nc_off = n; esp_aes_release_hardware(); return 0; } /* * AES-OFB (Output Feedback Mode) buffer encryption/decryption */ int esp_aes_crypt_ofb(esp_aes_context *ctx, size_t length, size_t *iv_off, unsigned char iv[16], const unsigned char *input, unsigned char *output ) { int ret = 0; size_t n; if (esp_aes_validate_input(ctx, input, output)) { return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv) { ESP_LOGE(TAG, "No IV supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } if (!iv_off) { ESP_LOGE(TAG, "No IV offset supplied"); return MBEDTLS_ERR_AES_BAD_INPUT_DATA; } n = *iv_off; if (n > 15) { return (MBEDTLS_ERR_AES_BAD_INPUT_DATA); } if (!valid_key_length(ctx)) { return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; } esp_aes_acquire_hardware(); ctx->key_in_hardware = 0; ctx->key_in_hardware = aes_hal_setkey(ctx->key, ctx->key_bytes, ESP_AES_ENCRYPT); while (length--) { if ( n == 0 ) { esp_aes_block(ctx, iv, iv); } *output++ = *input++ ^ iv[n]; n = ( n + 1 ) & 0x0F; } *iv_off = n; esp_aes_release_hardware(); return ( ret ); }