/* * SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "driver/periph_ctrl.h" #include "driver/gpio.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_check.h" #include "esp_eth.h" #include "esp_pm.h" #include "esp_system.h" #include "esp_heap_caps.h" #include "esp_intr_alloc.h" #include "esp_private/esp_clk.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "hal/cpu_hal.h" #include "hal/emac_hal.h" #include "hal/gpio_hal.h" #include "soc/soc.h" #include "soc/rtc.h" #include "sdkconfig.h" #include "esp_rom_gpio.h" #include "esp_rom_sys.h" #include "hal/emac_ll.h" static const char *TAG = "esp.emac"; #define PHY_OPERATION_TIMEOUT_US (1000) #define MAC_STOP_TIMEOUT_US (250) #define FLOW_CONTROL_LOW_WATER_MARK (CONFIG_ETH_DMA_RX_BUFFER_NUM / 3) #define FLOW_CONTROL_HIGH_WATER_MARK (FLOW_CONTROL_LOW_WATER_MARK * 2) typedef struct { esp_eth_mac_t parent; esp_eth_mediator_t *eth; emac_hal_context_t hal; intr_handle_t intr_hdl; TaskHandle_t rx_task_hdl; uint32_t sw_reset_timeout_ms; uint32_t frames_remain; uint32_t free_rx_descriptor; uint32_t flow_control_high_water_mark; uint32_t flow_control_low_water_mark; int smi_mdc_gpio_num; int smi_mdio_gpio_num; eth_mac_clock_config_t clock_config; uint8_t addr[6]; uint8_t *rx_buf[CONFIG_ETH_DMA_RX_BUFFER_NUM]; uint8_t *tx_buf[CONFIG_ETH_DMA_TX_BUFFER_NUM]; bool isr_need_yield; bool flow_ctrl_enabled; // indicates whether the user want to do flow control bool do_flow_ctrl; // indicates whether we need to do software flow control #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } emac_esp32_t; static esp_err_t esp_emac_alloc_driver_obj(const eth_mac_config_t *config, emac_esp32_t **emac_out_hdl, void **out_descriptors); static void esp_emac_free_driver_obj(emac_esp32_t *emac, void *descriptors); static esp_err_t emac_esp32_start(esp_eth_mac_t *mac); static esp_err_t emac_esp32_stop(esp_eth_mac_t *mac); static esp_err_t emac_esp32_set_mediator(esp_eth_mac_t *mac, esp_eth_mediator_t *eth) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(eth, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac's mediator to null"); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac->eth = eth; return ESP_OK; err: return ret; } static esp_err_t emac_esp32_write_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t reg_value) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); ESP_GOTO_ON_FALSE(!emac_ll_is_mii_busy(emac->hal.mac_regs), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy"); emac_ll_set_phy_data(emac->hal.mac_regs, reg_value); emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, true); /* polling the busy flag */ uint32_t to = 0; bool busy = true; do { esp_rom_delay_us(100); busy = emac_ll_is_mii_busy(emac->hal.mac_regs); to += 100; } while (busy && to < PHY_OPERATION_TIMEOUT_US); ESP_GOTO_ON_FALSE(!busy, ESP_ERR_TIMEOUT, err, TAG, "phy is busy"); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_read_phy_reg(esp_eth_mac_t *mac, uint32_t phy_addr, uint32_t phy_reg, uint32_t *reg_value) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(reg_value, ESP_ERR_INVALID_ARG, err, TAG, "can't set reg_value to null"); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); ESP_GOTO_ON_FALSE(!emac_ll_is_mii_busy(emac->hal.mac_regs), ESP_ERR_INVALID_STATE, err, TAG, "phy is busy"); emac_hal_set_phy_cmd(&emac->hal, phy_addr, phy_reg, false); /* polling the busy flag */ uint32_t to = 0; bool busy = true; do { esp_rom_delay_us(100); busy = emac_ll_is_mii_busy(emac->hal.mac_regs); to += 100; } while (busy && to < PHY_OPERATION_TIMEOUT_US); ESP_GOTO_ON_FALSE(!busy, ESP_ERR_TIMEOUT, err, TAG, "phy is busy"); /* Store value */ *reg_value = emac_ll_get_phy_data(emac->hal.mac_regs); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null"); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); memcpy(emac->addr, addr, 6); emac_hal_set_address(&emac->hal, emac->addr); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_get_addr(esp_eth_mac_t *mac, uint8_t *addr) { esp_err_t ret = ESP_OK; ESP_GOTO_ON_FALSE(addr, ESP_ERR_INVALID_ARG, err, TAG, "can't set mac addr to null"); emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); memcpy(addr, emac->addr, 6); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_link(esp_eth_mac_t *mac, eth_link_t link) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); switch (link) { case ETH_LINK_UP: ESP_GOTO_ON_ERROR(esp_intr_enable(emac->intr_hdl), err, TAG, "enable interrupt failed"); emac_esp32_start(mac); break; case ETH_LINK_DOWN: ESP_GOTO_ON_ERROR(esp_intr_disable(emac->intr_hdl), err, TAG, "disable interrupt failed"); emac_esp32_stop(mac); break; default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "unknown link status"); break; } return ESP_OK; err: return ret; } static esp_err_t emac_esp32_set_speed(esp_eth_mac_t *mac, eth_speed_t speed) { esp_err_t ret = ESP_ERR_INVALID_ARG; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); if (speed >= ETH_SPEED_10M && speed < ETH_SPEED_MAX) { emac_ll_set_port_speed(emac->hal.mac_regs, speed); ESP_LOGD(TAG, "working in %dMbps", speed == ETH_SPEED_10M ? 10 : 100); return ESP_OK; } return ret; } static esp_err_t emac_esp32_set_duplex(esp_eth_mac_t *mac, eth_duplex_t duplex) { esp_err_t ret = ESP_ERR_INVALID_ARG; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); if (duplex == ETH_DUPLEX_HALF || duplex == ETH_DUPLEX_FULL) { emac_ll_set_duplex(emac->hal.mac_regs, duplex); ESP_LOGD(TAG, "working in %s duplex", duplex == ETH_DUPLEX_HALF ? "half" : "full"); return ESP_OK; } return ret; } static esp_err_t emac_esp32_set_promiscuous(esp_eth_mac_t *mac, bool enable) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac_ll_promiscuous_mode_enable(emac->hal.mac_regs, enable); return ESP_OK; } static esp_err_t emac_esp32_enable_flow_ctrl(esp_eth_mac_t *mac, bool enable) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac->flow_ctrl_enabled = enable; return ESP_OK; } static esp_err_t emac_esp32_set_peer_pause_ability(esp_eth_mac_t *mac, uint32_t ability) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); // we want to enable flow control, and peer does support pause function // then configure the MAC layer to enable flow control feature if (emac->flow_ctrl_enabled && ability) { emac_hal_enable_flow_ctrl(&emac->hal, true); emac->do_flow_ctrl = true; } else { emac_hal_enable_flow_ctrl(&emac->hal, false); emac->do_flow_ctrl = false; ESP_LOGD(TAG, "Flow control not enabled for the link"); } return ESP_OK; } static esp_err_t emac_esp32_transmit(esp_eth_mac_t *mac, uint8_t *buf, uint32_t length) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); uint32_t sent_len = emac_hal_transmit_frame(&emac->hal, buf, length); ESP_GOTO_ON_FALSE(sent_len == length, ESP_ERR_NO_MEM, err, TAG, "insufficient TX buffer size"); return ESP_OK; err: return ret; } static esp_err_t emac_esp32_receive(esp_eth_mac_t *mac, uint8_t *buf, uint32_t *length) { esp_err_t ret = ESP_OK; uint32_t expected_len = *length; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); ESP_GOTO_ON_FALSE(buf && length, ESP_ERR_INVALID_ARG, err, TAG, "can't set buf and length to null"); uint32_t receive_len = emac_hal_receive_frame(&emac->hal, buf, expected_len, &emac->frames_remain, &emac->free_rx_descriptor); /* we need to check the return value in case the buffer size is not enough */ ESP_LOGD(TAG, "receive len= %d", receive_len); ESP_GOTO_ON_FALSE(expected_len >= receive_len, ESP_ERR_INVALID_SIZE, err, TAG, "received buffer longer than expected"); *length = receive_len; return ESP_OK; err: *length = expected_len; return ret; } static void emac_esp32_rx_task(void *arg) { emac_esp32_t *emac = (emac_esp32_t *)arg; uint8_t *buffer = NULL; uint32_t length = 0; while (1) { // block indefinitely until got notification from underlay event ulTaskNotifyTake(pdTRUE, portMAX_DELAY); do { length = ETH_MAX_PACKET_SIZE; buffer = malloc(length); if (!buffer) { ESP_LOGE(TAG, "no mem for receive buffer"); } else if (emac_esp32_receive(&emac->parent, buffer, &length) == ESP_OK) { /* pass the buffer to stack (e.g. TCP/IP layer) */ if (length) { emac->eth->stack_input(emac->eth, buffer, length); } else { free(buffer); } } else { free(buffer); } #if CONFIG_ETH_SOFT_FLOW_CONTROL // we need to do extra checking of remained frames in case there are no unhandled frames left, but pause frame is still undergoing if ((emac->free_rx_descriptor < emac->flow_control_low_water_mark) && emac->do_flow_ctrl && emac->frames_remain) { emac_ll_pause_frame_enable(emac->hal.ext_regs, true); } else if ((emac->free_rx_descriptor > emac->flow_control_high_water_mark) || !emac->frames_remain) { emac_ll_pause_frame_enable(emac->hal.ext_regs, false); } #endif } while (emac->frames_remain); } vTaskDelete(NULL); } static void emac_esp32_init_smi_gpio(emac_esp32_t *emac) { if (emac->smi_mdc_gpio_num >= 0) { /* Setup SMI MDC GPIO */ gpio_set_direction(emac->smi_mdc_gpio_num, GPIO_MODE_OUTPUT); esp_rom_gpio_connect_out_signal(emac->smi_mdc_gpio_num, EMAC_MDC_O_IDX, false, false); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[emac->smi_mdc_gpio_num], PIN_FUNC_GPIO); } if (emac->smi_mdio_gpio_num >= 0) { /* Setup SMI MDIO GPIO */ gpio_set_direction(emac->smi_mdio_gpio_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(emac->smi_mdio_gpio_num, EMAC_MDO_O_IDX, false, false); esp_rom_gpio_connect_in_signal(emac->smi_mdio_gpio_num, EMAC_MDI_I_IDX, false); gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[emac->smi_mdio_gpio_num], PIN_FUNC_GPIO); } } static void emac_config_apll_clock(void) { /* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2) */ rtc_xtal_freq_t rtc_xtal_freq = rtc_clk_xtal_freq_get(); switch (rtc_xtal_freq) { case RTC_XTAL_FREQ_40M: // Recommended /* 50 MHz = 40MHz * (4 + 6) / (2 * (2 + 2) = 50.000 */ /* sdm0 = 0, sdm1 = 0, sdm2 = 6, o_div = 2 */ rtc_clk_apll_enable(true, 0, 0, 6, 2); break; case RTC_XTAL_FREQ_26M: /* 50 MHz = 26MHz * (4 + 15 + 118 / 256 + 39/65536) / ((3 + 2) * 2) = 49.999992 */ /* sdm0 = 39, sdm1 = 118, sdm2 = 15, o_div = 3 */ rtc_clk_apll_enable(true, 39, 118, 15, 3); break; case RTC_XTAL_FREQ_24M: /* 50 MHz = 24MHz * (4 + 12 + 255 / 256 + 255/65536) / ((2 + 2) * 2) = 49.499977 */ /* sdm0 = 255, sdm1 = 255, sdm2 = 12, o_div = 2 */ rtc_clk_apll_enable(true, 255, 255, 12, 2); break; default: // Assume we have a 40M xtal rtc_clk_apll_enable(true, 0, 0, 6, 2); break; } } static esp_err_t emac_esp32_init(esp_eth_mac_t *mac) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_eth_mediator_t *eth = emac->eth; /* init gpio used by smi interface */ emac_esp32_init_smi_gpio(emac); ESP_GOTO_ON_ERROR(eth->on_state_changed(eth, ETH_STATE_LLINIT, NULL), err, TAG, "lowlevel init failed"); /* software reset */ emac_ll_reset(emac->hal.dma_regs); uint32_t to = 0; for (to = 0; to < emac->sw_reset_timeout_ms / 10; to++) { if (emac_ll_is_reset_done(emac->hal.dma_regs)) { break; } vTaskDelay(pdMS_TO_TICKS(10)); } ESP_GOTO_ON_FALSE(to < emac->sw_reset_timeout_ms / 10, ESP_ERR_TIMEOUT, err, TAG, "reset timeout"); /* set smi clock */ emac_hal_set_csr_clock_range(&emac->hal, esp_clk_apb_freq()); /* reset descriptor chain */ emac_hal_reset_desc_chain(&emac->hal); /* init mac registers by default */ emac_hal_init_mac_default(&emac->hal); /* init dma registers by default */ emac_hal_init_dma_default(&emac->hal); /* get emac address from efuse */ ESP_GOTO_ON_ERROR(esp_read_mac(emac->addr, ESP_MAC_ETH), err, TAG, "fetch ethernet mac address failed"); /* set MAC address to emac register */ emac_hal_set_address(&emac->hal, emac->addr); #ifdef CONFIG_PM_ENABLE esp_pm_lock_acquire(emac->pm_lock); #endif return ESP_OK; err: eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); periph_module_disable(PERIPH_EMAC_MODULE); return ret; } static esp_err_t emac_esp32_deinit(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_eth_mediator_t *eth = emac->eth; #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(emac->pm_lock); #endif emac_hal_stop(&emac->hal); eth->on_state_changed(eth, ETH_STATE_DEINIT, NULL); return ESP_OK; } static esp_err_t emac_esp32_start(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); emac_hal_reset_desc_chain(&emac->hal); emac_hal_start(&emac->hal); return ESP_OK; } static esp_err_t emac_esp32_stop(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_err_t ret = ESP_OK; int32_t to = 0; do { if ((ret = emac_hal_stop(&emac->hal)) == ESP_OK) { break; } to += 25; esp_rom_delay_us(25); } while (to < MAC_STOP_TIMEOUT_US); return ret; } static esp_err_t emac_esp32_del(esp_eth_mac_t *mac) { emac_esp32_t *emac = __containerof(mac, emac_esp32_t, parent); esp_emac_free_driver_obj(emac, emac->hal.descriptors); periph_module_disable(PERIPH_EMAC_MODULE); return ESP_OK; } // To achieve a better performance, we put the ISR always in IRAM IRAM_ATTR void emac_isr_default_handler(void *args) { emac_hal_context_t *hal = (emac_hal_context_t *)args; emac_esp32_t *emac = __containerof(hal, emac_esp32_t, hal); BaseType_t high_task_wakeup = pdFALSE; uint32_t intr_stat = emac_ll_get_intr_status(hal->dma_regs); emac_ll_clear_corresponding_intr(hal->dma_regs, intr_stat); #if EMAC_LL_CONFIG_ENABLE_INTR_MASK & EMAC_LL_INTR_RECEIVE_ENABLE if (intr_stat & EMAC_LL_DMA_RECEIVE_FINISH_INTR) { /* notify receive task */ vTaskNotifyGiveFromISR(emac->rx_task_hdl, &high_task_wakeup); if (high_task_wakeup == pdTRUE) { portYIELD_FROM_ISR(); } } #endif } static void esp_emac_free_driver_obj(emac_esp32_t *emac, void *descriptors) { if (emac) { if (emac->rx_task_hdl) { vTaskDelete(emac->rx_task_hdl); } if (emac->intr_hdl) { esp_intr_free(emac->intr_hdl); } for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) { free(emac->tx_buf[i]); } for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) { free(emac->rx_buf[i]); } #ifdef CONFIG_PM_ENABLE if (emac->pm_lock) { esp_pm_lock_delete(emac->pm_lock); } #endif free(emac); } if (descriptors) { free(descriptors); } } static esp_err_t esp_emac_alloc_driver_obj(const eth_mac_config_t *config, emac_esp32_t **emac_out_hdl, void **out_descriptors) { esp_err_t ret = ESP_OK; emac_esp32_t *emac = NULL; void *descriptors = NULL; if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) { emac = heap_caps_calloc(1, sizeof(emac_esp32_t), MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } else { emac = calloc(1, sizeof(emac_esp32_t)); } ESP_GOTO_ON_FALSE(emac, ESP_ERR_NO_MEM, err, TAG, "no mem for esp emac object"); /* alloc memory for ethernet dma descriptor */ uint32_t desc_size = CONFIG_ETH_DMA_RX_BUFFER_NUM * sizeof(eth_dma_rx_descriptor_t) + CONFIG_ETH_DMA_TX_BUFFER_NUM * sizeof(eth_dma_tx_descriptor_t); descriptors = heap_caps_calloc(1, desc_size, MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(descriptors, ESP_ERR_NO_MEM, err, TAG, "no mem for descriptors"); /* alloc memory for ethernet dma buffer */ for (int i = 0; i < CONFIG_ETH_DMA_RX_BUFFER_NUM; i++) { emac->rx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(emac->rx_buf[i], ESP_ERR_NO_MEM, err, TAG, "no mem for RX DMA buffers"); } for (int i = 0; i < CONFIG_ETH_DMA_TX_BUFFER_NUM; i++) { emac->tx_buf[i] = heap_caps_calloc(1, CONFIG_ETH_DMA_BUFFER_SIZE, MALLOC_CAP_DMA); ESP_GOTO_ON_FALSE(emac->tx_buf[i], ESP_ERR_NO_MEM, err, TAG, "no mem for TX DMA buffers"); } /* alloc PM lock */ #ifdef CONFIG_PM_ENABLE ESP_GOTO_ON_ERROR(esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "emac_esp32", &emac->pm_lock), err, TAG, "create pm lock failed"); #endif /* create rx task */ BaseType_t core_num = tskNO_AFFINITY; if (config->flags & ETH_MAC_FLAG_PIN_TO_CORE) { core_num = cpu_hal_get_core_id(); } BaseType_t xReturned = xTaskCreatePinnedToCore(emac_esp32_rx_task, "emac_rx", config->rx_task_stack_size, emac, config->rx_task_prio, &emac->rx_task_hdl, core_num); ESP_GOTO_ON_FALSE(xReturned == pdPASS, ESP_FAIL, err, TAG, "create emac_rx task failed"); *out_descriptors = descriptors; *emac_out_hdl = emac; return ESP_OK; err: esp_emac_free_driver_obj(emac, descriptors); return ret; } static esp_err_t esp_emac_config_data_interface(const eth_mac_config_t *config, emac_esp32_t *emac) { esp_err_t ret = ESP_OK; switch (config->interface) { case EMAC_DATA_INTERFACE_MII: emac->clock_config = config->clock_config; /* MII interface GPIO initialization */ emac_hal_iomux_init_mii(); /* Enable MII clock */ emac_ll_clock_enable_mii(emac->hal.ext_regs); break; case EMAC_DATA_INTERFACE_RMII: // by default, the clock mode is selected at compile time (by Kconfig) if (config->clock_config.rmii.clock_mode == EMAC_CLK_DEFAULT) { #if CONFIG_ETH_RMII_CLK_INPUT #if CONFIG_ETH_RMII_CLK_IN_GPIO == 0 emac->clock_config.rmii.clock_mode = EMAC_CLK_EXT_IN; emac->clock_config.rmii.clock_gpio = CONFIG_ETH_RMII_CLK_IN_GPIO; #else #error "ESP32 EMAC only support input RMII clock to GPIO0" #endif // CONFIG_ETH_RMII_CLK_IN_GPIO == 0 #elif CONFIG_ETH_RMII_CLK_OUTPUT emac->clock_config.rmii.clock_mode = EMAC_CLK_OUT; #if CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0 emac->clock_config.rmii.clock_gpio = 0; #elif CONFIG_ETH_RMII_CLK_OUT_GPIO emac->clock_config.rmii.clock_gpio = CONFIG_ETH_RMII_CLK_OUT_GPIO; #endif // CONFIG_ETH_RMII_CLK_OUTPUT_GPIO0 #else #error "Unsupported RMII clock mode" #endif } else { emac->clock_config = config->clock_config; } /* RMII interface GPIO initialization */ emac_hal_iomux_init_rmii(); /* If ref_clk is configured as input */ if (emac->clock_config.rmii.clock_mode == EMAC_CLK_EXT_IN) { ESP_GOTO_ON_FALSE(emac->clock_config.rmii.clock_gpio == EMAC_CLK_IN_GPIO, ESP_ERR_INVALID_ARG, err, TAG, "ESP32 EMAC only support input RMII clock to GPIO0"); emac_hal_iomux_rmii_clk_input(); emac_ll_clock_enable_rmii_input(emac->hal.ext_regs); } else if (emac->clock_config.rmii.clock_mode == EMAC_CLK_OUT) { ESP_GOTO_ON_FALSE(emac->clock_config.rmii.clock_gpio == EMAC_APPL_CLK_OUT_GPIO || emac->clock_config.rmii.clock_gpio == EMAC_CLK_OUT_GPIO || emac->clock_config.rmii.clock_gpio == EMAC_CLK_OUT_180_GPIO, ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC clock output GPIO"); emac_hal_iomux_rmii_clk_ouput(emac->clock_config.rmii.clock_gpio); if (emac->clock_config.rmii.clock_gpio == EMAC_APPL_CLK_OUT_GPIO) { REG_SET_FIELD(PIN_CTRL, CLK_OUT1, 6); } /* Enable RMII clock */ emac_ll_clock_enable_rmii_output(emac->hal.ext_regs); emac_config_apll_clock(); } else { ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC clock mode"); } break; default: ESP_GOTO_ON_FALSE(false, ESP_ERR_INVALID_ARG, err, TAG, "invalid EMAC Data Interface:%d", config->interface); } err: return ret; } esp_eth_mac_t *esp_eth_mac_new_esp32(const eth_mac_config_t *config) { esp_err_t ret_code = ESP_OK; esp_eth_mac_t *ret = NULL; void *descriptors = NULL; emac_esp32_t *emac = NULL; ESP_GOTO_ON_FALSE(config, NULL, err, TAG, "can't set mac config to null"); ret_code = esp_emac_alloc_driver_obj(config, &emac, &descriptors); ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err, TAG, "alloc driver object failed"); /* enable APB to access Ethernet peripheral registers */ periph_module_enable(PERIPH_EMAC_MODULE); /* initialize hal layer driver */ emac_hal_init(&emac->hal, descriptors, emac->rx_buf, emac->tx_buf); /* alloc interrupt */ if (config->flags & ETH_MAC_FLAG_WORK_WITH_CACHE_DISABLE) { ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, ESP_INTR_FLAG_IRAM, emac_isr_default_handler, &emac->hal, &(emac->intr_hdl)); } else { ret_code = esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0, emac_isr_default_handler, &emac->hal, &(emac->intr_hdl)); } ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err, TAG, "alloc emac interrupt failed"); ret_code = esp_emac_config_data_interface(config, emac); ESP_GOTO_ON_FALSE(ret_code == ESP_OK, NULL, err_interf, TAG, "config emac interface failed"); emac->sw_reset_timeout_ms = config->sw_reset_timeout_ms; emac->smi_mdc_gpio_num = config->smi_mdc_gpio_num; emac->smi_mdio_gpio_num = config->smi_mdio_gpio_num; emac->flow_control_high_water_mark = FLOW_CONTROL_HIGH_WATER_MARK; emac->flow_control_low_water_mark = FLOW_CONTROL_LOW_WATER_MARK; emac->parent.set_mediator = emac_esp32_set_mediator; emac->parent.init = emac_esp32_init; emac->parent.deinit = emac_esp32_deinit; emac->parent.start = emac_esp32_start; emac->parent.stop = emac_esp32_stop; emac->parent.del = emac_esp32_del; emac->parent.write_phy_reg = emac_esp32_write_phy_reg; emac->parent.read_phy_reg = emac_esp32_read_phy_reg; emac->parent.set_addr = emac_esp32_set_addr; emac->parent.get_addr = emac_esp32_get_addr; emac->parent.set_speed = emac_esp32_set_speed; emac->parent.set_duplex = emac_esp32_set_duplex; emac->parent.set_link = emac_esp32_set_link; emac->parent.set_promiscuous = emac_esp32_set_promiscuous; emac->parent.set_peer_pause_ability = emac_esp32_set_peer_pause_ability; emac->parent.enable_flow_ctrl = emac_esp32_enable_flow_ctrl; emac->parent.transmit = emac_esp32_transmit; emac->parent.receive = emac_esp32_receive; return &(emac->parent); err_interf: periph_module_disable(PERIPH_EMAC_MODULE); err: esp_emac_free_driver_obj(emac, descriptors); return ret; }